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Abstract— As jumping is an effective method of moving over
rough terrain, there is much interest in building robots that
can jump, and deformation of a soft robot’s body is an effective
method to induce jumping. Our aim was to investigate the effect
of the initial shape of deformation of a circular shell made of
spring metal. Four initial shapes of deformation, dish, peanut,
cup and cap, jumped the highest in that order, with the dish
jumping twice as high as the cap. A simulation of a model was
in good agreement with the observations.

I. INTRODUCTION

Jumping is used ubiquitously by animals and insects as
a means of locomotion because it is a very effective way
of maneuvering, especially over obstacles. For this reason,
engineers are keen to develop good jumping mechanisms for
robots. Good progress has been made using soft actuators
made from shape memory alloy (SMA), polymer or gel [1],
[2], [3], [4], [5]. These actuators have the advantages of being
light and soft, but most of them cannot generate an impulse,
that is, an energy burst, large enough for jumping, and those
that can require a wet environment or a high voltage, making
it difficult to build self-supporting robots.

The actuators can make a soft object jump by deforming
it, imparting potential energy. The object jumps if enough
potential energy is released in a burst as the object returns
back to its original shape. The aim of the present study
was to improve the jumping capability of a soft robot. We
investigated the jumping of a circular object by physical sim-
ulation and experiments. Section II describes the principle by
which the objects jump by deformation. Section III presents
experiments on how the initial shapes affect jumping. Section
IV presents a simulation of the jumping. Finally, we describe
the impulse of a circular robot as it jumps.

RELATED WORK

Hopping legged robots that can perform dynamic maneu-
vers over the ground [6], [7], [8], pendulum-type jumping
machines that use a swing motion [9], and robots that can
jump from a stationary state by using pneumatic actuators
have been studied [10].

II. JUMPING SOFT ROBOT

Consider a robot that is circular at rest on the ground, as
in Figure 1-(a). When it is deformed, as in Figure 1-(b), it
is in a state of high potential energy. If the potential energy
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(a) natural shape (b) high-energy shape (c) jump

Fig. 1. Principle of jumping by deformation

Fig. 2. Jumping soft robot

is released rapidly enough as the object recovers its resting
shape, the robot will jump, as in Figure 1-(c).

Now let us consider a jumping robot that has already been
studied [11]. The robot, which is shown in Figure 2, is soft
and spherical. It consists of three circular shells made of
spring metal arranged orthogonally to one another, and has
22 SMA coil internal actuators. By applying an appropriate
voltage pattern to the coils, the robot can be made to jump
as shown by the images in Figure 3, which were captured by
a high-speed camera at 500 fps. Figure 3-(a) shows the body
deformed, and thus with much potential energy. Releasing
the stored potential energy rapidly makes the robot jump, as
shown in Figure 3-(b) through Figure 3-(d).

III. JUMPING FROM DIFFERENT INITIAL
DEFORMATION SHAPES

We investigate which of the four initial deformation
shapes, shown in Figure 4, of a deformable robot that is
circular at rest, produces the highest jump. The robot’s body
is made of spring metal and is 100 mm in diameter, 12 mm in
width, and 0.15 mm in thickness, and weighs 4.6 g. The four
shapes are created by securing parts of the body by the ends
of threads crossing each other at a single point. We make
the body jump by burning through all the threads at once at
the crossing point, which suddenly allows the body to return
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(a) 0 ms (b) 68 ms (c) 72 ms (d) 118 ms

Fig. 3. Successive images of soft robot jumping

(a) cap shape (b) cup shape

(c) peanut shape (d) dish shape

Fig. 4. Initial deformation shapes tested for jumping capability

to its stable shape. The cap shape in Figure 4-(a) is initially
in contact with the ground only at a point on each side, and
jumps when the central concave part strikes the ground. The
cup shape in Figure 4-(b) is in contact with the ground at
a point around the central convex part, and jumps when the
concave part on the upper surface moves upward. The peanut
shape in Figure 4-(c) has two concave parts, a lower and an
upper, and jumps when the lower one hits the ground while
the upper one moves upward. The dish shape in Figure 4-
(d) has an area in contact with the ground, and jumps when
the concave part on its upper surface moves upward. All
four shapes have the same flexural potential energy, Uflex =
16.0 × 10−2 Nm.

Figure 5 shows how each shape jumps. The arrows indi-
cate the bottom of the objects in their highest positions and
the value indicates the height of the bottom point. As you can
see, the dish jumps the highest, followed in decreasing order,
by the peanut, cup, and cap. Clearly, the jumping ability
depends on the initial shape of deformation.

Figure 6 through 9 show successive images, captured by a
high-speed camera at 1000 fps, of the objects jumping. Figure
6 shows the cap shape. The part that was initially concave
hits the ground at 6 ms, and the sides that were initially
touching the ground are no longer in contact at 10 ms and
contact the ground again at 14 ms. The body jumps off the
ground at 17 ms. Figure 7 shows the cup shape. The body
turns into a cap shape at 4 ms, and jumps off the ground
at 12 ms. Figure 8 shows the peanut shape. The part that

430mm 620mm

(a) cap shape (b) cup shape

920mm 1130mm

(c) peanut shape (d) dish shape

Fig. 5. Effect of initial shape of deformation on jumping

(a) 0 ms (b) 6 ms (c) 10 ms

(d) 13 ms (e) 17 ms (f) 20 ms

Fig. 6. Successive images of the cap shape jumping

was initially the top of the lower concavity collides with the
ground at 3 ms. The body continues moving upward, and
jumps off the ground at 12 ms. Figure 8 shows the dish shape.
The bottom of the circular body remains in contact with the
ground until the body jumps off the ground at 13 ms. Note
that its area of contact decreases before jumping, and is very
small immediately before the body leaves the ground.

IV. ANALYSIS OF SIMULATION OF JUMPING

In this section, we use a particle-based model to simulate
the jumps of the four initial shapes. The deformable robot
is modeled by a set of particles connected by mechanical
elements. We formulate a circular body’s flexural potential
energy and simulate its dynamic behavior, including how it
impacts the ground. We wrote the main computer program
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(a) 0 ms (b) 4 ms (c) 6 ms

(d) 9 ms (e) 12 ms (f) 20 ms

Fig. 7. Successive images of the cup shape jumping

(a) 0 ms (b) 3 ms (c) 5 ms

(d) 9 ms (e) 12 ms (f) 20 ms

Fig. 8. Successive images of the peanut shape jumping

for the simulation in C/C++, and used OpenGL for the
graphics display.

A. Flexural Potential Energy

Let us formulate the flexural potential energy of a circular
body. Let L be the length of the circumference, P(s) is a
point on the body at distance s from the origin point along
the circumference, and θ(s) be the angle subtended by the
tangent to P(s). The flexural potential energy of a circular
robot can then be formulated as follows:

Uflex =
∫ L

0

1
2
Rflex

(
dθ

ds

)2

ds, (1)

where Rflex is the flexural rigidity at point P(s). We use
the above equation to evaluate flexural potential energy of
a circular body during dynamic simulation.

B. Particle-based Model of Circular Robot

Figure 10 shows the flexural Voigt model around a shell
particle. Pi and Pk are the particles adjacent to Pj , separated
by angle θj around particle Pj . Torque τj around particle Pj

is then given by

(a) 0 ms (b) 4 ms (c) 7 ms

(d) 10 ms (e) 13 ms (f) 20 ms

Fig. 9. Successive images of the dish shape jumping
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Fig. 10. Flexural Voigt model around shell particle

τj = kbendθj + bbendθ̇j , (2)

where kbend is the flexural elastic constant and bbend is the
flexural viscous constant. ei,j is the unit vector along the
edge from Pi to Pj and ni,j is the unit vector perpendicular
to vector ei,j . We assume that vectors ei,j and ni,j form a
right-handed coordinate system. Distance l is fixed between
two neighboring particles. Torque τj can be equivalently
converted into three forces, −(τj/l)ni,j on Pi, −(τj/l)nj,k

on Pk and (τj/l)ni,j + (τj/l)nj,k on Pj .

C. Model of the Ground

Collision with the ground makes a circular robot jump.
Let us model the ground to simulate the collision between a
robot and the ground. Figure 11 shows a Voigt model of
the ground. kground is the elastic coefficient and bground is
the viscous coefficient. Particle Pj is assumed to be beneath
the surface of the ground. A repulsive force fground is then
applied to the particle. dj is the depth to which particle Pj

has penetrated the ground. The repulsive force can then be
expressed as:

fground = kgrounddj + bgroundḋj . (3)

Let µ be the coefficient of friction of the ground. Then, the
force of friction on particle Pj is µfground .

D. Initial Shapes and Flexural Potential Energy

Figure 12 shows the initial deformed shapes of the actual
circular body made of spring metal, while Figure 13 shows
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Fig. 11. Model of the ground

the shapes in a simulation model. From (1), the flexural
potential energy of all the initial shapes is 4.37× 10−2 Nm,
since the flexural rigidity Rflex is 6.95×10−4 Nm2, calculated
from Young’s modulus and the geometric moment of inertia
of the spring steel. Figure 12-(a-1) through (a-3) show cap
shapes. The shape in Figure 12-(a-1) has lower flexural
potential energy than that in Figure 12-(a-3). Figure 12-(b-1)
through (b-3) show cup shapes, Figure 12-(c-1) through (c-3)
show peanut shapes, and Figure 12-(d-1) through (d-3) show
dish shapes. For all the shapes in Figure 12-(a-1), (b-1), (c-1)
and (d-1) Uflex = 8.77×10−2 Nm, while for all those in Figure
12-(a-2), (b-2), (c-2) and (d-2), Uflex = 12.3× 10−2 Nm, and
for all those in Figure 12-(a-3), (b-3), (c-3) and (d-3), Uflex
= 16.0×10−2 Nm. Assume that the stored flexural energy is
completely converted into the gravitational energy. Note that
the jump height depends on the size of the difference in the
flexural potential energy between the initial shapes and the
stable circular shape.

E. Results of Jumping Simulation

Here, we model the 4.6 g circular shell as a series of
64 particles, weighing 0.071 g each. kbend was measured as
0.1417 Nm/rad and bbend as 0.00002 Nm/(rad/s). Assume that
the ground is made of steel, then kground = 1.0×106 N/m, and
bground = 1.0×103 Ns/m. Let the coefficient of kinetic friction
be 0.3 and the coefficient of static friction be 0.5. Table
I compares the jumping heights obtained from experiments
and simulations. Note that the figures are the center of gravity
at the highest point of each jumping. Recall that the flexural
potential energy has the same value for all shapes shown in
Figure 12-(a-3), (b-3), (c-3) and (d-3), but the cap in Figure-
12(a-3) jumps 457 mm, while the dish shape in Figure 12-
(d-3) jumps 1171 mm, more than double. The simulated and
experimental results are in good agreement. The maximum
error is 15.8 % in the case of the peanut shape in Figure12-
(c-1). Figure 14 shows successive images of the cup shape,
shown in Figure 13-(b-3), by the simulation. Comparison of
the simulated results and the experimental results in Figure 7,
the deformed shapes during jumping are in good agreement.
Therefore, the simulation is appropriate.

F. Impulse from the Ground during Jumping

Let us investigate the reaction force and the impulse from
the ground during the jumping process by simulations. Figure
15 shows the reaction force from the ground during jumping.
Figure 15-(a) shows reaction forces during jump starting
from the cap shapes given in Figure 12-(a-1) through (a-3).
An impulsive large force is exerted when the bottom of the

(a-1) (a-2) (a-3)

(a) cap shape

(b-1) (b-2) (b-3)

(b) cup shape

(c-1) (c-2) (c-3)

(c) peanut shape

(d-1) (d-2) (d-3)

(d) dish shape

Fig. 12. Initial shapes for jumping

body collides with the ground. Figure 15-(b) shows reaction
forces when the cup shapes in Figure 12-(b-1) through (b-
3) jump. A large force is generated when the bottom of the
body collides with the ground. The force acts for several
milliseconds after the collision. Figure 15-(c) shows reaction
forces when the peanut shapes in Figure 12-(c-1) through (c-
3) jump. It generates a force for a longer time than do the cap
shapes. Figure 15-(d) shows reaction forces when the dish
shapes in Figure 12-(d-1) through (d-3) jump. No impulsive
force is generated. A relatively small force is applied for a
longer time, almost 15 ms. From the results, the maximum
reaction force from the ground does not directly influence
the height of the jump.

The impulses of the particles from the ground can be
computed by integrating the force with respect to time.
As shown in Figure 16-(a), the impulse of the cap shapes
increases rapidly when the bottom part of the circular body
collides with the ground. Then, the impulse of the cap shapes
increases more slowly, until that reaches a plateau. As shown
in Figure 16-(b), the impulse of the cup shapes increases
quickly from about 7 ms, and then reaches a plateau. As
shown in Figure 16-(c), the impulse increases monotonously
after the body collides with the ground. As shown in Figure
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Fig. 13. Four initial shapes with different flexural potential energies

16-(d), the impulse increases monotonously from the initial
state. Note that when the stored flexural potential energy of
the initial shapes is same, the maximum reaction force of
dish shapes is the least in the four shapes. Surprisingly, the
maximum impulse of dish shapes is the best one. Comparison
of the Figure 12-(a-3), (b-3), (c-3) and (d-3), jump height is
related to the maximum force of the impulse.

G. Energies of Circular Robot during Jumping

Figure 17 shows kinetic and potential energies of the
circular robot jumping from the initial shapes in Figure 12-(a-
3), (b-3), (c-3) and (d-3). Note that the chain double-dashed
lines show the time when the body leaves the ground. The
pie charts show the ratio of the each energy at the each
time. Assume that the ratio of the total energy at 0 ms is
100 %. Figure 17-(a2), (b2), (c2) and (d2) shows the ratio at
5 ms. Figure 17-(a3), (b3), (c3) and (d3) shows the ratio at
the time when the body leaves the ground. Figure 17-(a4),
(b4), (c4) and (d4) shows the ratio at the time when the
body is the highest point. In the initial shapes, the flexural
potential energy occupies most area of the pie chart. After
the restriction is removed, the flexural potential energy is
converted into the kinetic energy. After the body jumps, the

TABLE I
THE CENTER OF GRAVITY AT THE HIGHEST POINT

experiment [mm] simulation[mm]
cap shape

(a-1) 270 271
(a-2) 410 382
(a-3) 480 457

cup shape
(b-1) 260 272
(b-2) 490 483
(b-3) 670 669

peanut shape
(c-1) 550 462
(c-2) 800 771
(c-3) 970 980

dish shape
(d-1) 570 495
(d-2) 920 876
(d-3) 1180 1171

(a) 0 ms (b) 6 ms (c) 9 ms

(d) 14 ms (e) 17 ms (f) 21 ms

Fig. 14. Successive images of the cup shape jumping by simulation

kinetic energy is converted into the gravitational energy. As
shown in Figure 17-(a), the kinetic energy decreases when
the bottom part collides with the ground. On the other hand,
the kinetic energy increases, as shown in Figure 17-(d).
Comparison of Figure 12-(a-3), (b-3), (c-3) and (d-3) shows
that the energy loss of the dish shapes is the least. Table
II shows the ratios to convert their flexural potential energy
into gravitational energy during jumping. The ratio is 100 %
when all the flexural potential energy is completely converted
into the gravitational energy. From the table, we find that the
stored flexural potential energy is wasted the most in the case
of the cap shapes and used most efficiently in the case of
the dish shapes.

V. CONCLUSION

We showed that the initial shape of deformation of a
circular, soft body influences its jumping capability. Four
initial shapes of deformation, dish, peanut, cup and cap,
jumped the highest in that order, with the dish jumping twice
as high as the cap. Next, we investigated the flexural potential
energy of the deformed shapes, and then used a particle-
based model to simulate the jumps made by the four shapes.
The results agreed well with the observations. Finally, we
examined the release of the stored potential energy, and
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Fig. 15. Reaction force from ground
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Fig. 16. Impulse from ground during jumping

found that the jump height is related to the maximum force
of the impulse. We found that the flexural potential energy
stored in the circular body is wasted most in the case of the
cap shape, and used most efficiently in the case of the dish
shape.

We are going to apply our findings to a soft robot driven
by soft actuators, and extend our study to a 3D model of the
jumping process.
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