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Abstract— The performance index in bilateral teleoperation,
transparency, is often defined as linear scaling between the mas-
ter and slave positions, as well as the operator and environment
forces. Motivated by applications involving soft tissue manip-
ulation such as robotic surgery, the transparency objective is
generalized to include monotonic nonlinear mappings between
the master/slave position and force signals. Modified Lyapunov-
based adaptive motion/force controllers are presented that
can guarantee the convergence of position and force tracking
errors in the presence of dynamic uncertainty. Given a priori
known bounds on the unknown operator and environment
mass-spring-damper parameters, the closed-loop stability is
analyzed using an off-axis circle criterion and the Nyquist
envelope of interval plant systems. This approach produces
far less conservative stability margins than those achievable
by the passivity analysis. Experimental results with a two-axis
teleoperation setup are provided.

Index Terms— Teleoperation, Telemanipulation, Telesurgery,
Robotic surgery, Soft tissue manipulation, Transparency, Circle
criterion, Adaptive control

I. INTRODUCTION

Teleoperation allows one to extend his/her manipulation
skills and intelligence to different environments through
coordinated control of two robotic arms. Increased interest
in robotic-assisted surgery has emerged since it can grant the
surgeon super-human capabilities such as increased precision
and/or enhanced sensitivity through haptic feedback and
force/position scaling. Among its other benefits are reduced
patient trauma due to minimal invasiveness, and the possi-
bility of performing remote surgery. The ability to reshape
the surgeon’s perception of the tissue in robotic surgery has
spurred increased research into soft-environment teleopera-
tion. To improve the outcome of surgical procedures, new
task-specific design performance criteria are being sought
that will replace the conventional transparency measures.

In soft-tissue manipulation the design objectives focus
more on the fidelity of the system. Traditional measures of
fidelity involved making the system transparent by matching
environment and transmitted impedances, or equivalently
establishing force and position tracking between the master
and slave [1]. The work of Colgate in [2] is one of the early
attempts at altering the operator’s feel of the task through
robust linear impedance shaping.

More recently, optimization of task-based fidelity mea-
sures have been proposed for soft-tissue telemanipulation [3],
[4]. In these methods the fidelity measure is optimized
to provide increased sensitivity to differential thresholds

while maintaining stability over a range of operator and
environment parameters. A drawback of these robust but
nonadaptive controllers is their inherent conservatism. In [5],
Wang et al. have used an optimization based method, and
have added a heuristic adaptive environment impedance
estimation to improve system fidelity. However, the stability
of this approach is not guaranteed [5]. Moreover, all these
methods ultimately result in linear scalings of position and
force signals.

The use of nonlinear position and force mappings in soft-
tissue manipulation can provide greater flexibility in shaping
the surgeon’s perception. The design of such nonlinear
mappings requires comprehensive human factors studies and
remains beyond the scope of the current work. Instead, the
focus of this paper will be on the design of teleoperation
controllers that can enforce desired monotonic nonlinear
force and position scalings, and their stability analysis.
Communication delay is assumed to be negligible since the
surgeon and robot can be assumed to be in the same room.

The adaptive nonlinear motion/force teleoperation con-
trollers proposed in [6] are modified to accommodate nonlin-
ear mappings. These controller incorporate nonlinear models
of the master and slave robots, as well as linear models of the
operator’s arm and the environment, all subject to parametric
uncertainty. Nonlinear force and position mappings, and an
adjustable virtual intervening tool dynamics are established
between the master and slave devices. Given an expected
range of hand/environment impedances to be encountered
during soft-tissue telemanipulation, stability of the teleoper-
ation system is analyzed using a combination of an off-axis
circle criterion and the Nyquist envelope of interval plant
control systems [7], [8]. The stability anlysis given will apply
when either non-linear force or position mapping is used,
however the proposed control architecture can accommodate
both non-linear mappings.

In summary, the main contributions of this paper are: an
adaptive master/slave four-channel teleoperation controller
that handles non-linear force/position mappings, its stability
analysis and experimental results on a two-axis teleoperation
system. The rest of the paper is organized as follows. The
dynamics of the master and slave systems are discussed in
Section II. The proposed non-linear controller is presented
in Section III. The stability proof and analysis are given in
Section IV. Experimental results are presented in Section V.
Concluding remarks are given in Section VI.
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II. DYNAMICS OF MASTER/SLAVE SYSTEMS

The dynamics of the master (γ = m) and slave (γ = s)
robots have the following general nonlinear form [9]:

Dγ(xγ)ẍγ + Cγ(xγ , ẋγ)ẋγ + Gγ(xγ) = Fγ − Fext,γ (1)

where xγ is the workspace position vector, Dγ(xγ) is a
positive definite mass matrix, Cγ(xγ , ẋγ) represents velocity
dependent elements such as Coriolis and centrifugal effects,
Gγ(xγ) corresponds to position-dependent forces such as
gravity, Fγ is robot control force and Fext,γ represents
external forces at the robot end-effector.

The external forces on the master and slave robots corre-
spond to the hand and environment forces respectively; their
relationships are shown below in (2) and (3). To simplify the
design and analysis, the environment and operator dynamics
are assumed to be second-order decoupled LTI models. Such
models have been successfully used by other researchers [6]

Fext,s = Fe = Meẍs + Beẋs + Ke[xs − xs0] (2)

Fext,m = −Fh =
− (F ∗

h − Mhẍm − Bhẋm − Kh[xm − xm0]) (3)

where Me, Mh, Be, Bh, Ke and Kh are positive diagonal
matrices corresponding to mass, damping and stiffness, F ∗

h

is the human exogenous force subject to (4), and xs0 and
xm0 represent the contact points of environment and hand.

‖F ∗
h‖∞ ≤ αh < +∞, αh > 0 (4)

Using (1), (2) and (3), the dynamics of the master and slave
systems can be represented by (5) and (6) respectively.

Mmẍm + Cmẋm + Gm = Fm + F ∗
h (5)

Mm = Dm(xm) + Mh , Cm = Cm(ẋm, xm) + Bh

Gm = Gm(xm) + Kh[xm − xm0]

Msẍs + Csẋs + Gs = Fs (6)

Ms = Ds(xs) + Me, Cs = Cs(ẋs, xs) + Be

Gs = Gs(xs) + Ke[xs − xs0]

To facilitate the teleoperation control design, the slave dy-
namics are rewritten in mapped coordinates. By combining
memoryless nonlinear monotonic mapping κp(xs) and its
derivatives given in (7) with the slave dynamics in (6), the
new slave dynamics can be obtained in (8).

qs = κp(xs), q̇s = κ̇p(xs) = Jẋs (7)

q̈s = κ̈p(xs) = Jẍs + J̇ ẋs

M′
sq̈s + C′

sq̇s + J−TGs = J−T Fs (8)

M′
s = J−TMsJ

−1, C′
s = J−T [Cs −MsJ

−1J̇ ]J−1(9)

where J = ∂κ(.)
∂xs

is a configuration-dependent Jacobian
matrix. It can be shown that the skew-symmetry property of
Ṁs−2Cs is preserved under the above nonlinear coordinate
transformation, i.e. Ṁ′

s − 2C′
s is also skew-symmetric, as

long as J is nonsingular.

III. CONTROL DESIGN

A. Adaptive Master/Slave Controllers

The local control laws for the master and slave are given
in (10) and (11), respectively.

Fm = YmΘ̂m + Km(vmd − vm + AF̃h) −
αhsign(vmd − vm + AF̃h) (10)

Fs = JT [YsΘ̂s + Ks(vsd − κ̇p(xs) − Aκf (F̃e))] (11)

where vmd and vsd are master and slave command vectors
to be introduced later, Km,Ks > 0, A > 0 are diagonal
matrices, F̃γ is a filtered force obtained from (12), and κf (·)
is a monotonic nonlinear force mapping.

˙̃Fγ = C(Fγ − F̃γ) (12)

C > 0 is diagonal. In (10) and (11), Θ̂γ denotes the estimate
of Θγ which contains all unknown dynamic parameters of
the master (γ = m) or slave (γ = s). Furthermore, Ym and
Ys are regressor matrices defined by

YsΘs = M′
s

d
dt [vsd − Aκf (F̃e)] +

C′
s[vsd − Aκf (F̃e)] + J−TGs (13)

YmΘm = Mm
d
dt [vmd + AF̃h] +

Cm[vmd + AF̃h] + Gm (14)

The parameter adaptation laws are governed by

˙̂Θγi =




0, Θ̂γi ≤ Θ−
γi and Y T

γiργ ≤ 0
0, Θ̂γi ≥ Θ+

γi and Y T
γiργ ≥ 0

ΓγiY
T
γiργ , otherwise

(15)

ρs = vsd − κ̇p(xs) − Aκf (F̃e) (16)

ρm = vmd − vm + AF̃h (17)

where γi denotes the ith parameter of either master (γ = m)
or slave (γ = s), Γγi > 0 represents a parameter update gain,
Θ−

γi and Θ+
γi denote the minimum and maximum allowable

values of Θγi, and Θ̃ = Θ̂ − Θ.
Using the Lyapunov function for the master subsystem

in (18), it is straightforward to show (19), where (5), (10),
(14), (15), and the skew-symmetry of Ṁm−2Cm have been
employed.

Vm = 1
2ρT

mMmρm + Θ̃T
mΓmΘ̃m (18)

V̇m ≤ −ρT
mKmρm (19)

Similarly the following Lyapunov function (20) is defined
for the slave subsystem. Again using (8), (11), (13), (15),
and the skew-symmetry of Ṁ′

s − 2C′
s, one may obtain (21).

Vs = 1
2ρT

s M′
sρs + Θ̃T

s ΓsΘ̃s (20)

V̇s ≤ −ρT
s Ksρs (21)

Finally, using (18), (20), (19), and (21), it can be con-
cluded

ρs ∈ L2 ∩ L∞, ρm ∈ L2 ∩ L∞ (22)
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B. Teleoperation

For bilateral teleoperation with non-linear force/position
mappings the command vectors are designed as follows:

vsd = ṽm + Λ[x̃m − κp(xs)] + AF̃h (23)

vmd = ˙̃κp(xs) + Λ[κ̃p(xs) − xm] − Aκf (F̃e) (24)

where Λ > 0 is diagonal. Let Q = xm, vm, κp(xs), κ̇p(xs),
then Q̃ can be computed from the following filter

˙̃Q + CQ̃ = CQ (25)

Substituting (23) and (24) into (16) and (17), and performing
addition and substraction yield

ρs − ρm = ṽm − ˙̃κp(xs) + Λ[x̃m − κ̃p(xs)] +
vm − κ̇p(xs) + Λ[xm − κp(xs)] (26)

ρs + ρm = −C−1[ ˙̃vm + ¨̃κp(xs) + Λ ˙̃xm + Λ ˙̃κp(xs)] +
2A[F̃h − κf (F̃e)] (27)

Using Lemma 1 from [6] and (26) it follows that

ρe = xm − κp(xs) ∈ L2 ∩ L∞ (28)

ρp = vm − κ̇p(xs) ∈ L2 ∩ L∞ (29)

This guarantees L2 and L∞ stability for both position and
velocity tracking errors. Using (28) and (29), Eq. (27) can
be rewritten as:

F̃h − κf (F̃e) − ρ̄ = (AC)−1(s + Λ)ṽm = Ztx̃m (30)

where

ρ̄ =
1

2A
[ρs + ρm − C−1(s + Λ)ρ̃p] ∈ L2 ∩ L∞ (31)

and Zt is a virtual tool impedance with mass specified by
(AC)−1 and damping specified by Λ(AC)−1.

The adaptive controllers decouple the closed-loop dy-
namics in different axes of motion. Therefore throughout
the rest of the paper, without loss of generality, only one
axis is considered. Using the LTI models of the hand
and environment (32), the transparency equation (30) and
position tracking error in (28), the teleoperation system can
be reduced to the block diagram shown in Fig. 1(a).

Fe = Zexs, Fh = F ∗
h −Zhxm (32)

Assuming both mappings are linear leads to the guaranteed
stability result obtained in [6], i.e.

ρm, ρs, ρe, ρp, ρ̄ → 0 (33)

vm, vs ∈ L∞ (34)

In the more general case of nonlinear position and force
mapping, new conditions for robust stability must be de-
rived as will be discussed in the next section. It should
be noted that Eqs. (28) and (29) demonstrate nonlinear
position/velocity tracking between master and slave. Also
according to (30), the operator would feel the mapped en-
vironment force through an intervening tool with adjustable
mass and damping parameters. Under quasi-static conditions,
the user’s hand force and mapped environment force would
track each other.

Fig. 1. Teleoperation block diagram: (a) original (b) transformed to the
classic Lur’e form when κp() or κf () is linear.

IV. NON-LINEAR FEEDBACK STABILITY

As shown in Fig. 1, it is possible to convert the teleoper-
ation block diagram to a non-linear Lur’e type problem [10]
by assuming that one of the two mappings is linear, i.e. by
considering the linear position/nonlinear force or nonlinear
position/linear force mapping combinations. In such a case,
the linear part would reduce to (35) with non-linear feedback
element (36) and an exogenous input defined in (37).

G(s) =
m1s

2 + b1s + k1

m2s2 + b2s + k2
=

Ze

Zh + Zt
(35)

Φ(·) =
{

κf (·)κ−1
p κp(·) linear

κ−1
p (·)κf κf (·) linear

(36)

u =

{
F̃ ∗

h − ρ̄ − Zh+Zt

1+C−1sρe κp(·) linear

− F∗
h

κfZe
+ 1+C−1s

κfZe
ρ̄ + Zh+Zt

κfZe
ρe κf (·) linear

(37)
where m1 ≥ 0, b1 ≥ 0, k1 ≥ 0 represent environment
impedance parameters and m2 = mh + mt > 0, b2 =
bh + bt > 0, k2 ≥ 0 represent the combined impedance
parameters of the hand and virtual tool.

For nonlinear elements belonging to the first and third
quadrants, i.e. xΦ(x) ≥ 0, a sufficient condition for the
stability of the feedback system in 1(b) is strict positive
realness (SPR) of the linear element [10], i.e.

inf
ω∈�

Re

(−m1ω
2 + b1jω + k1

−m2ω2 + b2jω + k2

)
> 0 (38)

The condition in (38) can be shown to be equivalent to:

b1b2 >
(√

m1k2 −
√

m2k1

)2

(39)

which must be satisfied for all possible combinations of
hand and environment parameters. In practice, allowing all
possible environment and hand impedances results in large
perturbations in G(s) making stability, if possible, challeng-
ing to guarantee. However, it is reasonable to assume that
the parameters have limits that depend on application. In
Table I, a hypothetical example of such bounds for soft-
tissue manipulation is given. Using (39), (35) with a desired
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tool mass of mt = 0.4 kg, and the data in Table I, the
minimum level of virtual tool damping needed for G(s)
to be SPR is bt > 135 Nsm−1. Assuming negligible tool
mass, mt ≈ 0, yields bt > 57 Nsm−1. Clearly these levels
of damping are too high to provide good fidelity for soft-
tissue telemanipulation and therefore, alternative stability
conditions must be considered.

An off-axis circle criterion can produce a far less conser-
vative sufficient stability condition at the expense of more
restriction on the nonlinear element. Assume that Φ belongs
to an incremental sector [a, b], i.e.

(i) Φ(0) = 0

(ii) a ≤ Φ(x1) − Φ(x2)
x1 − x2

≤ b (40)

Then the feedback loop in Fig. 1(b) is stable if the Nyquist
plot of G(s) lies outside a circle which intersects − 1

a and − 1
b

on the real axis [7] (see Fig. 2). Using the transformation
given in (41), this requirement can be restated as (42).

H(s) =
G(s) + 1

2 ( 1
a + 1

b ) − dj − r

G(s) + 1
2 ( 1

a + 1
b ) − dj + r

(41)

r =

√
d2 +

1
4

(
1
a
− 1

b

)2

, d ∈ 	

inf
ω∈�+

Re (H(jω)) > 0 (42)

The condition in (42) states that the Nyquist plot of
G(s) does not enter a circle whose centre has imaginary
component equal to d and intersects the real axis at − 1

a and
− 1

b , if and only if the real part of H(jω) is positive for
∀ω ∈ 	+. For d = 0 (42) reduces to the on-axis circle
criterion which does not require monotonicity of Φ(·) [10],
but is more conservative (see Fig. 2).

It should be noted that G(s) is not a single transfer
function but rather a family of transfer functions with in-
dependent real interval coefficients; thus G(s) represents
an interval plant system [8]. When dealing with interval
plant systems with independent coefficients one typically
is interested in Kharitonov polynomials. For a polynomial

−6 −4 −2 0 2 4 6 8

−6

−4

−2

0

2

4

Real Axis

Im
ag

in
ar

y 
A

xi
s

Off−axis
On−axis
G

k
(jω)

d 

−1/a 

−1/b 

Fig. 2. The off-axis vs. on-axis circle criterion test for a family of transfer
functions; given a lower sector bound a, the off-axis criterion results in a
larger upper sector bound b.

function F(s) = δ0 + δ1s + δ2s
2 + ...., δ−i ≤ δi ≤ δ+

i ,
with real interval coefficients four Kharitonov polynomials
are defined as follows [11]:

K1
F (s) = Keven,min

F (s) + Kodd,min
F (s)

= δ−0 + δ−1 s + δ+
2 s2 + δ+

3 s3 + ...

K2
F (s) = Keven,min

F (s) + Kodd,max
F (s)

= δ−0 + δ+
1 s + δ+

2 s2 + δ−3 s3 + ...

K3
F (s) = Keven,max

F (s) + Kodd,min
F (s)

= δ+
0 + δ−1 s + δ−2 s2 + δ+

3 s3 + ...

K4
F (s) = Keven,max

F (s) + Kodd,max
F (s)

= δ+
0 + δ+

1 s + δ−2 s2 + δ−3 s3 + ...

(43)

For a transfer function T (s) = N (s)
D(s) with independent

interval coefficients in the numerator and denominator, 16
Kharitonov plants can be defined as follows

TK(s) =

{
Ki

N
Kj

D
: i, j ∈ {1, 2, 3, 4}

}
(44)

H(s) is also an interval plant system whose coefficients
may be complex and depend linearly on the coefficients of
G(s). To determine if (42) is satisfied for the interval system
H(s), it is sufficient to check if (42) is satisfied for the 16
Kharitonov plants GK(s). The proof of this lies in the fact
that for ω ∈ 	+ the outer Nyquist envelope of the interval
system G(s) can be found from the union of the Nyquist
plots of GK(s) [8]. Therefore if the Nyquist envelope of
G(s) lies outside the circle specified by a, b and d, then
Re(H(jω)) > 0 for ∀ω ∈ 	+. The benefit of using (42) is
that it is no longer a graphical test as is shown in Fig 2.

Given a, an upper value of b, b ≥ a, can be found by
searching through the two dimensional space of b ∈ 	+ and
d ∈ 	 using (42) as a stability constraint. This has been done
using both the on-axis and off-axis circle criterions with the
intervals specified in Table I. Fig. 3 shows the results of such
an analysis with virtual tool parameters of mt = 0.4 kg
and bt = 10 Nsm−1. Among the design parameters, the
virtual tool damping has the biggest impact on the closed-
loop stability. This can be observed in Fig. 4 where the
stability margins derived from the off-axis circle criterion
have increased at the expense of higher tool damping.

Finally, it should be noted that in Fig. 1(b), u ∈ L∞
since F ∗

h ∈ L∞. Although the sufficient conditions in this
section have been originally developed for L2 stability, they
can be generalized to L∞ stability [12], [10] and hence are
applicable to the problem studied here.

TABLE I

PARAMETER RANGES FOR HAND AND ENVIRONMENT

Mass (kg) Damping (Nsm−1) Stiffness (Nm−1)
Ze 0.01–0.2 5–50 10-1000
Zh 0-0.3 0–100 20-1000
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Fig. 4. Stability regions obtained from the off-axis circle criterion for
different values of virtual tool damping bt.

V. EXPERIMENTAL RESULTS

A master/slave experimental platform shown in Fig. 5 has
been used to evaluate the proposed teleoperation controller.
Two Quanser pantograph mechanisms each with two active
axes of motion in the x-y plane have been employed as
master and slave robots. The pantograph devices are actuated
by two direct-drive DC motors attached to the proximal links.
The motor shaft angles are measured by optical encoders
with 20, 000 counts per revolution. Two Mini40 force/torque
sensors from ATI Industrial Automation have been attached
to the mechanisms end-effectors to measure the hand and
environment interaction forces. Sponge is used to create the
effect of a soft tissue. The control code runs under Matlab
RTW/Torndao VxWorks real-time operating system with a
sampling frequency of 2048 Hz.

The pantograph devices are light, have low-friction and
are easily backdrivable. The mass of the force sensor and
end-effector attachments dominate the device dynamics, jus-
tifying the use of linear decoupled mass-spring-models in
the workspace coordinates for the control design. Position-
dependent variations in the device dynamics due to non-
linearities can be adapted for by the local master/slave
controllers. To deal with the human exogenous force F ∗

h ,
the control law in (10) employs a switching element that

Fig. 5. The two-axis experimental setup.

can cause unwanted chattering in the control signal. For the
experiment the master controller was modified such that it
would adapt for F ∗

h by adding it to the feedforward term (14).
This is acceptable provided the adaptation is much faster than
the rate of change in F ∗

h . The controller parameters used in
the experiment trials are given in Table II.

A. Nonlinear force mapping

The first experiment was conducted using a linear position
mapping of κp(x) = 2x and a nonlinear monotonic force
mapping of κf (f) = 2 tanh(2f) + 0.25f which result
in κp()−1κf () ∈ [0.125, 2.125]. During the experiment,
the operator moved the master device in free motion and
made several stable contacts with the environment. The
teleoperation controller rapidly adapted to the environment
stiffness variations and produced accurate mappings between
the master/slave position and force signals, as shown in
Fig. 6(a),(b). The resulting force mappings in the (fh − fe)
planes for the x and y coordinates are compared with the
desired force mapping in Fig. 6(c), from which it is clear
that the design objective has been achieved. It should be
pointed out that the force changes during the contact have
been deliberately performed by the operator to demonstrate
the force tracking. Also the non-zero operator force in free
motion is due to the intervening tool dynamics.

B. Nonlinear position mapping

The second experiment was conducted using a nonlinear
monotonic position mapping of κp(x) = 1.5x tanh2(6x) +
0.5x and a linear force mapping of κf (f) = f which
result in κp()−1κf() ∈ [0.4, 2]. As in the previous case, the
operator performed free motion maneuver and made several
stable contacts with the environment. The position and force
tracking objectives have been satisfied, as seen in Figs. 6(d),
(e) and (f).

TABLE II

CONTROLLER PARAMETERS

A C Λ Ks,Km Γs,Γm

0.02 kg−1s 40π rad/s 10 s−1 35 Nsm−1 1000-25000000

FrD2.2

4311



Fig. 6. Experimental results: nonlinear force mapping (a) position tracking (b) force tracking (c) force mapping; nonlinear position mapping (d) position
tracking (e) force tracking (f) position mapping. Note the position tracking graphs a) and d) actually contain four signals.

VI. CONCLUSIONS AND FUTURE WORK

A growing interest in robotic-assisted surgical applica-
tions has prompted researchers to explore new teleoperation
control methods for enhancing the fidelity of haptic inter-
action with soft tissues. While previous relevant research
has mainly focused on linear scalings of the positions,
forces and impedances, in this paper, nonlinear mappings of
positions and forces were proposed. It is anticipated that the
greater flexility offered by such mappings can lead to the
design of enhanced teleoperation controllers for soft-tissue
telemanipulation.

As the first step towards the above-stated goal, a modified
adaptive motion/force teleoperation controller was proposed
that can establish desired monotonic nonlinear mappings
between the master and slave in the presence of dynamic
parametric uncertainties. Using a combination of an off-
axis circle criterion for static monotonic nonlinearities and
the Nyquist envelop of interval plants, sufficient regions of
stability were obtained for a given range of hand/environment
parameters which are far less restrictive than those obtained
from the passivity and on-axis circle theorems. The pro-
posed method was validated in experiments with a 2DOF
master/slave system.

Future research will involve human factors experiments to
determine the types of nonlinearities that can enhance the
sensitivity/performance of soft-tissue manipulation.
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