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Abstract— This paper introduces a new analytical algorithm
to perform the localization of a mobile robot using odometry
and laser readings. Based on a polynomial approach, the pro-
posed algorithm provides the optimal affine filter in a class of
suitably defined estimators. The performance of the algorithm
has been evaluated through simulations. The comparison with
the standard Extended Kalman Filter shows that the proposed
filter provides good estimates also in critical situations where
the system nonlinearities cause a bad behavior of the EKF.

I. INTRODUCTION

In most cases, autonomous mobile robots are required to
know precisely their position and orientation in order to suc-
cessfully perform their mission. This is usually achieved by
fusing proprioceptive data (gathered by sensors monitoring
the motion of the vehicle, like encoders) with exteroceptive
data (e.g. [1], [6], [7], [18]). One of the most common
methods adopted to perform this fusion is the Extended
Kalman Filter (EKF, e.g. see [7]).

Apart from very few cases, both the dynamics of a mobile
robot and the link between the data gathered by the robot
sensors and the robot configuration are nonlinear functions.
As a result, the EKF is not an optimal filter. It introduces
an approximation by linearizing these functions around the
current estimated state. In many cases, this approximation
can lead to divergence. This can happen when the sensor
data are delivered at a very low frequency with respect to
the robot speed and/or the data are not precise enough.

In order to avoid the problems resulting from the system
nonlinearities, usually numerical methods to approximate
the posterior density function for the state are adopted.
Many numerical approaches to the localization problem are
based on the Markov Localization (e.g. [2], [10], [14], [20],
[21]). Another very successful numerical approach in this
framework is the Monte Carlo Localization in [22], which is
based on particle filters [9], [15], [19]. Other approaches for
robot localization include [12], the Unscented Kalman Filter
[13] and set membership methods (see e.g. [8], [5]).
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The methodology presented in this paper, unlike the
approaches cited above, is an analytical contribution with
well defined optimal properties. It is based on a polynomial
approach, which provided a great deal of results in the last
decade in the framework of filtering linear [3], bilinear [4]
or nonlinear [11] systems, both in the Gaussian or non-
Gaussian case. The first step in the filter construction is to
pre-process the measurements available from the robot in
order to write the new output equations as a second-order
polynomial transformation of a suitably defined extended
state. Then a generation model of the pre-processed data
is achieved in the form of a bilinear system (linear drift
and multiplicative noise), to which the optimal linear filter
is finally applied [4]. It is important to stress that the filter
construction is not based on the linear approximation of the
system but on the exact system equations. The computations
in the paper are quite messy but the idea behind them is rather
simple: introduce a transformation in the description of the
system in order to obtain a form for which the optimal linear
filter can be applied. The simulations show the effectiveness
of the proposed approach under several parameter settings,
and the improvements w.r.t. the standard EKF.

II. SYSTEM NOTATION AND PROBLEM FORMULATION

Consider a robot moving in a 2D environment with coor-
dinates (xt, yt) and orientation θt. Assuming a discrete time
unicycle differential model, the dynamics is given by:

xt+1 = xt + δρt cos(θt), (1)

yt+1 = yt + δρt sin(θt), (2)

θt+1 = θt + δθt, (3)

where t = 0, 1, . . .; δρt and δθt are the robot shift and
rotation during the sample time. Let δρe

t and δθe
t denote

the noisy encoder readings. Under the assumption of syn-
chronous drive, the synchronous odometry error model can
be adopted [17], so that {δρt} and {δθt} can be modeled
as independent sequences of independent Gaussian random
variables generated as follows:

δρt = δρe
t +

√
δρe

tνρ,t, with νρ,t = N (
0, Kρ

)
, (4)

δθt = δθe
t +

√
δρe

tνθ,t, with νθ,t = N (
0, Kθ

)
. (5)

In practise, it is assumed that the odometry is perfectly
calibrated (mean value equal to the reading) and the vari-
ances increase linearly with the traveled distance (as in the
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diffusion motion). Equations (1-3) become:

xt+1 = xt + δρe
t cos(θt) +

√
δρe

tνρ,t cos(θt), (6)

yt+1 = yt + δρe
t sin(θt) +

√
δρe

tνρ,t sin(θt), (7)

θt+1 = θt + δθe
t +

√
δρe

tνθ,t. (8)

The environment is perfectly known and is represented by
line segments. The robot is equipped with a laser range
finder providing the distance at m directions, each with
angle θi w.r.t. the robot orientation θt. The equation of the
environment line segment sensed in the laser direction i
(i = 1, 2, . . . , m) at time t will be denoted by y = mitx+qit

(in the following it is assumed mit < ∞: the extension
to the general case is straightforward). By denoting ρi,t the
corresponding laser range finder reading, we have:

ρi,t =
√

(xt − xpit)2 + (yt − ypit)2 + ni,t, (9)

where (xpit , ypit) is the intersection of the i-th laser beam
with the line y = mitx + qit. {ni,t} are independent
sequences of zero-mean independent Gaussian variables,
independent of {νρ,t}, {νθ,t}, with variance ζi,2 (in the
following ζi,j = IE

[
nj

i,t

]
indicates the j-th order moment).

The aim of the paper is to estimate both the position
(xt, yt) and the orientation θt starting from the odometry
and the readings ρi,t, i = 1, . . . , m.

III. A BILINEAR MODEL FOR THE ROBOT

The first step is to pre-process the available measurements
in order to write a new output equation, as a polynomial
transformation of a suitably defined extended state.

A. The output equations

Consider the measurement equations (9) and substitute the
values of the pair (xpit , ypit). Then, after computations:

ρi,t − ni,t =
|yt − mitxt − qit|

d
, (10)

where
d =

∣∣( sin(θi) − mit cos(θi)
)
cos(θt)+(

cos(θi) + mit sin(θi)
)
sin(θt)

∣∣ .

Let ct = cos(θt) and st = sin(θt) and define an
extended state X(t) = (xt, yt, ct, st)T . Taking the squares
of both terms in (10), it is possible to obtain:

0 = Ci,0(t) + Ci,1(t)X(t) +

Ci,2(t)X [2](t) + Di(t)X [2](t)No,i(t), (11)

where No,i(t) = n2
i,t − ζi,2 − 2ρi,tni,t and the matrices

Ci,0, Ci,1, Ci,2, Di are given in (12-15) and (16-21). The
superscript in square brackets in (11) denotes the Kronecker
power of a vector (see [4] and references therein). By taking
into account the trigonometric identity:

cos2(θt)+sin2(θt) = 1 ⇐⇒ X2
3 (t)+X2

4(t) = 1, (22)

and defining Y (t) =
(
Y0(t), Y1(t), . . . , Ym(t)

)T
, with

Y0(t) ≡ 1, Yi(t) ≡ 0, i = 1, . . . , m, equations (11) and
(22) may be written in the following more compact form:

Y (t) = C1(t)X(t) + C2(t)X [2](t) + C0(t) + H(t)X [2](t),
(23)

with X(t) ∈ IRn, n = 4, Y (t) ∈ IRm+1 and C0(t) =[
0, C1,0(t), . . . , Cm,0(t)

]T
, C1(t) =

[
On×1, CT

1,1(t),
. . . , CT

m,1(t)
]T

, C2(t) =
[
CT

0,2, CT
1,2(t), . . . , CT

m,2(t)
]T

,

H(t) =
[
On2×1, DT

1 (t)No,1(t), . . . , DT
m(t)No,m(t)

]T
,

with C0,2 =
[
O1×10 1 O1×4 1

]
and Or×c is a generic

r × c zero matrix. Notice that H(t) is a stochastic matrix.

B. The extended state dynamics

In order to obtain a generation model for (23), the
recursive equations of X(t) are derived. Notice that
cos

(√
δρe

tνθ,t

)
and sin

(√
δρe

tνθ,t

)
are both non-Gaussian

random variables with the following mean values:

ξ̄c1,t := IE
[
cos

(√
δρe

tνθ,t

)]
= e−

δρe
t

Kθ
2 , (24)

IE
[
sin

(√
δρe

tνθ,t

)]
= 0. (25)

To have zero-mean noises, let Nc(t) = cos
(√

δρe
tνθ,t

) −
ξ̄c1,t and Ns(t) = sin

(√
δρe

tνθ,t

)
. With this positions,

according to (6-8), the extended state dynamics obeys the
following bilinear laws:

X1(t + 1) = X1(t) + δρe
tX3(t) +

√
δρe

tνρ,tX3(t), (26)

X2(t + 1) = X2(t) + δρe
tX4(t) +

√
δρe

tνρ,tX4(t), (27)

X3(t + 1) =
(
X3(t) cos(δθe

t ) − X4(t) sin(δθe
t )

)
ξ̄c1,t

+
(
X3(t) cos(δθe

t ) − X4(t) sin(δθe
t )

)
Nc(t)

− (
X4(t) cos(δθe

t ) + X3(t) sin(δθe
t )

)
Ns(t), (28)

X4(t + 1) =
(
X4(t) cos(δθe

t ) + X3(t) sin(δθe
t )

)
ξ̄c1,t

+
(
X4(t) cos(δθe

t ) + X3(t) sin(δθe
t )

)
Nc(t)

+
(
X3(t) cos(δθe

t ) − X4(t) sin(δθe
t )

)
Ns(t). (29)

The moments of Nc(t) and Ns(t) will be denoted by ξci,t =
IE

[
N i

c(t)
]
, ξsi,t = IE

[
N i

s(t)
]
, ξci,sj,t = IE

[
N i

c(t)N
j
s (t)

]
.

As it will be clearer in the sequel, they will be required
to be finite and available up to order 4. According to their
construction, it readily comes that ξc1,t = ξs1,t = ξs3,t =
ξci,sj,t = 0, ∀ t ≥ 0, ∀ i = 1, . . . , 4,∀ j = 1, 3.

In summary, by using the further position N(t) =√
δρe

tνρ,t we have, from (26-29):

X(t + 1) = A(t)X(t) + S1(t)X(t), (30)

with S1(t) = BN(t) + B1(t)Nc(t) + B2(t)Ns(t) and:

A(t) =
[

I2 δρe
t I2

O2 ξ̄c1,t R(δθe
t )

]
, B =

[
O2 I2

O2 O2

]
,

B1(t) =
[

O2 O2

O2 R(δθe
t )

]
, B2(t) =

[
O2 O2

O2 R(δθe
t + π

2 )

]
,

where Ok is a square matrix of 0’s of order k,
Ik is the identity matrix of order k and R(φ) =
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Ci,2(t) =
[ − m2

it mit 0 0 mit −1 0 0 0 0 Ci,2(t)
∣∣
11

Ci,2(t)
∣∣
12

0 0 Ci,2(t)
∣∣
15

Ci,2(t)
∣∣
16

]
, (12)

Ci,1(t) =
[ − 2mitqit 2qit 0 0

]
, (13)

Ci,0(t) = −q2
it, (14)

Di(t) =
[
O1×10 Di(t)

∣∣
11

Di(t)
∣∣
12

0 0 Di(t)
∣∣
15

Di(t)
∣∣
16

]
, (15)

Ci,2(t)
∣∣
11

=
(
ρ2

i,t + ζi,2

)(
sin(θi) − mit cos(θi)

)2
, (16)

Ci,2(t)
∣∣
12

= Ci,2(t)
∣∣
15

=
(
ρ2

i,t + ζi,2

)(
sin(θi) − mit cos(θi)

)(
cos(θi) + mit sin(θi)

)
, (17)

Ci,2(t)
∣∣
16

=
(
ρ2

i,t + ζi,2

)(
cos(θi) + mit sin(θi)

)2
, (18)

Di(t)
∣∣
11

=
(
sin(θi) − mit cos(θi)

)2
, (19)

Di(t)
∣∣
12

= Di(t)
∣∣
15

=
(
sin(θi) − mit cos(θi)

)(
cos(θi) + mit sin(θi)

)
, (20)

Di(t)
∣∣
16

=
(
cos(θi) + mit sin(θi)

)2
. (21)

[cos(φ), − sin(φ); sin(φ), cos(φ)] is a rotation matrix. Note
that the first term in (30) is a linear drift; the other is a
multiplicative noise. In the sequel, the moments IE

[
N i(t)

]
of the Gaussian variable N will be indicated by ηi,t and will
be needed up to degree 4 (remind that η1,t ≡ η3,t ≡ 0).

C. A bilinear generation model

The output equation (23) can be seen both as a quadratic
transformation of the extended state, and as a linear trans-
formation of an augmented state X (t) ∈ IRn+n2

, whose
components are the first and second order Kronecker powers
of the extended state X (t) =

(X T
1 (t) X T

2 (t)
)T

, X1(t) =
X(t), X2(t) = X [2](t). Then:

Y (t) = C(t)X (t) + V(t) + No(t), (31)

with C(t) = [ C1(t) C2(t) ]; V(t) = C0(t) a deterministic
drift, and No(t) = H(t)X2(t) a multiplicative noise.

In order to obtain a bilinear (w.r.t. X ) generation model
of the output equation in (31), the Kronecker square of the
extended state X(t) is needed. Using the binomial expansion
of a Kronecker power (see [4] for more details):

X [2](t + 1) = A22(t)X [2](t) + S2(t)X [2](t),

where:

A22(t) = A[2](t) + B[2]η2,t + B
[2]
1 (t)ξc2,t + B

[2]
2 (t)ξs2,t,

and S2(t) is the stochastic matrix given in (32), where ⊗
denotes the Kronecker product among matrices. In summary:

X (t + 1) = A(t)X (t) + Ns(t), (33)

with:

A(t) =
[

A(t) On×n2

On2×n A22(t)

]
;

Ns(t) is the following multiplicative noise:

Ns(t) = S(t)X (t) =
[Ns1(t)
Ns2(t)

]
=

[
S1(t)X1(t)
S2(t)X2(t)

]
,

with:

S(t) =
[

S1(t) On×n2

On2×n S2(t)

]
.

In order to compute the covariance matrices of Ns(t) and
No(t), the definition of the stack operator is needed. The
stack of a matrix A is the vector in IRr·c that piles up all
the columns of matrix A, and is denoted st(A). The inverse
operation is denoted st−1

r,c (·), and transforms a vector of size
r · c in an r × c matrix.

According to the multiplicative features of the noises,
the computation of their covariance matrices requires the
knowledge of the mean values of the Kronecker powers of
the extended state up to degree 4. By denoting Zi(t) =
IE

[
X [i](t)

]
, i = 1, . . . , 4, after some Kronecker machineries:

Ψs11(t) = IE
[Ns1(t)N T

s1(t)
]

= st−1
n,n

(
IE

[
S

[2]
1 (t)

]
Z2(t)

)
,

(34)

Ψs12(t) = IE
[Ns1(t)N T

s2(t)
]

= st−1
n,n2

(
IE

[
S2(t) ⊗ S1(t)

]
Z3(t)

)
, (35)

Ψs22(t) = IE
[Ns2(t)N T

s2(t)
]

= st−1
n2,n2

(
IE

[
S

[2]
2 (t)

]
Z4(t)

)
,

(36)
with:

IE
[
S

[2]
1 (t)

]
= B[2]η2,t + B

[2]
1 (t)ξc2,t + B

[2]
2 (t)ξs2,t (37)

The expression of IE
[
S2(t)⊗S1(t)

]
and IE

[
S

[2]
2 (t)

]
, omitted

here for space reasons, can be found in [16]. As far as
the output noise covariance matrix is concerned, denote ei,
i = 0, 1, . . . , m the natural basis of IRm+1. Then, H(t) =∑m

i=1 eiDi(t)No,i(t), and, observing that {No,i, No,j} are
uncorrelated for i 	= j:

Ψo(t) = IE
[No(t)N T

o (t)
]

= IE
[
H(t)X2(t)X T

2 (t)HT (t)
]

=

m∑
i=1

eiDi(t) · st−1
n2,n2

(
Z4(t)

)
DT

i (t)eT
i IE

[
N2

o,i(t)
]
, (38)

where IE
[
N2

o,i(t)
]

= ζi,4 − ζ2
i,2 + 4ρ2

i,tζi,2.
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S2(t) = B[2]
(
N2(t)−η2,t

)
+B

[2]
1 (t)

(
N2

c (t)−ξc2,t

)
+B

[2]
2 (t)

(
N2

s (t)−ξs2,t

)
+M2

1 (n)
{(

A(t)⊗B
)
N(t)+

(
A(t)⊗B1(t)

)
Nc(t)

+
(
A(t) ⊗ B2(t)

)
Ns(t) +

(
B ⊗ B1(t)

)
N(t)Nc(t) +

(
B ⊗ B2(t)

)
N(t)Ns(t) +

(
B1(t) ⊗ B2(t)

)
Nc(t)Ns(t)

}
(32)

IV. THE FILTERING ALGORITHM

The position of the robot is given by the first two com-
ponents of the augmented state, whose bilinear generation
model, endowed with the output equation, is given by (33)
and (31). The pair (xt, yt) is, then, estimated by means of the
first two components of the augmented state estimate X̂ (t).
As it is well known, the optimal choice for X̂ (t) would be the
conditional expectation w.r.t. all the Borel transformations of
the measurements, whose computation in general cannot be
obtained through algorithms of finite dimension. Neverthe-
less, from an applicative point of view, it is useful to look for
finite-dimensional approximations of the optimal filter. In the
present paper an implementable recursive filter is proposed,
providing the optimal estimate w.r.t. the Hilbert space of
all the affine (first-order polynomial) transformations of the
output Y (τ), τ = 0, . . . , t and performed as the projection
of X (t) onto such a space [4]. As a consequence of the
linear relationship between the pair (xt, yt) and X (t), it
comes that the position estimate (x̂t, ŷt) is the optimal linear
estimate w.r.t. the output Y . The orientation angle estimate
is provided, by means of the third and fourth components of
X̂ (t): θ̂t = atan2 (ŝt, ĉt). According to the multiplicative
feature of the noises, the computation of the covariance
matrices of the noises Ns(t), No(t) requires the knowledge
of the mean values of the Kronecker powers of the extended
state up to degree 4 (as already reported in (34-36) and (38)).
By defining Z(t) =

[
ZT

1 (t) ZT
2 (t) ZT

3 (t) ZT
4 (t)

]T
, it is:

Z(t + 1) = AZ(t)Z(t), (39)

where AZ(t) is a block-diagonal matrix with diagonal
blocks: A(t), A22(t), A33(t) = A22(t)⊗A(t) + IE

[
S2(t)⊗

S1(t)
]

and A44(t) = A
[2]
22(t) + IE

[
S

[2]
2 (t)

]
. The initial

condition Z(0) has to be taken from the a priori knowledge
concerning the initial state of the system. Assume x0, y0,
θ0 are independent Gaussian random variables, with mean
value x̄0, ȳ0, θ̄0 and variance σ2

x0
, σ2

y0
, σ2

θ0
, respectively.

From these statistics, by a direct computation and using
the moments ξci,sj,t, it is possible to derive Z(0) and
the covariance matrix PP (0) = Cov

(X (0)
)

of the initial
extended state vector. The filter algorithm is below reported:

I) Set t = −1 and compute the initial conditions:

X̂ (0| − 1) =
[

Z1(0)
Z2(0)

]
, PP (0) = Cov

(X (0)
)
;

II) compute the output prediction:

Ŷ (t + 1|t) = C(t + 1)X̂ (t + 1|t) + V(t + 1);

III) compute the output noise covariance matrix Ψo(t + 1)
by means of (38);

IV) compute the Kalman gain and error covariance:

K(t+1) = PP (t+1)CT (t+1)·

·
(
C(t + 1)PP (t + 1)CT (t + 1) + Ψo(t + 1)

)†
,

P (t + 1) =
(
In+n2 − K(t + 1)C(t + 1)

)
PP (t + 1);

where † denotes the Moore-Penrose pseudo-inverse;
V) compute the estimate X̂ (t + 1):

X̂ (t+1) = X̂ (t+1|t)+K(t+1)
(
Y (t+1)−Ŷ (t+1|t)),

X̂(t+1) =
[
In On×n2

]X̂ (t+1),

VI) increment the counter: t 
→ t + 1;
VII) compute the prediction: X̂ (t + 1|t) = A(t)X̂ (t);

VIII) compute the state noise covariance matrix Ψs(t) by
means of (34-36);

IX) compute the error covariance of the one-step prediction:

PP (t + 1) = A(t)P (t)AT (t) + Ψs(t);

X) compute Z(t) by means of (39) and go to Step II).
Remark. For consistency with all the developments made

in the paper, the proposed algorithm has been here presented
in a form that is not computationally optimized, in that the
Kronecker powers contain redundant components (if x ∈
IRn then x[i] ∈ IRni

, but only ñi =
(
n+i−1

i

)
monomials

are independent). Such redundancies can be avoided through
the definition of reduced Kronecker powers, containing the
independent components of ordinary Kronecker powers (see
[3]). More in detail, denoting with x(i) ∈ IRni the reduced
i-th Kronecker power of x, it is always possible to define a
selection matrix Ti(n) ∈ IRñi×ni

, of 0’s and 1’s, such that:

x(i) = Ti(n)x[i] (40)

(note that the choice of matrix Ti(n) is not univocal).
Similarly, the ordinary Kronecker power x[i] is recovered
from the reduced power x(i) through multiplication with a
suitable matrix T̃i(n) ∈ IRni×ñi . Straightforward but tedious
substitutions in the above algorithm provide a filter with
a reduced computational burden, and this last should be
considered for efficient implementations.

V. SIMULATION RESULTS

In this section the performances of our algorithm are com-
pared with those of a standard EKF. A circular trajectory with
radius 1.5 m in a rectangular room is considered (see Fig. 1).
The robot moves along the circle in the counterclockwise
direction at a constant speed starting from the asterisk. The
results reported in this section refer to simulations performed
with Kρ = 0.01m, Kθ = 0.02rad2/m and m = 16 laser

FrB1.4

3542



12

10

8

6

4

2

0
0 2 4 6 8 10 12 14 16 18

x [m] 

y 
[m

]

Fig. 1. The environment and the actual robot trajectory

directions. The motion is performed in T = 1000 steps,
hence δρt = 9.4·10−3 m and δθt = 6.3·10−3 rad. We assume
that the odometry readings are available at each motion step,
while the laser readings are available every Ns steps, with
Ns ≥ 1. We have considered Ns = 1 in the simulations of
Fig. 2 while Ns = 50 in Figs. 3, 4 and 5. Figs. 2 and 3
display the robot trajectory estimated through the EKF, the
proposed method and the odometry together with the actual
trajectory. With Ns = 1 both the proposed approach and
the EKF provide a very good estimate (Fig. 2). However,
with Ns = 50 the proposed filter performs nearly exact
corrections unlike the EKF, whose linear approximations
become too rough when the estimation errors are too large
(Fig. 3). Figs. 4 and 5 report respectively the position and the
orientation errors as a function of the traveled distance when
applying the EKF, the proposed method and the odometry for
Ns = 50. Finally, in Figs. 6 and 7 the effect of an increasing
Ns on the EKF and the proposed method is illustrated. In
Fig. 6 each point represents the square root of the mean
square position error (

(
1
T

∑
t[(xt − x̂t)2 + (yt − ŷt)2]

)1/2
)

and is obtained as the average of 50 different simulations
(with different noise realizations). Fig. 7 reports the same
for the orientation. It is important to stress that for values
of Ns > 50, in some simulations the EKF estimate has
diverged, while our approach has maintained a bounded
error. The performance of the proposed method has been
tested under several maneuvers, with many different noise
parameters, both in the odometry and in the laser readings,
and similar results have been obtained.

VI. CONCLUSIONS

In this paper we introduced and discussed a new analyt-
ical solution to the localization problem. In contrast with
other previous approaches able to deal with the system non
linearities (Markov Localization, Monte Carlo Localization),
our algorithm is not a numerical solution. In particular, by
introducing a new set of variables for the dynamics and
for the readings and suitably exploiting some results of
the polynomial filtering approach [3], [4], [11] a bilinear
description of the system is derived and the best affine
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Fig. 2. Real (black solid) and estimated trajectories with Ns = 1.
Odometry: green dot-dashed; EKF: blue dashed; proposed filter: red dotted
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Fig. 3. Real (black solid) and estimated trajectories with Ns = 50.
Odometry: green dot-dashed; EKF: blue dashed; proposed filter: red dotted
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Fig. 5. Orientation error with Ns = 50 vs traveled distance. Odometry:
green dot-dashed; EKF: blue dashed; proposed filter: red dotted
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Fig. 6. Square root of the mean square position error vs Ns. Odometry:
green dot-dashed; EKF: blue dashed; proposed filter: red dotted
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Fig. 7. Square root of the mean square orientation error vs Ns. Odometry:
green dot-dashed; EKF: blue dashed; proposed filter: red dotted

estimator of the robot configuration is obtained.
In order to evaluate the performance of our algorithm we

carried out a comparison with the standard EKF. The sim-
ulation results clearly show that our algorithm outperforms
the standard EKF especially in critical situations (low sensor
precision, low data frequency).
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