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Abstract— A quaternion based feedback is developed for
attitude stabilization of rigid body. The control design takes into
account the input bounds and is based on cascaded saturation
approach. The global stability is guaranteed. A simulation
study of the proposed scheme is illustrated for the four-rotor
helicopter.

I. INTRODUCTION

The problem of attitude control of a rigid body has

attracted considerable amount of interest since the 1950’s

within the scientific communities of aeronautics, aerospace,

control and robotics. This is due to the fact that many systems

such as spacecrafts, satellites, helicopters, tactical missiles,

coordinated robot manipulators, underwater vehicles and

others enter within the framework of rigid body with a need

for attitude control. Several approaches are applied such

as optimal time control [13], Lyapunov design procedures

[20], quaternion feedback [4], [6] and [22], predictive control

(applied to spacecraft in [23] and to micro satellite in [5]),

backstepping (quaternion-based in [8] and nonlinear adaptive

in [15]), and robust control applied to tactical missiles [16].

This list is not exhaustive.

The above cited approaches do not consider the problem

of attitude control which takes the input constraints into

account. Few publications have treated this problem. In [21],

the stabilization with non smooth control law of an under-

actuated rigid spacecraft subject to input saturation is studied.

In [1], a control law that drives a rigid underwater vehicle

between arbitrary initial and final region of the state space

while satisfying bounds on control and state is proposed. The

authors in [2] have studied the robust sliding mode stabiliza-

tion of the spacecraft attitude dynamics in presence of control

input saturation based on the variable structure control (VSC)

approach. Unfortunately, the stabilizing bounded control law

that are applied are non smooth and this fact renders difficult

the practical implementation. The approach proposed in the

present paper is more in the spirit of the approach [24]

where the problem of reorienting a rigid spacecraft within the

physical limits of actuators has been investigated based on

the cascaded saturation approach proposed by [19]. However,

in [24] no formal stability proof is given. Although Teel’s

results is nice and founding, its performance in term of

convergence speed is very poor for system of dimension

n ≥ 3 [9]. Nevertheless, as is mentioned in [12], for a double
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integrator plant, such as the presented in this work, the Teel’s

approach presents a good performance with regard to settling

time stabilization.

The orientation of a rigid body can be parameterized by

several methods: a rotation matrix, a unit quaternion (i.e.

Euler parameters) and Euler angles. The unit quaternion is a

four-parameter representation and is considered as a globally

nonsingular parametrization. For more details on attitude

representations, the reader can refer to the survey written

by Shuster [14].

In this paper, the bounded attitude control of a rigid body

is studied. The control scheme is applied on a four-rotor

helicopter. The complete model of this special type of mini

helicopter, also known as X-4 flyer or even quad-rotor,

is developed in [10], [11]. This four-rotor helicopter has

some advantages over conventional helicopters: owing to

symmetry, this vehicle is dynamically elegant, inexpensive,

and simple to design and construct. To our knowledge,

the attitude stabilization of the four-rotor helicopter using

quaternion feedback was firstly studied in [17] and more

recently in [18]. In these papers, a quaternion-based feedback

control scheme for attitude stabilization is applied without

considering the boundedness of the control inputs .

The present paper is organized as follows. In section II, a

rigid body quaternion-based orientation is given. The main

problem is formulated in section III. The control law design

is presented and its stability is proved in section IV. The

application of this control law on a four-rotor helicopter is

explained in section V. The simulation results are given in

section VI. The paper ends with some conclusions given in

section VII.

II. MATHEMATICAL BACKGROUND

As mentioned in the introduction, the attitude of a rigid

body can be represented by a quaternion, consisting of a

unit vector �e, known as the Euler axis, and a rotation angle

β about this axis. The quaternion q is then defined as follows

q =

(
cos

β
2

�esin
β
2

)
=
(

q0

�q

)
∈ H (1)

where

H = {q | q2
0 +�qT�q = 1,q = [q0 �q]T ,q0 ∈ R, �q ∈ R

3} (2)

�q = [q1 q2 q3]T and q0 are known as the vector and

scalar parts of the quaternion respectively. In attitude control

applications, the unit quaternion represents the rotation from

an inertial coordinate system N(xn,yn,zn) located at some

point in the space (for instance, the earth NED frame), to
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the body coordinate system B(xb,yb,zb) located at the center

of mass of the rigid body.

The rotation matrix C(q) corresponding to the attitude quater-

nion q, is computed as

C(q) = (q2
0 −�qT�q)I3 +2(�q�qT −q0[�q×]) (3)

where I3 is the identity matrix and [ξ×] is a skew symmetric

tensor associated with the axial vector ξ

[ξ×] =

⎛
⎝ ξ1

ξ2

ξ3

⎞
⎠×

=

⎛
⎝ 0 ξ3 −ξ2

−ξ3 0 ξ1

ξ2 −ξ1 0

⎞
⎠ (4)

Denoting by �ω = [ω1 ω2 ω3]T the angular velocity vector of

the body frame B relative to the inertial frame N, expressed

in B, the kinematics equation is given by(
q̇0

�̇q

)
=

1

2

( −�qT

I3q0 +[�q×]

)
�ω

=
1

2
Ξ(q)�ω

(5)

The attitude error is used to quantify the mismatch between

two attitudes. If q defines the current attitude quaternion and

qd is the reference quaternion, i.e. the desired orientation,

then the error quaternion that represents the attitude error

between the current orientation and the desired one is given

by

qe = q⊗q−1
d (6)

⊗ denotes the quaternion multiplication and q−1 is the

complementary rotation of the quaternion q, which is the

quaternion conjugate [14].

The attitude dynamics for a rigid body is described by

I f �̇ω = −�ω × I f �ω +Γ (7)

where I f ∈ R
3×3 is the symmetric positive definite constant

inertial matrix of the rigid body expressed in the B frame

and Γ ∈ R
3 is the vector of control torques. Note that these

torques also depend on the environmental disturbance torques

(aerodynamic, gravity gradient, etc.).

III. PROBLEM STATEMENT

The objective is to design a control law that drives the

rigid body attitude to a specified constant orientation and

maintains this orientation. It follows that the angular velocity

vector must be brought to zero and remains null. Let qd
denote the desired constant rigid body orientation, then the

control objective is described by the following asymptotic

condition

q → qd , �ω → 0 as t → ∞ (8)

As it has been mentioned above, if qd denotes the desired

constant rigid body orientation, then the error quaternion that

represents the attitude error between the current orientation

and the desired one is given by equation (6). If the inertial

coordinate frame is selected and qd = [±1 0 0 0]T , the error

quaternion (6) coincides with the current attitude quaternion,

that is, qe = q. This control objective is then

q → [±1 0 0 0]T , �ω → 0 as t → ∞ (9)

In this study, the case qd = [1 0 0 0]T that represents the

attitude aligned up with the inertial coordinate system axes is

considered. Nevertheless, the results can be applied to either

desired orientation.

It is well known that actuator saturation reduces the benefits

of the feedback. In the case where the controller continu-

ously outputs infeasible control signal that will saturate the

actuators, system instability will follow. Therefore, besides

the asymptotic stability, the objective of the control law is

to take into account the physical constraints of the control

system in order to apply only feasible control signal to the

actuator.

IV. BOUNDED ATTITUDE CONTROL FORMULATION

In this section, a control law that stabilizes the system

described by (5) and (7) is proposed. The goal is to design

a control torque that is bounded.
Definition 1: Given a positive constant M, a continuous,

nondecreasing function σM : R → R is defined by

1) σM(s) = s if |s| < M;

2) σ(s) = sign(s)M elsewhere;

Theorem 1: Consider the rigid body rotational dynamics

described by (5) and (7) with the following bounded control

inputs Γ = [Γ1,Γ2,Γ3]T such that

Γ j = −ασM2
(λ [ω j +σM1

(q j)]) (10)

where j ∈ {1,2,3} with σM1
and σM2

are saturation functions

with M1 ≥ 1, M2 ≥ λ (2M1 + ε) and ε > 1. α and λ are

positive parameters. Then the inputs (10) globally asymptot-

ically stabilize the rigid body to the origin (q0 = 1,�q = 0 and
�ω = 0).

Remark 1: Since a quaternion and its negative repre-

sent the same rotation, there exist two equilibrium point

[q0 = ±1 �q = 0]T . The equilibrium point (q0 = −1,�q =
0, �ω = 0) can be joined using Γ j =−ασM2

(λ [ω j−σM1
(q j)])

with j ∈ {1,2,3}. Therefore, applying Γ j = −ασM2
(λ [ω j +

sign(q0)σM1
(q j)]) ensures that of the two equivalent rotations

of angle β and 2π −β , the one of smaller angle is chosen.

This can be demonstrated by adapting the following proof.

Proof: Consider the candidate Lyapunov function V ,

which is positive definite, radially unbounded and which

belongs to the class C2. V represents the total energy of

the system

V =
1

2
�ωT If �ω +κ((1−q0)2 +�qT�q)

=
1

2
�ωT If �ω +2κ(1−q0)

(11)

where I f is defined as before, and κ > 0 must be determined.

The derivative of (11) after using (5) and (7) is given by

V̇ = �ωT If �̇ω −2κ q̇0

= �ωT (−�ω × I f �ω +Γ)+κ�qT �ω
= ω1Γ1 +κq1ω1︸ ︷︷ ︸

V̇1

+ω2Γ2 +κq2ω2︸ ︷︷ ︸
V̇2

+ω3Γ3 +κq3ω3︸ ︷︷ ︸
V̇3

(12)
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V̇ is the sum of three terms (V̇1, V̇2, V̇3). First V̇1 is analyzed.

From Γ1 in (10) and equation (12), one gets

V̇1 = −αω1σM2
(λ [ω1 +σM1

(q1)])+κq1ω1 (13)

Assume that |ω1| > |M1 + ε|, that is |ω1| ∈ [M1 + ε,+∞[.
It follows that |ω1 +σM1

(q1)| ≥ ε and ω1 +σM1
(q1) has the

same sign as ω1. From equation (13) and the norm condition

on the quaternion, V̇1 takes the following form

V̇1 = −αω1σM2
(λ [ω1 +σM1

(q1)])+κω1q1

≤−α|ω1|σM2
(λε)+κ|ω1|

(14)

For M2 > λε and κ chosen such that κ < αλε , one can

assure the decrease of V1 i.e. V̇1 < 0. Consequently, ω1 enters

Φ1 = {ω1 : |ω1| ≤ M1 +ε} in finite time t1 and remains in it

thereafter. In this case, ω1 +σM1
(q1)∈ [−2M1−ε,2M1 +ε].

Let M2 verify the following inequality M2 > λ (2M1 +ε). For

time t2 such that t2 > t1, the argument of σM2
will be bounded

as follows

|λ (ω1 +σM1
)| ≤ λ (2M1 + ε) < M2 (15)

Consequently, σM2
operates in a linear region

Γ1 = −αλ [ω1 +σM1
(q1)] (16)

As a result, (13) becomes

V̇1 = −αλω2
1 −αλω1σM1

(q1)+κq1ω1 (17)

Since M1 ≥ 1, σM1
(q1) is not saturated, it comes that

V̇1 = −αλω2
1 −αλq1ω1 +κq1ω1 (18)

Choosing κ = αλ which satisfies the inequality κ < λε since

ε > 1, one obtains

V̇1 = −λαω2
1 ≤ 0 (19)

The same argument is applied to V̇2 and V̇3, and (12) becomes

V̇ = V̇1 +V̇2 +V̇3 (20)

= −λαω2
1 −λαω2

2 −λαω2
3 (21)

= −�ωT A�ω ≤ 0 (22)

where

A = αλ I3 (23)

with I3 the identity matrix of size 3×3. In order to complete

the proof, the LaSalle Invariance Principle is invoked. All

the trajectories converge to the largest invariant set Ω̄ in

Ω = {(�q, �ω) : V̇ = 0} = {(�q, �ω) : �ω = 0}. In the invariant

set, I f �̇ω = −αλ [σM1
(q1) σM1

(q2) σM1
(q3)]T = 0, that is,

Ω̄ is reduced to the origin. This ends the demonstration of

the asymptotic stability of the closed loop system.

V. APPLICATION TO FOUR-ROTOR HELICOPTER

The control attitude strategy presented in the previous

section is applied to the attitude regulation of a four-rotor

helicopter as the one shown in Fig.1.

A. Four-rotor Helicopter Dynamics

This mini helicopter has four fixed-pitch rotors mounted at

the four ends of a simple cross frame. On this platform (under

development), given that the front and rear motors rotate

counter-clockwise while the other two rotate clockwise,

gyroscopic effects and aerodynamic torques tend to cancel

in trimmed flight. The collective input (or throttle input) is

the sum of the thrusts of each rotor ( f1 + f2 + f3 + f4). Pitch

movement (θ ) is obtained by increasing (reducing) the speed

of the rear motor while reducing (increasing) the speed of

the front motor. The roll movement (φ ) is obtained similarly

using the lateral motors. The yaw movement (ψ) is obtained

by increasing (decreasing) the speed of the front and rear

motors while decreasing (increasing) the speed of the lateral

motors. This should be done while keeping the total thrust

constant. In order to model the system dynamics, two frames

are defined: the inertial frame N(xn,yn,zn) and the body-fixed

frame B(xb,yb,zb) as shown in Fig.2.

Fig. 1. Four-Rotor helicopter prototype of GIPSA-Lab
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Fig. 2. Four-Rotor helicopter configuration: the inertial frame N(xn,yn,zn)
and the body-fixed frame B(xb,yb,zb)

According to [11] and section II, the four-rotor helicopter

model may be expressed in terms of quaternions

ṗ = v (24)

v̇ = �gN − 1

m
CT (q)�T (25)

q̇ =
1

2
Ξ(q)�ω (26)

I f �̇ω = −�ω × I f �ω −ΓG +Γ (27)
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m denotes the mass of the helicopter, �g is the vector of the

gravity acceleration and × is the cross product. p = (x,y,z)T

represents the position of the origin of the B-frame with

respect to the N-frame, v = (vx,vy,vz)T is the linear velocity

of the origin of the B-frame expressed in the N-frame, and
�ω denotes the angular velocity of the helicopter expressed in

the B-frame. ΓG ∈R
3 contains gyroscopic torques, due to the

rotational motion of the mini helicopter and the four rotors,

Γ∈R
3 is the vector of the control torques and �T = [0 0 T ]T is

the total thrust expressed in the B-frame. The attitude model

of the four rotor aircraft differs from the general model (5)-

(7) in the gyroscopic torques ΓG. However, it will be proved

that the approach of section IV can still be applied.

Equations (24)-(27) describe the 6 degrees of freedom of the

system and can be separated into translational (24)-(25) and

rotational (26)-(27) motions.

In this application, the speed of the rotors may reach high

values (more than 200 rad/sec), therefore, the reactive torque

generated in the free air, by rotor i due to rotor drag can

be approximated by Qi = kϖ2
i as in [7] and the total thrust

generated by the four rotors can be approximated by

T = b
4

∑
i=1

ϖ2
i (28)

where ϖi is the rotational speed of rotor i. k > 0 and b > 0 are

two parameters depending on the density of air, the radius,

the shape, the pitch angle of the blade and other factors [3].

The vector ΓG is given by

ΓG =
4

∑
i=1

Ir(�ω × zn)(−1)i+1ϖi (29)

Ir is the inertia of the so-called rotor (composed of the

motor rotor itself and of the shape and of the gears). The

components of the control torque Γ ∈ R
3 generated by the

rotors are given by Γ = (Γ1 Γ2 Γ3)T , with

Γ1 = db(ϖ2
2 −ϖ2

4 ) (30)

Γ2 = db(ϖ2
1 −ϖ2

3 ) (31)

Γ3 = k(ϖ2
1 −ϖ2

2 +ϖ2
3 −ϖ2

4 ) (32)

where d represents the distance from one rotor to the center

of mass of the four-rotor helicopter. Combining (28) with

(30)-(32), the forces applied to the helicopter are written in

vector form

(
Γ
T

)
=

⎛
⎜⎜⎝

0 db 0 −db
db 0 −db 0

k −k k −k
b b b b

⎞
⎟⎟⎠
⎛
⎜⎜⎝

ϖ2
1

ϖ2
2

ϖ2
3

ϖ2
4

⎞
⎟⎟⎠

= Nϖr

(33)

with ϖr = [ϖ2
1 ϖ2

2 ϖ2
3 ϖ2

4 ]T the rotor speeds of the four

motors.

B. Four-rotor Torque Control Design

In order to stabilize the attitude of the four-rotor helicopter,

equations (26)-(27) are used. The rotational motion of the

helicopter responds to control torques arising from the linear

combination of the rotation speed of the rotors (33). Hence,

the maximum airframe control torque depends of the much

higher rotation speed capability of the motors that are used.

The rotors are driven by DC permanent magnet motors which

support a maximum voltage of 9 V as in [18]. When this

voltage is applied to the motor the rotation speed reaches

ϖi,max = 260 rad/sec. Consequently the maximum torque

that is applied to influence the helicopter rotational motion

is given by

Γ̄1 = 0.40 Nm Γ̄2 = 0.40 Nm Γ̄3 = 0.15 Nm

Note that these torques are not identical about the three axis.

In order to avoid the actuator saturation, the bounded attitude

control presented in the previous section is applied to the

subsystem (26)-(27).

Lemma 1: Consider the four-rotor helicopter rotational

dynamics described by (26) and (27) with the following

bounded control inputs

Γ1 = −ασMφ (λ1[ω1 +σM(q1)])
Γ2 = −ασMθ (λ2[ω2 +σM(q2)])
Γ3 = −ασMψ (λ3[ω3 +σM(q3)])

(34)

where σM and σMφ ,θ ,ψ are saturation functions where M ≥ 1

and

Mφ ≥ λ1(2M + ε), Mθ ≥ λ2(2M + ε), Mψ ≥ λ3(2M + ε)

with ε > 1, α and λ1,2,3 three positive parameters. Then the

inputs (34) globally stabilize the four-rotor helicopter to the

origin (q0 = 1,�q = 0 and �ω = 0).

Mφ ,θ ,ψ and α are chosen to satisfy the following equations

Γ̄1 = αMφ Γ̄2 = αMθ Γ̄3 = αMψ

Proof: The steps of the proof are identical to the ones

of Theorem 1. Indeed, the only difference lies in the vector

ΓG that adds a term canceled because of the relation:

�ωT ΓG = �ωT (�ω × zn)
4

∑
i=1

Ir(−1)i+1ωri = 0

C. Rotor Speed Control

Actually, the control inputs of the four-rotor helicopter

are the four rotor torques τi, i ∈ {1,2,3,4}. Hence, the rotor

speed control task is to force the actual speed ϖi to track

a desired smooth reference profile ϖ∗
i , corresponding to the

desired torques applied in the four-rotor frame provided by

(34). In this application, four DC motors are used. The

motor dynamics are governed by two coupled first-order

equation with respect to armature current and shaft speed.

The mechanics model for the motor can be expressed by

Irϖ̇i = τi −Qi, i = {1,2,3,4} (35)

where ϖi and Ir are defined above.

The desired speed for the four rotors is obtained from (33).

Therefore, ϖrd = N−1ϒ, with ϒ = [Γ T ]T . It follows that

the total thrust T must be specify respecting the constraint

T = mg, because one is interested in hover flight. After that
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the attitude stabilization is achieved, the total thrust can be

varied (T ≤ mg or T ≥ mg ) in order to stabilise the altitude.

However, this problem is not discussed here.

Assume that the motor parameters are well known, then an

exponential stability of the speed tracking error is achieved

using the following controller [18]:

τi = Qi + Irϖid − γiϖ̃ (36)

where γi is a positive parameter, and ϖ̃i = ϖi −ϖdi is the

tracking error.

VI. SIMULATION

In order to show the performance of the proposed con-

troller, two simulations studies are carried out. In both

studies, the desired thrust is given T = mg = 4.59N. The

maximum four-rotor frame torque that can be applied is

Γ̄ = [0.40 0.40 0.15]T Nm.

The first case is performed without adding external distur-

bances. The objective is to show the attitude stabilization

capabilities from some given initial attitude sufficiently far

from the origin to show the efficiency of the bound on

the control torques to avoid unwanted damages. The initial

conditions are set to φ = −45◦, θ = 50◦, ψ = −175◦.

The convergence of the roll, pitch and yaw angles is plotted

in Fig.3. The four-rotor helicopter angular velocity and the

applied control torques are shown respectively in Fig.4 and

Fig.5. As expected, the desired attitude is reached in suitable

time for practical implementation while the control stays

in the pre-required limits. For the second case, the initial

conditions are set to be φ = −25◦, θ = 30◦, ψ = −10◦
as in [17]. In this simulation the robustness of the proposed

controller with respect to external disturbances is studied.

The disturbances are introduced into the system after the

attitude stabilization of the four-rotor is achieved. This causes

the angular velocity to reach a value of 4 rad/sec around the

three axes as is shown in Fig. 7. It can be seen in Fig.8 the

control reaches its limit and takes action on the system to

overcome the perturbations. This second case shows that the
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Fig. 3. First case: The convergence of the roll, pitch and yaw angles of
the four-rotor helicopter with initial conditions φ = −45◦, θ = 50◦, ψ =
−175◦

controller formulated in this paper is robust with respect to

external disturbances. This property is essential for real time

implantation where aerodynamic disturbance torques are non

trivial. The robustness of the proposed approach with respect

to the inertial parameters or other model errors remains to be

checked. However, the robustness study carried in [9] for a

similar class of saturated control let us glimpse good results

in this direction.
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Fig. 4. First case: The evolution of the angular velocity of the four-rotor
helicopter
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Fig. 5. First case: The bounded control torques applied on the four-rotor
helicopter

VII. CONCLUSIONS AND FUTURE WORKS

This paper developed a bounded global stabilizing control

law for rigid body. The controller is based on a cascaded-

saturation design and the quaternion representation of the

rigid body. The complexity of the approach is very closed to

the one of unconstrained linear control. This control law is

applied to a four-rotor helicopter. The numerical simulations

have showed the effectiveness of the proposed controller and

its robustness with respect to external disturbances.

The proposed approach is currently being implemented on a

plate-form to check the practical applicability of the control

law. This approach will be compared with other control
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schemes such as the nonlinear model predictive control,

backstepping and others. However, as far as the authors

know, the proposed approach is by far the simplest and the

more suitable for embedded implementation.
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