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Abstract— This paper deals with the visual servoing of
textured surfaces inside the human abdomen with a laparoscope
for the robot-assisted minimally invasive surgery (MIS). The
well-known image-based visual servoing (IBVS) is one of the
most common approach used for model-based servoing. When
no CAD model is available, the Efficient Second-order Mini-
mization (ESM) tracking developed by Malis ( [14], [16]) for
grey-level images is one of the powerful recent techniques which
is extended here to color images so as to handle occluded parts
of the region of interest (ROI). Firstly, the ROI is splitted into
small areas and an histogram-based color feature comparison
of image areas is presented. For each frame and for each
area, a metric based on the Bhattacharyya criterion is used
to select the contributing areas for the computation of the
planar homography between views. Secondly, since for any MIS
technique, the endoscopic lens is passing through an insertion
point on the abdominal wall, a specific control strategy is
developed to perform the ESM tracking with a 4-DOF surgical
robot. The method presented in this paper has been validated
with several video sequences. Experimental results show that
the tracking method is efficient even with more than 75 %
of the tracked ROI occluded. Finally, the model-free visual
servoing has been performed with the AESOP surgical robot
and a training box. Even if the convergence rate is a little bit
slow, the desired region is always reached.

I. INTRODUCTION

For three decades, the field of vision-based robotics has

been widely grown, and more and more complex 3D scenes

are within robot reach due to deeper understandings of the

scene perception, the increase of computer capabilities and

control theory. Although the binary machine vision and

”block’s world” were the ingredients of pioneered works,

real-time color images processing of natural 3D scene is

becoming a more and more common tool to offer a reliable

solution to a wide spectrum of applications. For application

areas like medical robotics, mobile robotics, micro-robotic

manipulation, agricultural automation for example, the

achievement needs the integration of several research areas

in computer vision and automatic control ( [10], [17]).

The main challenge in visual tracking for eye-in-hand

robotic purposes is to catch the necessary video information

from images of a target region of the scene for determining

the camera velocity. When a CAD model of a viewed rigid

object in the scene is available, the position-based visual

servoing (PBVS) is an appropriate family of vision-based

control methods for which the 3D pose of the target region is

computed at each frame. Geometric features extraction and
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matching are needed and usually bring high computational

costs. Image-based visual servoing (IBVS) is generally

more accurate since the target region is directly expressed

in the image plane. It allows to compute the relative 3D

motion from image feature variabilities [10].In the case of

a rigid object of interest, relations which occur between

the velocity screw and the position variations of image

features lead to the computation of a Jacobian matrix called

interaction matrix [5]. This matrix may be on-line estimated

all along the servoing or only at the desired localization of

image features. Contrarily to the PBVS approach, the pose

may be partially estimated, and only the depth is required

to update the interaction matrix components. However,

the depth estimation is often noisy and a servoing which

uses a pre-computed depth works quite well provided the

convergence is ensured. Hybrid or 2D 1/2 visual servoing

methods are based on both 2D video information and 3D

projective reconstruction. They need less knowledge of the

3D scene and they solve problems that may appear with

IBVS when the initial position is far from the desired one

[15]. The 3-D features (often a depth ratio) can be retrieved,

thus the robustness of the servoing w.r.t. calibration errors

is improved. Moreover, the block-triangular shape of the

Jacobian matrix tends this latter approach to be well-adapted

to the decoupling of position and orientation controls.

The efficiency of most of model-based visual servoing

approaches relies on correspondences between the position

of tracked visual features in the current image and their

position in the reference image. If these correspondences

contain errors then the servoing usually fails or converges

upon a wrong position. Overcoming these errors is often

achieved by improving the quality of tracking algorithms

and features selection methods ( [12], [18]).

Model-free (object) methods do not need any 3D geometric

cue, but rather, similarly to the visual tracking, the goal is

to determine the movement w.r.t. an observed target over a

long sequence of images. However, although most of visual

tracking methods are able to compute the apparent motion

only, the design of motion models allow to recover the 3D

motion between views and leads to more efficient tracking

algorithms [7].

A region tracking with linear 2D motion models has been

proposed by Hager and Belhumeur [7]. Their method is

based on the image constancy constraint with a basis of

training images and their work integrates both geometric

and photometric image changes. To take care of occlusions,

they also developed a regression technique based on M-
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Fig. 1. The geometric transformation G - a planar homography - between
the region of interest in the reference image (white square, left) and in the
current image (right).

estimators that is occlusions are viewed as outliers by the

algorithm. The Efficient Second-order Minimization visual

tracking proposed by Malis ( [14], [16]) extends the region

tracking to the 3D rigid motion models of planar surfaces.

Visual tracking and servoing are fused in a unifying frame-

work which does not need any measurement of the 3D

structure of the observed target. The ESM method uses

both reference and current image regions of interest (see

Fig. 1) and their gradients in order to estimate the velocity

screw of a moving camera. A judicious decomposition of the

planar homography between the images with the Lie algebra

(firstly introduced by Drummond and Cipolla [4]) allows to

minimize a cost function and avoids the costly computation

of the Hessian matrix. The cost function is the sum of

squared differences (SSD) of the intensity distributions.

There are many sources of image variabilities, like the

deformation of the tracked object or changes in illumination

which can cause the 3D motion to be misestimated. Although

the results obtained by Malis are good even in presence

of the above mentioned disturbances, the SSD is a global

comparison which is very sensitive to occlusions in any way.

For the application of concern, occlusions of organs by other

internal parts or by surgical instruments are very harmful

while performing an accurate instruments positioning and

they sometimes lead the target to be lose. It is then of prime

importance to tackle this problem in order to carry out a

reliable tracking inside the human body. Based on these

considerations, the objectives of the paper are twofold:

• To enhance the visual servoing through the automatic

detection of irrelevant pixels and to reject them prior to

the tracking process,

• To integrate the motion constraint of the minimally

invasive surgery while controlling a robot thanks to a

model-free visual servoing.

The paper is organized as follows. In the next section, the

proposed method for pixels color selection is described. In

section III, the model-free visual servoing control approach

with a 4-DOF robot is presented. We provide in section IV

a set of results from several video sequences and primary

results of the visual servoing with a surgical robot. In the

final section, we conclude the paper.

II. A JOINT HUE SATURATION-BASED STATISTICAL

PIXELS SELECTION

The idea we have developed in this section consists in

splitting the target region of interest (ROI) both in the

reference image and in the current image into a set of small

pixel areas so as to select those which can contribute to the

homography computation in the ESM tracking. Hence, every

area in the ROI of the reference image is compared to its

corresponding one in the current image in order to detect an

occlusion. Thanks to the on-line computation of the planar

homography in the ESM, the ROI in the current image is

warped so as to be aligned with the ROI in the reference

image. By this way, the original ESM is not modified, it’s

only working with some parts of ROI and various methods

for the selection of pixels can be investigated.

Statistical methods are commonly used in the motion

detection for video surveillance applications or data

compression. Some of them involve a low-level processing

with real-time capabilities, an undoubtedly factor of success

while controlling the robot motion. With the geo-pixel

statistical method [9], each pair of pixel areas (i, j) in two

images (reference and current images) is characterized with

a likehood ratio Lij . It’s a metric based on second-order

statistics. This method has been carried out on intensity

images. Its major drawbacks are its computational middle-

level, the presence of a user-defined threshold and an

inaccurate value of the likelihood ratio when the variances

are very low.

In an attempt to reduce the latter drawbacks, we incorporate

an histogram-based matching method to the pixel selection

algorithm. The two discrete distributions associated to area

ai in the reference image and area aj in the current image

are compared through a similarity metric function based on

the Bhattacharyya coefficient Bij ( [3], [11]). As noticed

by Comaniciu et al. [2], this coefficient is derived from the

Bhattacharyya coefficient which is not a metric in its original

form. To do this, we have chosen the histogram as a usually

satisfactory nonparametric density estimate. Thus, for a pixel

area ai, the discrete density is

âi = {â
(l)
i }l=1,...,m with

m
∑

l=1

â
(l)
i = 1 (1)

where â
(l)
i is the lth bin of the m-bins histogram of pixel

area ai. The statistical distance between the distributions of

two areas ai and aj is then defined by

dij =
√

1 − Bij (2)

with

Bij =

m
∑

l=1

√

â
(l)
i â

(l)
j . (3)

Minimizing the distance (2) is equivalent to maximizing the

Bhattacharyya coefficient (3) and the area in the current ROI

is assumed to be occluded if d exceeds a threshold value τb.
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When these two methods are carried out on intensity images,

they are inexorably sensitive to global changes in brightness

or non-uniform illumination, and it is hard to distinguish an

occluded part from brightness changes or the appearance of

specularities. The image gradient is a better choice since it

brings texture information. It’s what the ESM does in the

original form but for the whole target region of interest.

Nowadays, many vision sensors integrate well-coded video

color information, and chromatic attributes are salient fre-

quency markers and have often been used in the past for

vision-based robot control, especially in natural environment

with mobile robot but also in laparoscopiy with endoscope-

holder robot. Wei et al. [21] have used a stereo-laparoscope

mounted on a robot arm and have designed a color marker

to realize a tracking task. By means of a color histogram,

the color bin with the lowest value was selected to mark the

instrument. This spectral mark was then utilized to control

the robot motion at a sampling rate of 15 Hz. An interesting

feature of this technique is the choice of the color space,

HSV, for the segmentation leading to a good robustness

w.r.t. lighting variations. Wang et al. [20] and Uecker et al.

[19] have conceived a general framework that uses visual

modelling and servoing methods to assist the surgeon in

manipulating a laparoscope mounted on a robot end-effector.

Color signatures are used in a Bayesian classifier to segment

images into two classes (organ and markerless instrument).

Finally, this has been applied to the instrument localization

(the 2D position of the imaged tip of instrument) and 2D

tracking with 3 DOFs of the AESOP robot in a way to follow

the laparoscope.

Following this purpose, color hue and saturation seem to be

appropriate discriminant attributes. A low saturation value

indicates a low colored pixel and a high value corresponds

to a purely colored pixel. However, it’s well-known that the

color saturation is affected by surface reflectance and the

main drawback of hue is its undefinedness for achromatic

pixels and small changes round the gray axis result in large

changes of the hue value. With regard to these works, the

following joint hue saturation color feature we used for the

histogram-based matching of pixel areas is defined as

H = S0 cos(H) (4)

with H = arccos

(

1
2 [(R − G) + (R − B)]

√

(R − G)2 + (R − B)(G − B)

)

(5)

and S0 is the modified version of the color saturation

S0 =max{R, G, B}−min{R, G, B} due to Hanbury and

Serra [8] which is invariant to any shift of an arbitrary RGB

vector parallel to the achromatic axis.

III. ROBOT CONTROL WITH THE MIS CONSTRAINT

As a MIS technique, the laparoscopic surgery involves

motions of surgical instruments which are constrained to

by insertion points in the abdominal wall, thus reducing the

mobility down to 4 DOF 1 [6]. For visual feedback, an endo-

scopic vision system is used for achieving the intra-operative

guidance. It includes an optical lens which is a laparoscope.

It’s a long pipe with monovision or (short base-line) stereo-

vision capabilities and light transportation/emission. For the

application of interest, the laparoscope (E) is mounted on

the robot end-effector (7) and such configuration is named

”eye-in-hand” (see Fig. 2). In the sequel, points OA and

OC are respectively the insertion point and the origin of the

camera frame (E). OA is assumed to be motionless although

its position may be disturbed by the patient breathing.

Fig. 2. Geometric modeling and motion constraint in laparoscopic surgery
with a ”eye-in-hand” robot vision system.

To control the robot with visual feedback, a task function

e = (eν , eω) ∈ R
6 is built similarly to [1]. With a distortion-

corrected laparoscope, the task function may be expressed as

eν = (H − I3×3) m
⋆ and [eω]

×
= H− H

T (6)

where m
⋆ and H m

⋆ are corresponding points respectively

in the ROI of the reference image and in the current one

and [v]× is the skew-symmetric matrix of vector v. With

a calibrated device characterized by the intrinsic parameters

matrix K, H is computed through the ESM tracking and is re-

lated to the planar homography G = K H K
−1. The decoupling

between the position error eν and the orientation error eω

allows to design a control law with independent exponential

decrease behaviours when considering the relation between

the derivative of the task function and the velocity screw

τ c =
[

ν
T = (vx vy vz) , ω

T = (wx wy wz)
]T

(τ c)
esm

/OC
=

[

ν

ω

]

= −

[

λν I3×3 O3×3

O3×3 λω I3×3

] [

eν

eω

]

(7)

λν and λω are positive real scalars. Malis and Benhimane

have given the proof of the local stability of this law in [1].

To ensure no translational motion occurs in the tangent plane

1In MIS, some laparoscopic instruments are provided with extensive range
of articulations designed at the tip (microwrist) to increase the dexterity.
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at the insertion point, the velocity screw expressed at that

point should be limited to 4 DOF as follows

(τ c)
4 dof

/OA
=
[

0 0 Vz Ωx Ωy Ωz

]T
. (8)

This means that only pan/tilt/spin and insertion are the al-

lowed motions. Considering the computation of the velocity

screw given by (7) at the insertion point OA, it comes

(τ c)
esm

/OA
=
[

vx − d2ωy vy + d2ωx vz ωx ωy ωz

]T

(9)

where the scalar d2 is the penetration depth (see Fig. 2). By

identification of equations (8) and (9), one has






vx − d2ωx = 0 ωx ≡ Ωx

vy + d2ωx = 0 ωy ≡ Ωy

vz ≡ Vz ωz ≡ Ωz

(10)

While the spin Ωz and penetration Vz velocities control are

straightforward, there is no any guarantee that both equations

vx − d2ωx = 0 and vy + d2ωx = 0 are verified. Then, the

goal is to control the two remainder parameters Ωx and Ωy

so as to avoid translational motions at the insertion point and

to simultaneously track the target region. There is no way to

solve this problem unless a trade-off can be planned since a

target region (like the organ surface) can be moved without

constraint. The solution we propose comes from practical

and safety considerations. Due to the high level of scaling

with laparoscopes and the lever effect, target translational

motions induce more significant displacements in the image

than rotational ones (the latter, rather, lead to perspective

distortions). This means that the tracking of the target centre

is of prime importance when one wish to keep the target in

the field of view. Following this purpose, the solution we

propose is to express the velocity screw components Ωx and

Ωy as functions of vx and vy , that is









Vz

Ωx

Ωy

Ωz









=









0 0 kd 0 0 0

0 −
kp

d2

0 0 0 0
kt

d2
0 0 0 0 0

0 0 0 0 0 ks









(τ c)
esm

/OC
.

(11)

Finally, by expressing the velocity screw at the end-effector

frame origin O7, one obtains

(τ c)
4 dof

/O7
=















−kt

l−d1
d1 0 0 0 0 0

0
kp

l−d1
d1 0 0 0 0

0 0 kd 0 0 0

0
−kp

l−d1
0 0 0 0

kt

l−d1
0 0 0 0 0

0 0 0 0 0 ks















(τ c)
esm

/OC

(12)

with l = d1 + d2 is a (constant) distance. In [13], two

methods for the estimation of d1 has been provided.

IV. RESULTS

A. ESM tracking with pixels color selection

Concerning the detection of occlusions in the region of

interest, the proposed method has been tested by means of

(a) (b)

Fig. 3. Detection of occluded areas for frame 23. (a) 155 of the 196
areas are occluded. (b) One may visually evaluate the homography accuracy
(differences between shapes of the quadrilaterals) for this frame.

0 5 10 15 20 25 30 35 40
0

50

100

150

frames

e o
c
c
l

No detection of occluded areas
Detection of occluded areas

Fig. 4. The algebraic error eoccl during a video sequence with (red curve)
and without (blue curve) the detection of occluded areas.

a set of video sequences of a motionless target (a maquette

of abdominal organs) while a moving sheet is bringing in

front of. In figure 5, frames 10, 15, 20, 25 and 30 of a

such video sequences sample have been displayed. Images

in the first row correspond to the ESM tracking without

the detection of occlusions while those of the second and

third rows correspond to the tracking with the pixels color

selection algorithm, for a threshold τb = 0.5. The occlusions

occur between frames 10 and 30. In the third row, blue

filled squares mark the detected occlusions inside the ROI.

Although the algorithm performs well on most images, one

can observe that sometimes some areas have been selected

as occlusions while there is no occluding part (see, e.g.,

frame 30). This is probably due to the poor-coded (YUV)

color webcam used for experiments, then these areas are

viewed as ”outliers”. Nevertheless, the unoccluded areas give

satisfactory results while computing the collineation H since

the current warped ROI (in red) is still well-aligned with the

ROI in the reference image (in blue).

A numerical comparison is provided in order to assess the

detection of occlusions. To do so, we have defined the

algebraic error eoccl(t) based on the Frobenius norm so as to

compare the current estimate of the homography (between

the current ROI and that of the reference image) while the

occlusions may occur, G(t), and without occlusions, G⋆(t)
(G⋆(t) = G

⋆ for a motionless target), as follows

eoccl(t) = ‖G(t) G⋆(t)−1 − I3×3‖ . (13)

The algebraic error has been reported in Fig. 4 both with

the detection of occlusions (red curve) and without the
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Fig. 5. A comparison of the ESM tracking without the detection of occlusions (top row) and with the pixels color selection we propose (middle row) to
detect occluded parts (blue filled square in the bottom row) for a recorded video sequence of a motionless region of interest.

detection of occlusions (blue curve). The maximum error

rate is observed for frame 23 where 155 of the 196 areas

of the ROI (79 %) are occluded (see Fig. 3). One can

observe the benefits of the proposed detection of occlusions

prior to the homography computation since the algebraic

error found without the detection of occlusions is three

times that of with the detection of occlusions. Further ahead

an accurate homography computation, we have noticed a

significant improvement of tracking performances. The main

drawback remains the still high computational cost we expect

to reduce for real-time issues thanks to GPU capabilities.

B. Visual Servoing with a Surgical Robot

Fig. 6. The laparoscope-holder AESOP robot and the training box used
for experiments with the model-free visual servoing.

In order to validate the control strategy approach, experi-

ments have been conducted with the AESOP surgical robot

designed either for assisting surgeons in manipulating the

surgical instruments and as a remote moving laparoscope-

holder (see Fig. 6). The experimental setup is composed on

a CCD camera connected to the laparoscope, a training box

with two insertion points and a maquette of internal organs.

The desired ROI (green rectangle) is selected by means of a

graphical user interface depicted in Fig. 7. The ESM tracking

(without servoing) is activated and the maquette is moved by

hand. Finally, the robot is moved (thanks to the 4 slides at

lower left side) to another position (red warped quadrilateral)

and the visual servoing is executed (see Fig. 7b).

(a) (b)

Fig. 7. (a) The desired ROI is selected (green rectangle), then the ESM
tracking (without servoing) is activated and both the maquette and the robot
are moved (red rectangle). (b) The convergence of the visual servoing.

Fig. 8a and 8b show time responses of the rotational ve-

locities (Ωx, Ωy, Ωz) and the penetration velocity Vz dur-

ing the servoing. The gains of the closed loop are set to

(kp, kt, ks, kd) = (0.3, 0.3, 0.3, 20) (subscripts p, t, s, and

d stand for pan, tilt, spin and descent). The coordinates of

the ROI center (m⋆ = (u⋆, v⋆) and the image trajectory

are reported in Fig. 8c and Fig. 8d respectively. Despite the

significant amount of noise, the robot position converges to

the desired one in approximately 400 images (16 seconds)

with the above-mentioned gains.
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Fig. 8. Dynamic behavior of the model-free servoing with the 4-DOF laparoscopic-holder AESOP robot. (a-b) Time responses for the parameters control
values. (c) Time responses for the ROI centre coordinates m

⋆ = (u⋆(t), v⋆(t)). (d) Image trajectory of m
⋆.

It seems hard to improve the dynamic behaviour of the global

system, since a limit-cycle phenomenon is observed close

to the desired position. Non-linearities such as friction or

deadzones induce abrupt displacements in the image, then

bring inaccuracies in the homography computation.

Another limiting factor of performances is the large time de-

lay of 160 ms with the AESOP robot controller. Furthermore,

the experiments were accomplished with a constant value for

the distance between the end-effector and the insertion point

onto the abdominal wall, d1, while it is rather a varying

parameter. Finally, one has to keep in mind that only 4 DOF

are allowed to compensate both the robot motion and the

unconstrained moving target.

V. CONCLUSION

Most of model-based visual servoing methods have

considered the problem of outliers rejection either in the

image processing step or in the control law. While robust

estimations have been designed for both levels, the existing

techniques need geometric features to extract so as to match

an object model. For model-free visual servoing methods,

like the ESM tracking algorithm, we presented in this

paper a pixel color selection method based on histograms

matching, prior to the tracking itself in order to handle

occlusions. . The experiments for the detection of occlusions

show the efficiency of the proposed method, we expect to

apply for the tracking of locally planar surfaces inside the

human body. Finally, a vision-based robot control strategy

accounting of the motion constraint in minimally invasive

surgery and based on the original ESM has been presented

and carried out with a 4-DOF surgical robot. For future

work, we plan to integrate the detection of occlusions in the

vision-based robotized laparoscopy framework although the

ESM is already a high-computational demanding algorithm.

This will be a new step towards the simultaneous tracking

of surgical instruments and living tissues respectively with

model-based and model-free visual servoing approaches.
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