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Abstract— Recently it has been shown that an inverse depth
parametrization can improve the performance of real-time
monocular EKF SLAM, permitting undelayed initialization of
features at all depths. However, the inverse depth parametriza-
tion requires the storage of 6 parameters in the state vector for
each map point. This implies a noticeable computing overhead
when compared with the standard 3 parameter XYZ Euclidean
encoding of a 3D point, since the computational complexity of
the EKF scales poorly with state vector size.

In this work we propose to restrict the inverse depth
parametrization only to cases where the standard Euclidean
encoding implies a departure from linearity in the measurement
equations. Every new map feature is still initialized using the
6 parameter inverse depth method. However, as the estima-
tion evolves, if according to a linearity index the alternative
XYZ coding can be considered linear, we show that feature
parametrization can be transformed from inverse depth to XYZ
for increased computational efficiency with little reduction in
accuracy.

We present a theoretical development of the necessary
linearity indices, along with simulations to analyze the influence
of the conversion threshold. Experiments performed with with a
30 frames per second real-time system are reported. An analysis
of the increase in the map size that can be successfully managed
is included.

I. INTRODUCTION

Real-time SLAM (Simultaneous Localization and Map-

ping) using a 6 DOF agile monocular camera as the only

sensor has been proven feasible since the work of Davison

[1]. In this and other related work, a sparse map of 3D

points is built on the fly as the camera’s motion is simul-

taneously estimated. Each 3D point is parametrized by its

3 Euclidean coordinates XYZ. However, the weakness of

the XYZ point encoding is its inability to deal with low

parallax configurations, corresponding to two common cases:

feature initialization and distant points. In both cases, the

camera translation is small compared with observed feature

depth; more precisely, the bundle of rays from different

camera locations whose intersection defines the 3D point are

all nearly parallel relative to the camera’s bearing sensing

accuracy. Since it is well understood that this situation leads

to depth uncertainties which are not well characterized by

a Gaussion distribution in 3D space, [1] used a ‘delayed’

initialization scheme, where full inclusion of a new feature

in the map was postponed until significant parallax enabled

a fairly accurate depth estimate to be accumulated via an

auxiliary particle filter method. If little parallax was detected,

features were never included in the map.

Recently, Montiel et al. [2] proposed an alternative ‘inverse

depth’ parametrization for map features within monocular

SLAM, noting that with this encoding the Gaussianity of

the measurement equation is significantly improved features

at all depths. They showed that when the inverse depth

parametrization is used, a standard EKF (Extended Kalman

Filter) algorithm can successfully deal with low parallax

cases. This permits direct, non-delayed initialization, and

map points at extreme, potentially ‘infinite’ depths. The

non-delayed inclusion of every feature in the map allows

even low-parallax features with unknown depths to provide

orientation information immediately; jitter in the camera

location estimation is noticeably reduced. The only drawback

of the inverse depth approach is its computational cost

because every map point is encoded using 6 parameters

rather than the 3 of the more usual XYZ scheme. The extra

3 parameters come from the need to save the position of the

camera from which the feature was first observed, since it is

relative to this position that the inverse depth encoding has

advantageous properties. Within the EKF, this is significant

because the computational cost of each update scales with

the square of the total size of the state vector.

Our contribution is to improve efficiency of the inverse

depth parametrization scheme by proposing to transform

features to an XYZ encoding as soon as this more effi-

cient parametrization becomes well-behaved, meaning that

a Gaussian distribution in these coordinates is a good fit

for the uncertainty in the point location. So, retaining the

inverse depth method of [2], features are initialized with six

parameters — important at low parallax — but as the esti-

mation evolves, if the 3 parameters XYZ encoding becomes

well-behaved the feature is transformed from inverse depth

to XYZ. We propose a test for transformation, relating to

the feature parallax and estimation accuracy, which is tested

individually for each feature at every estimation step. We

show that algorithm performance does not degrade when

compared to keeping every feature with an inverse depth

encoding, but computational efficiency is greatly increased

by decreasing the state vector size.

Other authors have also recently proposed novel initial-

ization schemes which are closely related to the approach of

[2]. Sola et al. in [3] proposed an initialization scheme based

on maintaining several depth hypotheses combined with an

approximated Gaussian Sum Filter. Eade and Drummond

in [4] also proposed the inverse depth concept for feature

initialization in a FastSLAM based approach. Trawny and

Roumeliotis in [5] proposed a feature encoding using the

concept of a virtual camera which allowed non-delayed

initialization for 2D monocular vision.
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Fig. 1. The first derivative variation in [µx − 2σx, µx + 2σx] codes
the departure from Gaussianity in the propagation of the random variable
through a function

The current paper propose a linearity analysis with a

simplified model which ends up achieving the same linearity

indices proposed in [2]. The analysis proposed in the current

paper is simpler to understand and hence makes clearer

the model’s assumptions. Simulation are used to determine

thresholds for the transformation of feature based on the

proposed linearity indices.

Section II analyzes the linearized propagation of a Guaus-

sian through a function and proposes a dimensionless linear-

ity index to determine the departure from linearity. Next, in

Section III, the linearity indices are evaluated for the inverse

depth point encoding and for the XYZ coding such that

the two can be compared directly. A simulation experiment

is performed to determine the computed linearity index

threshold for XYZ linearity. Section IV details the transfor-

mation from inverse depth to XYZ coding. Sections V and

VI are devoted to simulation experiments to determine the

degradation of estimation with respect to the transformation

threshold and to real-time experiments with a hand-held

camera. The paper ends with a Conclusions section.

II. LINEARIZED PROPAGATION OF A GAUSSIAN

Let be x a gaussian random variable:

x ∼ N
(

µx, σ2

x

)

(1)

the image of x through the function f is a random variable

y that can be approximated as Gaussian:

y ∼ N
(

µy, σ2

y

)

(2)

where:

µy = f (µx) (3)

σ2

y =
∂f

∂x

∣

∣

∣

∣

µx

σ2

x

∂f

∂x

∣

∣

∣

∣

µx

(4)

If the function f is linear in an interval around µx, then

y is Gaussian (Fig 1.) It should be noticed that the interval

size in which the function has to be linear is related with σx,

the bigger the σx the wider the interval has to be in order to

cover a significant fraction of the random variable x values.

In this work we fix the linearity interval to the typical 95%
region defined by [µx − 2σx, µx + 2σx].

Fig. 2. Observation of a feature with a projective camera

If a function is linear in an interval, the first derivative

is constant in that interval. To analyze the first derivative

variation around the interval [µx − 2σx, µx + 2σx] consider

the Taylor expansion for the first derivative:

∂f

∂x
(µx + ∆x) ≈

∂f

∂x

∣

∣

∣

∣

µx

+
∂2f

∂x2

∣

∣

∣

∣

µx

∆x (5)

We propose to compare the derivative value in the interval

center, µx:
∂f

∂x

∣

∣

∣

∣

µx

(6)

with the derivative value in the interval extrema µx ±
2σx(where the deviation is assumed to be maximal):

∂f

∂x

∣

∣

∣

∣

µx

±
∂2f

∂x2

∣

∣

∣

∣

µx

2σx (7)

The comparison is made by the next dimensionless linearity

index:

L =

∣

∣

∣

∣

∣

∣

∣

∂2f
∂x2

∣

∣

∣

µx

2σx

∂f
∂x

∣

∣

∣

µx

∣

∣

∣

∣

∣

∣

∣

(8)

that compares the two summands in (7). When L ≈ 0, the

function can be considered linear in the interval, and hence

the Gaussianity is preserved.

III. MEASUREMENT EQUATION LINEARITY

This section is devoted to presenting an simplified mea-

surement equation model for a mobile camera observing a

scene point. Despite its simplicity the model successfully

codes the departure from linearity.

Fig. 2 sketches the image u of the point p with a

normalized camera (a camera with unitary focal length).

u =
x

y
(9)

In sections III-B and III-A we consider that the scene point

is observed by two cameras (Figs. 3, 4) both cameras are

gazing to the observed point. The first camera detects the

ray where the point is. The only location error for the point

is in depth. A second camera, observes the same point at a

distance d1; the parallax angle α is the angle between the
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Fig. 3. Uncertainty propagation from the scene point to the image when
the point is coded in depth.

two rays observing the point. It is approximated by the angle

between the cameras optical axes.

We are interested in analyzing the linearity of the measure-

ment equation for two different codings of an scene point.

The inverse depth coding and the depth coding. Next two

subsections deal with these two codings.

A. Depth Coding Linearity

We consider that the scene point is observed by two

cameras, both cameras are pointing to the observed point

(Fig 3.) The first camera detects the ray where the point is.

The location error, d, of the point is coded as Gaussian in

depth:

D = d0 + d, d ∼ N
(

0, σ2

d

)

(10)

Next it is detailed how the error d is propagated to the

image of the point in the second camera.

u =
d sin α

d1 + d cos α
(11)

x = d sin α (12)

y = d1 + d cos α (13)

To analyze the Gaussianity of u, it is computed the

linearity index Ld (8) as:

Ld =
4σd

d1

|cosα| (14)

its detailed computation is given next:

Ld =

∣

∣

∣

∣

∣

∣

∂2u
∂d2

∣

∣

∣

d=0

2σd

∂u
∂d

∣

∣

d=0

∣

∣

∣

∣

∣

∣

(15)

∂u

∂d
=

d1 sin α

(d1 + d cos α)
2

(16)

∂2u

∂d2
=

−2d1 sin α cos α

(d1 + d cos α)
3

(17)

Fig. 4. Uncertainty propagation from the scene point to the image when
the point is coded in inverse depth.

B. Inverse Depth Coding Linearity

The inverse depth coding, is based on the same scene

geometry as the direct depth coding, but the depth error is

coded as Gaussian in inverse depth (Fig 4):

D =
1

ρ0 − ρ
, ρ ∼ N

(

0, σ2

ρ

)

(18)

d = D − d0 =
ρ

ρ0 (ρ0 − ρ)
(19)

d0 =
1

ρ0

(20)

So the image of the scene point is computed as:

u =
ρ sin α

ρ0d1 (ρ0 − ρ) + ρ cos α
(21)

x = d sin α =
ρ sin α

ρ0 (ρ0 − ρ)
(22)

y = d1 + d cos α = d1 +
ρ cos α

ρ0 (ρ0 − ρ)
(23)

So, the linearity index Lρ is now:

Lρ =
4σρ

ρ0

∣

∣

∣

∣

1 −
d0

d1

cosα

∣

∣

∣

∣

(24)

Given that:

Lρ =

∣

∣

∣

∣

∣

∣

∣

∂2u
∂ρ2

∣

∣

∣

ρ=0

2σρ

∂u
∂ρ

∣

∣

∣

ρ=0

∣

∣

∣

∣

∣

∣

∣

(25)

∂u

∂ρ
=

ρ2

0
d1 sin α

(ρ0d1 (ρ0 − ρ) + ρ cos α)
2

(26)

∂2u

∂ρ2
=

−2ρ2

0
d1 (cos α − d1ρ0)

(ρ0d1 (ρ0 − ρ) + ρ cos α)
3

(27)

C. Simulation to Select a Linearity Index Threshold

Our proposal is to use index (14) to define a threshold to

switch from the inverse depth coding to the depth coding. So,

we use the depth coding when it can be considered linear.

If the depth coding is linear, then the measurement u is a

Gaussian:

u ∼ N
(

µu, σ2

u

)

(28)
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Fig. 5. Percentage of reject test with respect to the linearity index Ld

where according to (3), (4), and (16):

µu = 0 (29)

σ2

u =

(

sin α

d1

)2

σ2

d (30)

To determine the linearity threshold a simulation exper-

iment applying a Kolmogorov-Smirnov test to verify the

Gaussianty of u for a set of α, d1 and σd values. The next

simulation algorithm is applied to every {α, d1, σd} triplet.

1) For 1000 random samples, repeat steps 2-4.

2) A Gaussian random sample {di} size 1000 is drawn

from N
(

0, σ2

d

)

.

3) The sample is propagated to the image according to

expression (11) to obtain {ui}, a sample for the image

measurements.

4) A Kolmogorov-Smirnov test is applied (α = 0.05,

significance level), the null hypothesis is {ui} follows

a N
(

µu, σ2

u

)

distribuion (28).

5) Compute the fraction of rejected null hypotheses h.

6) Compute the linearity index Ld (14) for the triplet

{α, d1, σd}.

It the random sample is perfectly Gaussian, the fraction of

null hypotheses rejected h should be the significance level

5%. Fig. 5, shows a plot of h with respect to Ld. It can be

clearly seen how when Ld > 0.2 h abruptly departs from

5%. The simulation has been performed for all the triplets

resulting from the next selected parameters values:

α(deg) ∈ {0.1, 1, 3, 5, 7, 10, 20, 30, 40, 50, 60, 70}(31)

d1(m) ∈ {1, 3, 5, 7, 10, 20, 50, 100} (32)

σd(m) ∈ {0.050.10.250.50.75125} (33)

So our threshold for switching from inverse depth to depth

is fixed in:

Ld =
4σd

d1

|cos α| < 10% (34)

Notice that plot in Fig. 5 is smooth, what indicates that the

linearity index effective codes the departure from linearity.

IV. SWITCH FROM INVERSE DEPTH TO DEPTH

This section is devoted to detailing the switch for a scene

point coding. After processing an image, we have a joint

estimate for the camera location and each scene feature.

We focus on the camera translation and the inverse depth

Fig. 6. Inverse depth point coding

coding of a point, so the relevant parts of the state vector

and covariance are:

x =
(

rWC⊤

, . . . ,y⊤

i , . . .
)⊤

(35)

P =













Prr . . . Pry
i

. . .
...

. . .
...

...

P⊤

ry
i

. . . Py
i
y

i
. . .

... . . . . . . . . .













(36)

where (Fig. 6): rWC⊤
=

(

xWC , yWC , zWC
)

is the camera

translation estimate. yi is the inverse depth point coding. It

relates to the XY Z coding, xi as:

xi =





Xi

Yi

Zi



 =





xi

yi

zi



 +
1

ρi

m (θi, φi) (37)

yi =
(

xi yi zi θi φi ρi

)⊤
(38)

m = (cos φi sin θi,− sin φi, cos φi cos θi)
⊤

(39)

After each estimation step, the linearity index Ld (14) can

be computed from the available estimate using (39), (37),

(35), and (36) as:

di =
∥

∥

∥
h

C
∥

∥

∥
, h

C = xi − rWC (40)

σd =
σρ

ρ2

i

, σρ =
√

Py
i
y

i
(6, 6) (41)

cos α =
mT h

C

∥

∥

∥h
C

∥

∥

∥

(42)

If Ld is under the switching threshold, the feature in the

state vector is switched using (37) and the covariance is

transformed with the corresponding jacobian:

Pnew = JPJ⊤ (43)

J =





I 0 0

0 ∂xi

∂y
i

0

0 0 I



 (44)
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Fig. 8. Camera location estimation error history in 6 d.o.f. (translation in XY Z, and three orientation angles ψθφ) for four switching thresholds:
Ld = 0%, no switch, the features are always coded in inverse depth. Ld = 10% despite features over spheres 4.3 and 10 are eventually converted, no
degradation with respect to the non-switch case is observed. Ld = 50% and Ld = 100% coding is switched before achieving a Gaussianity, noticeable
degradation, especially in the θ rotation around Y axis.

V. SIMULATION RESULTS

In order to analyze the effect of the coding switching

on the consistency of the estimation, simulation experiments

with different switch thresholds have been run. The estima-

tion is computed in 3D, i.e full 6 d.o.f. for the camera motion

and scene points are 3D points.

The camera parameters correspond with our real image

acquisition system: camera 240 × 320 pixels, frame rate

30 frames/sec, image field of view 90◦. Measurement error

for a point feature in the image, Gaussian N
(

0, 1pixel2
)

,

the image sequence is composed of 600 frames. Features

are selected following the randomized map management

algorithm proposed in [1] in order to have 15 features

visible in the image. All the simulation experiments work

using the same scene features, in order to homogenize the

comparison. The camera trajectory describes two laps on a

planar circumference radius 3m in the XZ plane; the camera

orientation is always radial (Fig. 7.)

The scene is composed of points laying on 3 concentric

spheres radius 4.3m, 10m and 20m. Points at different depths

are intended to produce observations with a range of parallax

angles.

Four simulation experiments, for different switching

thresholds have been run, Ld ∈ {0%, 10%, 50%, 100%}.

Fig. 8 shows the camera trajectory estimation history in

6 d.o.f. (translation in XY Z, and three orientation angles

ψ(Rotx), θ(Roty), φ(Rotz, cyclotorsion)). Next conclusions

are derived:

• Almost the same performance is achieved with no

switching (0%), and with 10% switching. So it is clearly

advantageous to perform this switching because there is

no penalization in performance and the computational

cost per feature is divided by two.

• An early switching degrades the performance, especially

in the orientation estimate. Notice how for 50%, and

100%, the orientation estimate is worse and the esti-

mate for the orientation error covariance is smaller, so

inconsistent.

• Early switching degrades the performance, so inverse

depth coding is mandatory for initialization of every

feature and low-parallax features.
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Fig. 7. Top view outline for the 6 d.o.f camera trajectory and 3D scene.The
scene is composed of 3 concentric spheres radius 4.3m, 10m and 20m. The
camera trajectory describes two laps on a planar circumference (XZ) plane,
radius 3m, camera orientation is radial.

Fig. 9. State vector size history. Middle plot shows the size reduction
compared with the original inverse depth coding.

VI. REAL IMAGE EXPERIMENTS

A 737 image loop closing sequence acquired at 30 frames

per second has been processed without any switching, and

switching at Ld = 10%. According to the simulation results,

no significant change has been noticed in the estimated

trajectory or map.

Fig. 9 shows the history of the state size. Fig. 10 shows

4 frames illustrating the feature switching. Up to step 100

the camera has a low translation and all the features are in

inverse depth. As camera translates close features switch to

XYZ. About step 420, the loop is closed, so the features are

reobserved, producing a reduction in their uncertainty, what

implies the switching of the reobserved close features. At

the last estimation step about half of the features has been

switched; at this step the state size has reduced from 427 to

322 what implies 75% of the original vector size.

Real-time experiments were run on a 1.8 GHz. Pentium

M processor laptop with OpenGL accelerated graphics card.

A typical EKF iteration at 33.3ms might imply: 300 state

Fig. 10. Points coded in inverse depth plotted as ⋆ and coded in XYZ
plotted as △. (a) first frame, all features are inverse depth ones. (b) #100,
close features start switching. (c) # 470, loop closing, most features in XYZ.
(d) last image of the sequence.

vector size, 12 features observed in the image. So reduction

due to the coding increases the number of map features and

now the system is able to close a loop at 30 frames/s with

a hand-held camera in a room size scenario.

VII. CONCLUSIONS

The switch from inverse depth to XYZ parametrization

can reduce the point coding from 6 parameters to 3 without

degrading the estimation accuracy. A dimensionless index

has been proposed to define the threshold for switching. An

early switch has proven to degrade the performance, so the

inverse depth coding at initialization and for distant features

is mandatory.

The approach has been validated with real image experi-

ments. 30 Hz real time performance is achieved up to a 300

sized state vector.
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