
 
 

 

  

Abstract: Small unmanned vertical take off and landing 
vehicles are used to provide the eye-in-the-sky 
alternative to monitoring and regulating traffic 
dynamically. Spatial-temporal visual data are collected 
in real time and they are used to generate traffic-related 
statistical profiles, serving as inputs to traffic simulation 
models. Generated profiles, which are continuously 
updated, are used to calibrate traffic model parameters, 
to obtain more accurate and reliable simulation models, 
and for model modifications. This method overcomes 
limitations of existing traffic simulation models, which 
suffer from outdated data, poorly calibrated parameters 
because of outdated data, questionable accuracy and 
poor predictions of traffic patterns. 

I. INTRODUCTION 

Traffic simulation models are used to evaluate complex 
traffic behaviors and design alternative strategies to improve 
traffic control, minimize congestion and enlarge / modify 
traffic networks. They help predict future traffic demand, 
optimize signal timing and determine the need to improve 
roadway capacity.  

Traffic simulation models rely on collecting data from 
various sources and sensors, and then processing this data to 
generate study and evaluate traffic patterns and profiles. An 
integral part of this process includes model modifications 
and model parameter calibration based on updated data.  

Focusing on parameter calibration, simulation models are 
being calibrated mostly based on distribution and estimation 
techniques [1]. Lack of continuous and detailed real-time 
data and lack of frequent updates based on acquired reliable 
data lead to inaccurate and “not properly calibrated” traffic 
simulation models with questionable results. Thus, mismatch 
and discrepancies between predicted traffic situations 
(output of simulation models) and actual traffic patterns 
occur. 

Moreover, since each traffic network component 
(segment) has distinct characteristics, one cannot use the 
same set of calibrated data and parameter values in all 
network components to predict traffic. Each simulation 
model needs be calibrated based on the specific network’s 
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unique features and traffic patterns. This may be only 
achieved if collected data is up-to-date, frequently updated, 
reliable, and data sources are readily available. 

However, recent advances and progress in technology and 
utilization of Unmanned Aerial Vehicles (UAVs) for traffic 
surveillance has allowed traffic planners to consider the 
‘eye-in-the-sky’ approach to monitor traffic, collect detailed 
data in real-time and process such data to evaluate traffic 
patterns, determine origin-destination (OD) flows, as well as 
for emergency response. 

The advantage of using small unmanned helicopters to 
collect visual data is many-fold: helicopters hover over 
specific areas, can focus on data collection from a specific 
link or intersection, can cruise repeatedly over a traffic 
link/component and they can fly in very low altitudes. They 
offer a very reliable way of collecting spatial-temporal data.   

As such, it is the main objective of this paper to capitalize 
on small unmanned vertical take off and landing (VTOL) 
vehicles (helicopters) to collect real-time traffic data from 
network segments and use this data to generate 
(mathematical) statistical profiles to improve accuracy, 
parameter calibration and reliability of traffic simulation 
models, thus, improving traffic prediction.  

The starting point is a ‘system’ integrated with the 
unmanned helicopter that automates the process of visual 
data collection. This is accomplished using a controller with 
a dual on-board / on-the-ground processing system and a 
pan–and–tilt camera that collects visual data. Data may be 
stored on-board to be processed later on, or transferred to 
the ground station via secure communication channels (at 
14-15 frames per second) [2].  

Visual data are then converted to traffic statistical profiles 
that serve as input to the simulation models and are used to 
update, calibrate and optimize them.  

Mathematical equations are derived. Parameters such as 
speed, density, Level of Service (LOS), OD are calculated 
for links/segments, while intersection analysis is performed 
to measure queue length, turning movement patterns and 
delays.  

For the purpose of traffic statistics, roadways may be 
divided into interstates versus urban networks. This paper 
considers an urban network that may be further divided into 
links and intersections. The basic reason for differentiating 
links and intersections is that on links, vehicles interact only 
with other vehicles. That is, they need to change their 
behavior depending only on traffic flow or congestion. At 
intersections, vehicles also need to respond to signals and 
queue developments. 
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The main contribution and novelty of the paper is the 
conversion of visual data to traffic statistical profiles that are 
used to run the simulation models. Indeed, a literature 
survey has shown that no similar approach exists. 
Parameters such as intersection delay, network usage, and 
turning movement that are otherwise difficult to measure 
can be measured directly through visual data.  

A second contribution not to be overlooked is that based 
on the presented approach, traffic patterns are observed and 
analyzed in real-time. This is helpful in case of accidents 
and emergency response, because traffic planners access 
real-time information that may be helpful to deploy backup 
resources, de-routing traffic and other crucial decision 
making.  

 
A. Related Research 
Several simulation models such as CORSIM, VISSIM, 

SYNCHRO and PARAMICS are commercially available 
and are used by the transportation industry. A set of pre-
defined performance measures are used in these models to 
predict traffic. But since every network along with its 
associated links and intersections has a distinguished set of 
behaviors that change dynamically (peak-hours, urban/rural 
areas, emergency events), pre-defined measures and 
parameters render inaccurate results. Since most traditional 
data collection methods are highly expensive and time 
consuming to gather such extensive amounts of data, 
simulation models become ‘outdated’ and inaccurate. 

Aerial monitoring is gaining momentum, becoming a well 
accepted way of gathering traffic data. Research ranges from 
platform development to deriving application specific image 
processing algorithms. A detailed list of on-going projects in 
this area is presented in Table A in the Appendix. Data 
collection is done using cameras mounted on the vehicle. 
Systems like COMETS [3] and WITAS [4, 5] are studying 
control architectures required to handle UAVs for traffic-
related applications, while research at Ohio State [6, 7, 8] 
and UFL [9, 10] focuses on data collection and 
communication issues.  

The rest of the paper is organized as follows: Section 2 
describes the proposed framework for real-time traffic video 
data collection and implementation into traffic simulation 
models. Section 3 describes formulations to convert the 
obtained data into traffic statistical profiles and presents 
results. Section IV concludes the paper.  

II. FRAMEWORK FOR REAL-TIME TRAFFIC SIMULATION AND 
CONTROL WITH UAV VIDEO DATA 

Real-time traffic simulation may be incorporated in a real-
time traffic control system to support optimization of traffic 
control strategies such as real-time intersection signal 
control, ramp metering or variable message signs. Traffic 
simulation allows one to obtain measures where direct 
observations are unavailable, for example, where no sensors 
are located, or to predict future traffic conditions. To support 
real-time traffic control, these simulation results must reflect 
reality as closely as possible. Discrepancies between 
simulation-generated results and real traffic conditions must 

be and are minimized through regular updating of simulation 
parameters based on real-time data. Using the traffic 
conditions estimated by the real-time simulation model, 
traffic control strategies may be optimized by maximizing 
throughput or minimizing delay. A block diagram of the 
proposed approach is shown in Figure 1. Data collection is 
accomplished using either VTOL vehicle mounted video 
cameras, or infra-red and other detectors. Video data consist 
of information related to the entire road network under 
scrutiny. Image analysis follows to obtain essential 
parameters such as vehicle type, vehicle density, flow, 
velocity, turning ratio, turning speed, queue length, queue 
discharge rate and other variables. Gathered video data is 
then interfaced with the simulation model to generate a more 
precise and accurate traffic model. 

 

 
Figure 1: Flowchart of the proposed approach. 

 
 Figure 2 shows a sample traffic image with the results of 
key processing steps. The initial image is segmented into 
regions containing motion, which are then designated by 
superimposing minimum bounding rectangles on them. 
 

  

  
Figure 2: Original image (top left), and regions containing 
motion with bounded boxes placed over vehicles. 

III. CREATING STATISTICAL PROFILES FROM VIDEO DATA 
Traffic parameters are defined using detailed video 

information. Some parameters are similar to formulations 
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found in traffic flow theory literature, while others have 
been modified keeping in mind the information that can be 
extracted using aerial video data. 

Preliminary work has been completed keeping the 
unmanned helicopter in a hovering state, that is, the source 
(camera) is fixed at a point, and can only observe a limited 
amount of network area. The position of helicopter can be 
determined by using the on-board GPS sensor. The area that 
can be covered by a particular camera is called the field of 
view (FOV). Thus, the observable distance can be denoted 
by d (FOV), see Figure 3. 

 
                  (a)                                             (b)  
Figure 3: (a) Fixed camera pointing straight down; (b) 
Camera tilted at some angle. Observable area is the camera’s 
field of view. 
 

From figure 3(a), the area that can be observed is given by 
 

)
2

tan(*)(*2 FOVAltitudeAreaObservable =                        (1) 

The specific camera that has been used (Sony block FCB-
EX980S) has a horizontal Field of View of 42.2o. Given that 
the maximum altitude the helicopter has flown is currently 
200 ft (approx. 66m) the maximum area that can be 
observed is about 50.9 m.   

In figure 3(b), the observable area is related to the FOV 
and the tilt angle θ by the equation: 

 
)tan)(tan(* θθ −+= FOVAltitudeAreaObservable  (2) 

 
This yields a value of observable area of 165m.  This 

value doesn’t take into consideration constraints posed by 
the requirement to accurately detect vehicles; that is, observe 
the road and distinguish between overlapping / occluded 
vehicles. If that is taken into account the detection range is 
approximately 44 m.  

However, to calculate this value it is assumed that the 
whole image is used for vehicle detection. Alternatively, if 
only a portion of it is used for processing, then the camera is 
able to monitor a sizable part of a road (500m or more).  

It is important for traffic planners to know the ratio of 
type of vehicles on a roadway to estimate network usage. 
The used algorithm to identify vehicles, distinguishes 
between cars, trucks, and bikes. Increase in ratio of trucks 
on a roadway decreases the average speed of the link. Thus, 
a detailed information of vehicular classification is obtained 
using the image algorithm. 

Once the counts are determined using on-board / on-the-
ground processing system, the statistical features can be 
calculated in real-time. It is advisable to perform the 
statistical calculations on the ground station due to high 
computing requirements, which require larger infrastructure 
than could be accommodated on the helicopter.  Figure 4 
shows a section of the network depicting the two different 
analyses required for traffic planning. Link analysis is used 
to calculate speed, flow, density etc; while intersection 
analysis is used to calculate turning movement, queue 
estimation, and delay. 

 

 
Figure 4: Performance measures on a network (link and 
intersection) 

A. Link Analysis 
The main performance measures that pertain to a link are 

speed, density, flow, volume, inter-vehicle spacing, 
occupancy, etc. Even though speed of each individual 
vehicle may be measured, mean speed is an essential 
parameter for traffic analysis. For speed, and almost all 
parameter calculations, the distance is considered as 
d(FOV), while the time taken for a vehicle to travel the 
distance d(FOV) is the time interval in which the vehicle 
enters the FOV until it leaves the FOV. 

 
)()( EntersFOVtLeavesFOVtTime −=                (3) 

 
Thus, the mean speed can be calculated as 
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ti  time taken for vehicle i to enter and exit the FOV, 
d(FOV)  distance of observable area in FOV, 
n  number of vehicles observed during a given time 
period. 

Occupancy of a link at a given time period is calculated as 
the ratio of number of vehicles present on the link at the 
specified time period to the total capacity of the link 

 

ityTotalCapac
hiclesNumberOfVeOccupancy =                                      (5) 
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Although photographic techniques were employed to 
calculate density till the early 1960s [11], advanced 
techniques currently available allow for calculation of 
details in real time. Typically, density of a link is calculated 
by estimating the mean distance headway among vehicles 
over a length of one mile. For calculating distance headway, 
prior knowledge of time headway and speed of vehicle is 
required. In such case, it is extremely difficult to accurately 
obtain the value of mean distance headway. The advantage 
of aerial view is that we do not need to calculate distance 
headway, as density can directly be calculated as the total 
number of vehicles observed within a particular lane 
segment. Another advantage of this detailed data is that 
number of vehicles can be counted on a lane basis. Density 
on link approaching node n is 

)(
,,

,, FOVd
v

k nli
nli =                                                           (6) 

 
with  i being the direction of arrival (east, west, north, 
south); ki,l,n  the density of vehicles entering node n from the 
ith direction in lane l; vi,l,n the  number of vehicles entering 
node n from the ith direction in lane l. 

Total density of a particular link in ith direction is then the 
summation of vehicles in all lanes in the link. 
 

∑=
l

nlini kk ,,,                                                               (7) 

Thus, the total density across a node n 
 

∑
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i

i
nin kk                                                                   (8) 

 
LOS indicates the quality of service to travelers on a link. 

It is a qualitative measure of the operating conditions based 
on speed, occupancy, travel time, convenience, etc. The less 
the time taken to travel, the better the LOS. Thus, if the 
density on a link is low, LOS is would be higher. The 
highway capacity manual gives the following table to 
determine LOS if density is known. 

  

LOS 
Max. 

Density 
Min. 

Speed 

Max 
Service 

Flow Rate 

Max 
v/c 

Ratio 
Free Flow Speed = 55 mph 

A 10 55 550 0.24 
B 16 55 880 0.39 
C 24 55 1320 0.59 
D 32 54.5 1744 0.78 
E 45 50 2250 1 
F var var Var var 

Table 1: LOS measures [12] 
 
Table 1 shows the LOS categories along with the 

corresponding density, speed and flow rate at free flow 
speed of 55 mph. 

The v/c (volume-to-capacity) ratio is an important 
measure to estimate congestion on the link. Using the video 
data, volume (demand) can be calculated as the number of 
vehicles observed at a given time in a link. A direct way to 
get the volume is to pick up a static image of the link and 
count the number of vehicles in it. This is equal to the 
volume on the link at that time. Capacity can be calculated 
using the formulation given in [12]. 
 Travel delay on a link may be defined as the extra time it 
takes for a vehicle traveling at lower speeds as compared to 
when it may travel at free-flow speed. Link delay is 
mentioned here, while intersection delay will be covered in 
the next section. Link delay is directly associated with the 
density on the link. Higher the density, lower is the vehicle 
speed, thus higher will be the delay.  
 Thus, delay on a link may be calculated as 
 

df ttDelay −=                                                         (9) 

tf  travel time with free-flow conditions 
td  travel time with delays 

f
f s

FOVdt )(
=                                                            (10) 

sf  free-flow speed 
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B. Intersection Analysis 
The most important performance measure pertaining to 

intersections is queues and delay. An issue with current data 
collection method at intersection is that vehicles are 
measured when they pass a stop bar (served traffic), while 
the queue backup (demand traffic) is ignored [13]. Also, 
turning movement is hard to determine using loop detectors. 
Visual data is very helpful to calculate the queue length as 
well as turning movement. A polygon-based methodology is 
described to determine queue length at a given intersection.  
 

C. Queue Estimation 
The definition of queue length differs across literature, 

and different formulations are used by simulation models to 
implement queues [14]. For the purpose of our research, 
queue length at an intersection is defined as the number of 
“stopped” cars at an intersection at the instant the signal 
turns from red to green. At this time, the stopped cars start to 
dissipate, clearing away the queue. One of the problems 
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with such definition is that it takes some time for the 
vehicles at the end of the queue to start moving, in which 
time some more vehicles enter the queue. The method 
described in this paper does not include these “moving” 
vehicles as part of the queue, as these vehicles do not stop 
due to the signal, but due to vehicular interaction only. 

At the moment when the signal turns from red to green, a 
polygon-based area can be detected. Such type of analysis 
has also been used in [15]. Figure 5 shows one such 
scenario. 
 

 
Figure 5: An intersection queue scenario. 

 
The average spacing between two cars, or gap, at halt can 

be calculated prior to queue length estimation. This value 
can be taken directly from previous literature or an analysis 
of gap distance can be done for the particular intersection. 
Let l1 and l2 be the length of the polygon, and w be the width 
of the total number of lanes. Also let ga be the mean 
acceptable gap between two vehicles. Thus, 

aa vg
Av
+

=                                                                 (13) 

wllA *)21(
2
1

+=                                                     (14) 

v is the number of vehicles in the queue, ga is the mean 
acceptable gap, va is the area of one vehicle. 

The above equation is helpful to find the total number of 
vehicles in queue in all lanes. The problem with such 
method is that even though the gap between adjacent 
vehicles in the same lane is considered, we ignore the gap 
between adjacent vehicles in adjacent lanes. To solve this, it 
is important to mention here that va (area of one vehicle) 
should actually be considered to be equal to the multiple of 
the vehicle length vl and the width of the lane wl. 

wvv lla
*=                                                               (15) 

This simply means that one vehicle occupies the entire 
width of the lane. 
 Turning movement on an intersection can be easily 
determined using aerial video. Each vehicle is tracked 
individually through the intersection. As the vehicle passes 
through the intersection, a counter can be incremented for 
through, left turn and right turn respectively. Alternatively, 
points can be setup on the turning lanes, and a counter gets 
incremented whenever a vehicle crosses that point. 
 The novelty of aerial data can be utilized for otherwise 
hard-to-calculate parameters such as intersection delays. 

Intersection delay consists of control delays, delays 
occurring due to deceleration and acceleration at the 
intersection. It is extremely hard to estimate intersection 
delay analytically. With help of video data, each vehicle can 
be followed through the intersection, the time taken can be 
noticed, and thus, the delay that the vehicle experienced can 
be calculated. 
 OD matrix is essential to analyze the travel behavior of 
network. Estimating the OD path for vehicles is extremely 
difficult using loop detector data. Fortunately, in case of 
aerial video data, vehicles can be tracked from the moment 
they enter the network till they leave it. Figure 6 shows one 
such network. Each link acts as both an origin and a 
destination. When a vehicle enters the network, it gets 
tagged by its source of origin. Its path is followed, and 
finally when it leaves the network, it gets assigned with the 
destination point. Travel time of each vehicle for every OD 
pair is observed and tabulated. 
 

 
Figure 6: A network with multiple OD nodes 

 
 Assuming no,d be the number of vehicles with origin o and 
destination d. Table 2 shows the OD matrix that can be 
formed.  Similar of table can used to represent the travel 
time to,d for vehicles to enter and exit the network using a set 
of OD paths.  
 

 
Table 2: OD Matrix for small network 

 
In case of large networks, each origin or destination node 

for a zone is considered as a centroid of the zone. With 
current technology, estimating this centroid point is not 
accurate. With help of aerial data, it is easier to accurately 
calculate centroid of the zone based on density of the zone. 

IV. FUTURE WORK 
Current study is done considering a stationary camera, 

assuming that the UAV is in hovering state, with a fixed 
FOV. In Figure 7, some sample graphs of number of 
vehicles detected over time for each direction of interest are 
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shown. Future work needs to be done for a moving camera 
source, when the UAV is in cruise state. Since the 
environment changes dynamically, identification and 
monitoring of vehicles becomes more challenging. 
Communication channels using 802.11 requires high 
bandwidth and secure connections between the helicopter 
and ground station to ensure high quality 30-frames per 
second video transfer. Also, mathematical formulations for 
parameters will need to incorporate the global axis along 
with the local axis of the moving camera. 

Extended work needs to be done to calculate more useful 
parameters such as inter-vehicle spacing, extended delay 
analysis, capacity analysis, etc. 
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Figure 7: Converted video data 

V. CONCLUSION 
This paper presents a novel framework to gather traffic 

data using video camera mounted on an UAV, and an 
automated procedure to extract detailed measures which can 
be incorporated into traffic simulation models. Further, 
effort has been put to calculate some useful traffic 
parameters using the available data. These can be very 
useful to update and optimize simulation models in order to 
minimize the discrepancies between simulated data and real-
world data. 

APPENDIX 
Table A shows list of current research work on UAVs 

related to traffic surveillance. 
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Research Team UAV Objective

Ohio Ohio State University MLB BAT3 Application of UAV for surface transportation surveillance
[6,7,8] Ohio DOT (Fixed Wing) Collecting Information on freeway conditions, intersection movements,

network paths, and parking lot monitoring.
NCRST Traffic parameters measured

ATSS University of Florida Aerosonde Use of UAV with video for data collection
(UFL) Florida DOT (Fixed Wing) Define communication links using current FDOT microwave system
[9,10] Tallahassee Commercial Airport Timely information on transportation networks -both rural and urban

RWIS Research Team

WITAS Linkoping University, Sweden Scandicraft Apid Mk 3 Develop technologies for deployment of fully autonomous UAV
[4,5] (Rotary wing) Integrate autonomy with active vision system

Identifying complex patterns of behavior (vehicle overtaking etc)

COMETS LAAS MARVIN (Rotary) Design and implement a distributed control system for
[3] CNRS Karma Blimp (Fixed) cooperative detection and monitoring using heterogenous UAVs.

Real-time Systems & Robotics Remotely Piloted Control architecture and technique of real-time control.
ADAI helicopter (Rotary) Integrating distributed sensing techniques with real-time imaging
CVL
HELIV

Arizona University of Arizona Manned Use of Manned Helicopter
[15,16] NCRST-F Deriving vehicle trajectories from video

Traffic parameters measured

Minnesota University of Minnesota Unknown Autonomous traffic monitoring
[17] Determining traffic parameters

Traffic Surveillance Georgia Tech Research Institute Customized Drone Development of generic VTOL, advanced controllers.
Drone Georgia DOT (Rotary wing) Fault-tolerant and Autonomous operation algorithms.
[18] Federal Highway Administration's Achieve dynamic performance and flight control command generation.

Priority Technology Program

Ultimate University of California, Berkeley Intelligent guidance systems for UAV
Auto-Pilot Office of Naval Research's (Fixed Wing) Strategies of path-planning

[19] AINS Program Augment GPS with machine vision

Bridgewater State USDOT's RSPA MLB BAT 3 Autonomous UAV to collect and interpret real-time traffic data
[22] NASA (Fixed Wing) Gather multi-modal data using road-following capabilities

Bridgewater State College
University of Massachusetts
MLB Company

ETH Zurich ETH Customized UAV Traffic Surveillance
[20]  

ORCA Carnegie Mellon University Customized UAV Develop a vision-based robot helicopter which can operate 
[21] (Rotary) autonomously to carry out well-structured mission goals.

 
Table A: List of current research work being undertaken at various universities along with their objectives. 
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