
 
 

 

  

Abstract - We describe a means of human robot interaction 
based not on natural language but on “quasi symbols,” which 
represent sensory-motor dynamics in the task and/or 
environment. It thus overcomes a key problem of using natural 
language for human-robot interaction – the need to understand 
the dynamic context. The quasi-symbols used are motion 
primitives corresponding to the attractor dynamics of the 
sensory-motor flow. These primitives are extracted from the 
observed data using the recurrent neural network with 
parametric bias (RNNPB) model. Binary representations based 
on the model parameters were implemented as quasi symbols in 
a humanoid robot, Robovie. The experiment task was 
robot-arm operation on a table. The quasi-symbols acquired by 
learning enabled the robot to perform novel motions. A person 
was able to control the arm through speech interaction using 
these quasi-symbols. These quasi symbols formed a 
hierarchical structure corresponding to the number of nodes in 
the model. The meaning of some of the quasi-symbols depended 
on the context, indicating that they are useful for human-robot 
interaction. 
 

I.  INTRODUCTION 

 The meaning of the words and sentences used in daily 
conversations depend on the situation and/or context. This 
property of natural language enables flexible and effective 
communication. However it leads to the symbol-grounding 
problem [1]. Because most computational systems including 
intelligent robots can process only predefined symbolic 
representations, they do not have the human ability to handle 
natural languages. 
 We have been working on this problem and have 
investigated the use of quasi-symbols as a prelude to human 
robot communication using natural language. As 
quasi-symbols we use “motion primitives,” which we define 
as components of a complex motion. They represent the 
boundaries that form the attractor dynamics (not shape) of 
the sensory-motor flow. We identified two conditions that 
quasi-symbols should satisfy for them to be used effectively 
in human-robot communication. 
  
• They should be plausible enough for users to be able to 

interpret them easily. 
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• They should be sufficiently rich in information for the 
users to be able to use them for interactions. 

 
Some studies generating symbols for use in robot systems 

use techniques like the self-organizing map [2] that can 
handle only static vectors. The environment, objects, and 
task are thus encoded as static images, so the generated 
representations usually satisfy only the first conditions 
above. They cannot satisfy the second condition because the 
static image encoding cannot handle dynamic features like 
motions and events, which are essential in communication.  

Studies on symbol emergence have dealt with sequential 
processes by using stochastic models (hidden Markov, 
Bayesian, and so on) [3]. While the symbols generated are 
generally sufficient for analyzing human behavior and 
controlling humanoid robots, they are usually restricted to 
handling sensory-motor sequences consisting of nodes (i.e., 
states) in a defined HMM and/or Bayesian model. It is thus 
difficult for these models to generate novel motions that 
reflect non-linear dynamic coupling. These models also 
require huge amounts of data for learning, and it is 
problematic for actual robot systems to collect lots of data 
due to the durability problem. 

Other studies used designed dynamic attractors [4]. First, 
“goal” trajectories are designed in the sensory-motor space 
and many uniform vectors are added around the trajectories 
to create convergent dynamics. However, from the 
dynamical systems perspective, the key property is the form 
of the basin around the attractors rather than the converged 
trajectories. In other words, the transient dynamics are more 
crucial than the shape of the attractors. It is difficult to design 
these basins appropriately by adding only uniform vectors. 
The final convergent trajectories are emerged through 
interaction with the other dynamical systems like the body 
and environments. We think motion primitive is not a fixed 
goal but flexible function according to the coupled 
dynamical systems.  

A previous study of human-robot interaction based on 
quasi-symbols generated by the recurrent neural network 
with parametric bias (RNNBP) model [5] showed that the 
quasi-symbols were plausible enough for people to use them 
to operate and cooperate with robots. However, since the 
RNNPB in the robot acquired only four kinds of symbols 
representing forwarding and rotating motions, the results 
were easy to predict and it was difficult to use them for 
complex cooperation. 
 We have conducted trial experiments using a humanoid 
robot with an artificial neural network that can acquire 
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quasi-symbols automatically from the environment. It can 
also generalize observed experiences. 
 Section II summarizes the concept of motion primitives, 
and Section III describes the RNNPB model we used as the 
learning algorithm. Section IV describes the design of 
quasi-symbols using the parameters output by the neural 
network model and their implementation. Section V 
describes our experiments and presents some of the results. 
Section VI concludes the paper with a summary of the key 
points and a look at future work. 

II.  MOTION PRIMITIVE 

 As mentioned above, we used motion primitives as the 
quasi-symbols. They should encode not only static states but 
also dynamic patterns in the environment. They are usually 
defined as components of complex motions. 
 One way to represent these primitive is based on motion 
trajectories [6]. Such methods usually cut off the parts of 
trajectories where motion velocity is close to zero. Each part 
is approximated as a straight line, circle, and/or spline 
function. These “primitive” parts are practical, especially for 
motion imitation by a humanoid robot, which has 
morphology quite similar to that of human. However, the 
problem created by the difference in body dynamics between 
human and robot becomes more serious as the motion speed 
increases.  
 Another ways is based on the dynamics that generate the 
trajectories [7][8]. Systems using this approach usually 
consist of several dynamic recognizers that predict target 
sequences individually (local expression). Each primitive is 
determined as a part of a trajectory that one dynamic 
recognizer can follow reasonably well. If the recognizer 
loses its ability to follow the target trajectory, it is replaced 
by the other dynamic recognizer that is best able to do so. In 
this approach, the characteristics of each recognizer are 
fundamental rather than the velocity and trajectory shape. 

III.  LEARNING ALGORITHM 

The RNNPB model we use to enable robots to deal with 
the dynamic features of sensory-motor information is the one 
proposed by Tani and Ito [9]. It articulates complex motion 
sequences into motion units, which are encoded as the limit 
cycling dynamics and/or the fixed-point dynamics of the 
RNN.  
 

A. RNNPB Model 
 The RNNPB model we used has the same architecture as 
the conventional Jordan-type RNN model [10] except that it 
has the PB nodes in the input layer. Unlike the other input 
nodes, the PB nodes have a constant value throughout each 
time sequence. They are used to implement a mapping 
between fixed length values and time sequences. The 
network configuration of the RNNPB model is shown in 
Figure 1. 

Like the Jordan-type RNN model, the RNNPB model 
learns data sequences in a supervised manner. The difference 
is that in the RNNPB model, the values that encode the 

sequences are self-organized in the PB nodes during the 
learning process. The common structural properties of the 
training data sequences are acquired as connection weights 
by using the back propagation through time (BPTT) 
algorithm [11], and the specific properties of each individual 
time sequence are simultaneously encoded as PB values. As 
a result, the RNNPB model self-organizes the mapping 
between the PB values and the time sequences. 
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BiasInput S(t)
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Figure 1 Network configuration of RNNPB model 

 
B. Learning of PB Vectors 

The learning algorithm for the PB values is a variant of 
the BPTT algorithm. The step length of a sequence is 
denoted by l. For each of the sensory-motor outputs, the 
back-propagated errors with respect to the PB nodes are 
accumulated and used to update the PB values. The update 
equations for the ith unit of the parametric bias at the step t in 
the sequence are as follows. 
 

δρ δ ρ ρ ρt bp t
bp
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+
+ −
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/ ( )
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∆ρ ε δρt t= ⋅              (2) 

 

p sigmoidt t= ( / )ρ ζ         (3) 
 

In Eq. (1), the δ force for updating the internal values of the 
PB nodes pt is obtained from the summation of two terms. 
The first term represents the delta error, δt

bp
 back propagated 

from the output nodes to the PB nodes: it is integrated over 
the period from the t–l/2 to the t+l/2 steps. Integrating the 
delta error prevents local fluctuations in the output errors 
from significantly affecting the temporal PB values. The 
second term is a low-pass filter that inhibits frequent rapid 
changes of the PB values. Internal value ρt is updated using 
the delta force, as shown in Eq. (2). The kbp, knb, and ε are 
coefficients. The current PB values are obtained from the 
sigmoidal outputs of the internal values. After learning the 
sequences, the RNNPB model generates a sequence from the 
corresponding input PB values. 

The RNNPB model can be used for recognition processes 
as well as for sequence generation processes. For a given 
sequence, the corresponding PB value can be obtained by 
using the update rules for the PB values without updating the 
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connection weight values. This inverse operation for 
generation is regarded as recognition. 

IV.  IMPLEMENTATION OF QUASI-SYMBOLS INTO 
HUMAN-ROBOT INTERACTIONS 

A. Design of Quasi-symbols and Interaction 
We designed the quasi-symbols using the PB values of the 

RNNPB model used in previous research [8], since original 
PB nodes output analog values. However the characteristic 
of each value is similar to the symbol and/or word in the 
sense that it represents the event (attractor dynamics) in the 
actual environment. Therefore, we generate the 
quasi-symbols by binarizing the PB values with a threshold. 
Each PB value is translated into 0 or 1 using a threshold of 
0.5. For example, if the RNNPB model has two parametric 
nodes, it has 4-bit representation. This means that the more 
PB nodes the RNNPB model has, the more precise the 
dynamics of the environment the quasi-symbols encode. A 
detailed analysis of this interesting relationship between the 
number of the PB nodes and the number of variations in the 
meaning of the quasi-symbols will be presented in 
subsection V-D. 

The user guesses the relationship between these 
symbols and the actual robot motions. He or she then adjusts 
the PB values by using speech commands corresponding to 
the quasi-symbols so as to move the robot as desired. The 
speech commands were the numerical numbers 
corresponding to quasi-symbols in our experiments. The PB 
value is then switched to the value corresponding to the 
command input. This process is implemented by modifying 
Eq. (1) to 

δρ δ ρ ρ ρ ηt
i

bp t
bp

t l

t l

nb t
i

t
i

t
i

input
ik k k

i

= ⋅ + − + + ⋅
−

+

+ −∑
2

2

1 12( )  (4) 

where, ηi is either +1 or –1 depending on the input, and 
kinput is the influence degree of the effect. 
 

C. Robovie-IIs and Experimental Environment 
 We used a modified version of the Robovie-IIs humanoid 
robot [12] as the platform for our experiments. Robovie-IIs 
itself is a refined version of Robovie-II, which was 
developed at ATR [13]. The original Robovie-II has three 
degrees of freedom (DOF) to control its neck and four to 
control each arm. It also has two CCD cameras on its head. 
Robovie-IIs has tactile sensors in soft silicon covering its 
entire body. Furthermore, we added functions: two external 
ears on its head and two 1-DOF hands.  
 During the experiment, the robot moved its head so as to 
capture its right-hand by forward control with the joint 
angles of the arm. We used two computers: one in the robot 
and used mainly for motion control, and one outside the 
robot and used for voice recognition, image processing, and 
neural network training. The sensory data collected were the 
area ratio of each color (red, blue, green, and white) captured 
by a CCD camera with a resolution of 320 x 240 pixels (four 
dimensions) and the joint angles of the right arm and head 

(four dimensions). They were normalized ([0-1]) and 
synchronized (10 frame/s) for use by the RNNPB model. 

A system diagram is shown in Figure 2. The outside 
computer continuously recognized the situation, and 
calculated the PB values in real time during the interaction. 
When the change values of all PB nodes fell below the 
threshold, the robot judged that the command motion had 
ended. It then stopped the arm, turned its face to the user, and 
waited for the next command.  
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Fig. 2 System Diagram 
 

V. EXPERIMENTS AND RESULTS 

A. Task Design and RNNPB Model Configuration 
 We carried out an experiment in which the robot moved 
its right hand to one of four areas in turn on the table; the 
areas were marked red (R), blue (B), yellow (Y), and white 
(W). Figure 3 shows the actual image of the experiment in 
progress. Four motion sequences were used as training data.  
 

Sequence 1: Red > White > Blue > White (50 step length) 
Sequence 2: Red > White > Blue > Yellow (68 step length) 
Sequence 3: Red > White > Yellow > Red (67 step length) 
Sequence 4: Red > White > Yellow > Blue (74 step length) 

 

 
 

 Figure 3 Image of experiment in progress  
 

 The RNNPB model used had 8 neurons in the 
input/output layer, 40 in the middle layer, and 10 in the 
context layer. The number of PB nodes was 1, 2, 3, 4, or 5. 
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B. Result of the Articulation 
 Figure 4 shows examples of the articulation by the 
RNNPB model. The top graph shows the sensory flow of the 
robot; it includes the size of each color area and the joint 
angles.  
 

0

0 . 1

0 . 2

0 . 3

0 . 4

0 . 5

0 . 6

0 . 7

0 . 8

0 . 9

1

1 4 7 1 0 1 3 1 6 1 9 2 2 2 5 2 8 3 1 3 4 3 7 4 0 4 3 4 6 4 9

White Area

- 0 . 1

0 . 1

0 . 3

0 . 5

0 . 7

0 . 9

1 4 7 1 0 1 3 1 6 1 9 2 2 2 5 2 8 3 1 3 4 3 7 4 0 4 3 4 6 4 9

- 0 . 1

0 . 1

0 . 3

0 . 5

0 . 7

0 . 9

1 4 7 1 0 1 3 1 6 1 9 2 2 2 5 2 8 3 1 3 4 3 7 4 0 4 3 4 6 4 9

White Area Blue AreaRed Area

4 PB
nodes

3 PB
nodes

N
or

m
al

iz
ed

Se
ns

or
y 

In
pu

t

step

step

step
91 3

1 15

Red
Area

Blue
Area

White
Area

Yellow
Area

Shoulder
Angle

Elbow
Angle

Neck Yaw
Angle

Neck Pitch
Angle

PB 1 PB 2 PB 3 PB 4

0

0 . 1

0 . 2

0 . 3

0 . 4

0 . 5

0 . 6

0 . 7

0 . 8

0 . 9

1

1 4 7 1 0 1 3 1 6 1 9 2 2 2 5 2 8 3 1 3 4 3 7 4 0 4 3 4 6 4 9

White Area

- 0 . 1

0 . 1

0 . 3

0 . 5

0 . 7

0 . 9

1 4 7 1 0 1 3 1 6 1 9 2 2 2 5 2 8 3 1 3 4 3 7 4 0 4 3 4 6 4 9

- 0 . 1

0 . 1

0 . 3

0 . 5

0 . 7

0 . 9

1 4 7 1 0 1 3 1 6 1 9 2 2 2 5 2 8 3 1 3 4 3 7 4 0 4 3 4 6 4 9

White Area Blue AreaRed Area

4 PB
nodes

3 PB
nodes

N
or

m
al

iz
ed

Se
ns

or
y 

In
pu

t

step

step

step
91 3

1 15

Red
Area

Blue
Area

White
Area

Yellow
Area

Shoulder
Angle

Elbow
Angle

Neck Yaw
Angle

Neck Pitch
Angle

PB 1 PB 2 PB 3 PB 4  
 

Figure 4 Example articulation of sensor flow by RNNPB models 
 

Two vertical dotted lines show the steps at which the robot 
hand reached the white and blue areas respectively. Since 
each sensor input changed continuously and irregularly, it is 
difficult to estimate the exact position/condition of the 
robot’s hand from this graph.  

The two bottom graphs show the output of the PB value 
after binarization for the RNNPB model with three and four 
PB nodes. The symbol number output is also indicated on 
each graph; for example, four PB node model changed 1 
(“0001”), 9 (“0101”), and 3 (“0011”) in the bottom graph 
corresponding to the dotted lines in the top graph. That is, the 
RNNPB model segmented and labeled complex sensory data 
to fit our intuition.  
 
C. Human-Robot Interaction 

We carried out several experiments on human-robot 
interaction using our quasi-symbols. Here we describe an 
example. The operator gave the robot three speech 
commands for controlling its right arm. Figure 5 shows the 
joint angles of the robot arm and the PB outputs before 
binarization during the interaction. 
 The initial position of the robot hand was on the red area. 
The operator spoke ‘one’ corresponding to a quasi-symbol 
‘1’, which encodes the movement from the red to the white 
area at step 1 in the graphs. This command input changed the 
PB values as specified in Eq. (4). However, the shift in the 
values was not smooth - they showed complex fluctuations 

typical of dynamical systems – as they converged to the next 
condition. The vertical lines at steps 31 and 61 indicate the 
time at which the operator produced commands ‘9’ and ‘3’ 
respectively. Again, the PB values showed complex 
fluctuations. 

Although the interactions in our experiments seemed to be 
symbolic processes from the viewpoint of the operator, there 
are no explicit symbolic processes in our system, as shown 
by the bottom graph in Figure 5. The PB values encoding the 
motion dynamics enabled the operator and robot to interact 
using symbols without the use of explicitly designed dialog 
patterns. 
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 Figure 5 Fluctuation PB values during the interaction 
 

D. Hierarchical Structure of Quasi-Symbols 
As mentioned in section II, there is an interesting 

relationship between the number of PB nodes and the 
number of variations of the quasi-symbols. For example, 
Figure 4 shows the articulation results when there were three 
and four PB nodes.  

The RNNPB model with four nodes distinguished the “red 
to white” part (and labeled ‘1’) from the “blue to white” part 
(and labeled ‘3’). The one with only three nodes could not 
discriminate them and labeled them both ‘1’. We 
investigated the relationship between the number of PB 
nodes and the number of variations of the quasi-symbols. 
Our findings are represented by the hierarchical tree 
structure shown in Figure 6. In this structure, the movement 
from the white area to the blue area, for example, is indicated 
“W – B.” 

As shown in Figure 6, the variation in the number of 
meanings of the quasi-symbols increased with the number of 
nodes. For example, the model with only one node divides 
the condition into two states: ‘right to left’ motion and ‘left to 
right’ motion. However, the number of the quasi-symbols 
did not always increase according to the increase of nodes. 
For example, although the “W - B” movement appeared in 
the model with two nodes, it remained even when the number 
of nodes was increased. The division property of each 
quasi-symbol was determined by the context. If it appeared 
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in the training tasks in various contexts, it was stable and 
remained even when the number of nodes was increased. On 
the other hand, if it appeared in only a few contexts, its 
meaning easily changed with changes in the order of hand 
positions, motions, and postures. 

The “subdivision” in Figure 6 indicates the motion in too 
short time for the operator to catch. Since the time length of 
subdivision quasi-symbols is about 0.5 sec on average, 
ignoring them was not a problem for robot operation. 

 

 
 

Figure 6 Hierarchical tree showing relationship between number of PB 
nodes and meaning of quasi-symbols 

 
 

E. Generation of Novel Motion 
We investigated the generation of quasi-symbols in novel 

situations. Figure 7 shows, for example, the trajectories 
generated by the speech command of quasi-symbol ‘1,’ 
which encoded movement from the red to the white area in 
the training phase for the model with four nodes.  

Even when the initial position of the hand was changed, 
the hand still eventually reached the center of white area. The 
trajectory was not always smooth like the PB fluctuations 
shown in Figure 5. 

The key point here is that the movement from the yellow 
to the white area was not included in any of the training 
patterns (described in subsection V-A). This means that the 
quasi-symbol did not encode just a trajectory from the red to 
the white area but instead encoded convergence dynamics to 
the white area from all areas through the use of only four 
training patterns. 
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Figure 7 Three motion trajectories generated by quasi-symbol ‘1’ (R - W) 
from different initial positions  

 
F. Self-Organizing of Meaning in Unused Quasi-Symbols 

Some quasi-symbols were not used for training the motion 
patterns. For example, although the RNNPB model with 
three PB nodes can have eight quasi-symbols, it used only 
five (see Figure 6). We investigated the motions when the 
operator gave speech commands using these unused 
quasi-symbols. Most of them did not encode significant 
dynamics with motions. However some of them 
self-organize interesting meanings like convergence 
movement to specific positions. Table 1 shows, for example, 
the motions generated by the RNNPB model with three 
nodes for used and unused quasi-symbols.  
 

Table 1 Generated motions by used and unused quasi-symbols 

Stay 
Yellow

Move to 
Blue

Move to 
Blue

White to 
Blue(0,1,0)Quasi-

Symbol 3

Move to 
Blue

Move to 
BlueStay RedYellow to 

Blue(0,0,1)Quasi-
Symbol 2

Initial 
Position: 
Yellow

Initial 
Position: 

White

Initial 
Position: 

Red

Motion in 
Training 
Phases

(PB1,PB2
,PB3)

Stay 
Yellow

Move to 
Blue

Move to 
Blue

White to 
Blue(0,1,0)Quasi-

Symbol 3

Move to 
Blue

Move to 
BlueStay RedYellow to 

Blue(0,0,1)Quasi-
Symbol 2

Initial 
Position: 
Yellow

Initial 
Position: 

White

Initial 
Position: 

Red

Motion in 
Training 
Phases

(PB1,PB2
,PB3)

Move to 
Blue

Move to 
Blue

Move to 
BlueNone(0,1,1)Quasi-

Symbol 4
Move to 

Blue
Move to 

Blue
Move to 

BlueNone(0,1,1)Quasi-
Symbol 4  

 
Quasi-symbol 2, expressed as ‘0, 0, 1,’ encoded the 

movement from yellow to blue. Quasi-symbol 3, expressed 
as ‘0, 1, 0,’ encoded the movement from white to blue. Both 
symbols represent convergence dynamics to the blue area. 
Although quasi-symbol 4, expressed as ‘0, 1, 1,’ was not in 
the training data, it encoded the convergence dynamics to the 
blue area as shown by the bottom row of the table. This is 
because this vector is similar to the other two vectors.  This is 
quite interesting because it shows that quasi-symbols can 
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emerge novel significant meaning even if they are not used in 
the training. 

VI.  SUMMARY AND FUTURE WORK 

 We have described a means of human robot interaction 
based not on natural language but rather on “quasi symbols,” 
which represent the sensory-motor dynamics in the task 
and/or environment. As the quasi symbols, we use motion 
primitives, which correspond to attractor dynamics of the 
sensory-motor flow. We use the recurrent neural network 
with parametric bias model to extract these primitives from 
observed data. Binary representations using the model 
parameters were implemented as quasi symbols in a 
humanoid robot, Robovie. The experimental task was 
robot-arm operation on a table. The quasi-symbols acquired 
by learning enabled the robot to produce novel motions. A 
person could control the arm through speech interaction 
using these quasi-symbols. These quasi-symbols formed a 
hierarchical structure corresponding to the number of nodes 
in the model. 
 These quasi-symbols are not regarded as pure 
logic-symbols of course. They simply encode boundary 
conditions for the motion dynamics. While we could handle 
some of them as if they were actual symbols, quite complex 
phenomena were actually produced in a dynamical system in 
which a neural network, robot hardware, and experimental 
environment were coupled. The meaning of some of the 
quasi-symbols depended on the context, such as the initial 
hand position. Even the meaning of natural language in daily 
conversation often depends on the communication context, 
so it can be said that these quasi-symbols are useful for 
human-robot interaction. 
 An interesting challenge for future work is to connect 
quasi-symbols to natural language. This is impossible if 
natural language is a pure stochastic system that can be 
described by only HMM or Bayesian methods. However, 
Sugita et al. proposed an attractive technique [14] binding 
two RNNPB models, which is trained with the 
sensory-motor data and the English sentences. Here, the 
language is also regarded as a dynamical system in the sense 
of Elman’s studies [15]. We plan to implement the system to 
a real communication robot and investigate its 
characteristics. 
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