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Abstract—This paper presents a force feedback
control scheme for the compensation of periodic mo-
tions of organs induced by respiration or heartbeat in
minimally invasive robotized surgery. It applies sur-
gical tasks involving a contact between an instrument
and a moving organ.
It is well known that conventional force control al-
lows for compensating the motion of the environment
thanks to its natural disturbance rejection capabili-
ties. However, as experimentally evidenced in the first
part of this paper, bandwidth limitations do not allow
for exact disturbance rejection.
Therefore, in addition to a conventional inner force
feedback control loop, an outer control loop based on
Iterative Learning Control (ILC) is implemented. It
is aimed at compensating the physiological motions,
based on the hypothesis that the disturbance is perio-
dic. The transient performances of this ILC controller
are improved thanks to a wavelet transform-based ap-
proach and conclusive experiments are finally presen-
ted, evidencing that the tracking performance under
cyclic disturbances is significantly improved.

I. INTRODUCTION

During a surgical operation, the physiological motions
of the patient’s organs, induced by respiration and by
heartbeat, can be very disturbing for the surgeon. Indeed,
the gesture accuracy strongly depends on his/her ability
of compensating these motions. There may be a strong
difficulty in performing such a manual compensation, as
breath induces large displacements while heart beating
motions involve high accelerations.

As far as cardiac surgery is concerned, a currently used
solution exploits mechanical passive stabilizers. Howe-
ver, whatever kind of stabilizer is used, there is still a
remaining residual motion which can be disturbing for
the surgeon. An alternative solution to stabilizers is the
heart-lung machine. This machine ensures the circulation
and the filtration of the blood while the heart is stopped.
However, the use of a heart-lung machine implies more
risks and a longer recovery time for the patient.

In order to overcome these difficulties, robotic solu-
tions that actively compensate for physiological motions
are being developed. Many contributions use the repe-
titive property of physiological motions to predict and
anticipate these motions.

In [1], the compensation of respiratory motion using
robotic radiosurgery is proposed in order to allow for
an accurate treatment of tumors. In [2], Riviere et al.

have investigated the prediction of bodily motion due to
respiration in order to actively compensate for these mo-
tions in a robot-assisted system for percutaneous kidney
surgery. Nakamura et al. [3] have performed experiments
to synchronize the slave arm of a teleoperation system
with heart beat motions by visual feedback.

Ginhoux et al. [4] have proposed an approach to com-
pensate for cardiac motions using a robotic arm control-
led by visual servoing. In order to localize the instrument
with respect to the heart, the instrument tip is equipped
with a laser source. It projects a beam parallel to the
axis of the instrument yielding a spot on the surface
of the heart. Moreover, optical markers are placed on
the heart surface. According to the authors, conventional
visual servoing control schemes proved unable to reject
the perturbation due to heart beating motion due to the
limited bandwidth of surgical robots. This is why they
propose to use Generalized Predictive Control with an
adaptive disturbance predictor (GCP+A). This control
scheme anticipates future motion of the heart yielding a
much better rejection. This adaptive predictor involves
the measure of the disturbance signal. This is realized
by placing artificial marks on the heart surface and by
measuring their displacement thanks to a high-speed
fixed camera. Note that it is always possible to avoid the
need of markers, e. g. in [6], visual tracking of natural
landmarks on the heart surface is proposed.

In a recent work, presented in [7], the authors have
taken into account biological signals such as Electrocar-
diogram in a Model Predictive Control (MPC) algorithm
in order to achieve an accurate and more robust compen-
sation of heart motions. However, the proposed controller
is hard to tune and sensitive to noises.

In this paper, we investigate physiological motion com-
pensation for surgical tasks involving a contact between
the instrument and a moving organ thanks to force feed-
back. Force sensors are expected make possible a more
accurate motion compensation thanks to their better
resolution and high bandwidth.

Performing force feedback in Minimally Invasive Sur-
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gery (MIS) rises the problem of force measurement and
the problem of taking into account, in the control law,
the kinematic constraint induced by the trocar. In pre-
vious papers, e.g. [8], [9], we have presented an original
robot and an associated passive force feedback controller
that are both briefly presented in section II. However,
the proposed system, with a conventional compensator,
proved unable to totally reject the perturbation induced
by physiological motions. In order, to overcome this
problem, one could try to increase the control gains,
but it is not possible because of the limited bandwidth
of surgical robots. This is why, in order to provide a
high performance perturbation rejection, we propose in
section III to exploit the repetitive nature of physiological
motions to anticipate for the disturbance. Practically,
this is achieved by modifying the reference signal of
the control law proposed in section II, i.e. by adding
an external loop. Control algorithms such as MPC or
GPC are not suitable for this purpose because they
require a fine model of the system while here, the contact
between the tool and the organ can hardly be modelled.
Iterative Learning Control (ILC, see Section III) has been
preferred because this kind of control does not require
any accurate prediction of the disturbance nor any ac-
curate model of the system. However, it may lead to
bad transients during the learning process and thus may
not be applicable in practice. To cope with this problem,
section IV proposes an advanced implementation of ILC
based on [10]. It exploits a low-pass filter which cutoff
frequency is deduced from discrete wavelet transform.
The approach is experimentally proven to be efficient and
robust in section V.

II. A robot for minimally invasive surgery

A. Description of the robot

The robot MC2E (French acronym for compact mani-

pulator for endoscopic surgery) is a Kinematically De-
fective Manipulator (KDM) which means that it has
fewer joints than the dimension of the space in which its
end-effector evolves. It is specially suited for minimally
invasive robotic surgery applications [8]. With n = 4
joints and a spherical structure, this robot provides 4
degrees of freedom (DoFs) at the instrument tip.
More precisely, the robot consists of two parts, as

shown in 1. The lower part is a compact spherical 2
DoFs mechanism (Θ1 and Θ2) which center of rotation
coincide with the fulcrum point. The base of this lower
subsystem is easily installed on the patient’s skin and
clipped to the trocar. The upper part of the robot is
mounted on the trocar. It provides the two remaining
DoFs : the rotation about the instrument axis (Θ3)
and translation along the instrument axis (d4). Apart
from its compactness, the main feature of this robot is
that it offers a new possibility for force measurement
in MIS. Namely, MC2E can measure the distal organ-
instrument interaction with a 6-axis force-torque sensor
placed outside the patien. Thus, it is subject to much

Fig. 1. Picture of MC2E with joint parameters.

less sterilization constraints. Remarkably, due to the
special mounting of the force sensor, these measurements
are not affected by the disturbance forces and torques
arising from the interaction between the trocar and the
instrument.

B. Force control scheme

The force control scheme used to control MC2E ex-
ploits a classical PI joint torque compensator with a
feedforward action.
It is detailed on Figure 2 where the following notations
are used :

Cτ (z) : the PI joint torque compensator for
the inner loop
J(q) : the Jacobian matrix of the robot
wd, τd : desired wrench, desired joint torques
we : measured wrench

Fig. 2. Control scheme of MC2E

In previous work, [9], we have shown that when the PI
gains are correctly selected, this scheme guarantees the
system passivity and consequently the stability of the
system. The controller is particularly robust to changes
in the nature and geometry of contacts. This represents
a significant advantage in the context of robotic surgery
where large uncertainties do occur on both contact geo-
metry and dynamics.
Nevertheless, the bandwidth of this controller is limited
because the tuning of the gains depends on the robot
dynamics. In the presence of a periodic disturbance
acting on the output, with a large magnitude, there is
absolutely no way to obtain a zero-tracking error.

To illustrate the unability of the controller to finely
reject the disturbances, during in-vivo experiments, we
applied a force of 0.5N on a liver affected by movements
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due to breath, see Figure 3. Results of this experiment

Fig. 3. Instrument in constant contact with liver

are plotted in Figure 4.

Fig. 4. Forces applied on the liver

It can be seen that a disturbance, due to the expira-
tion, creates an error peak every 4 seconds. This 4 second
period corresponds exactly to the period of the artificial
breather.
To overcome this problem, we chose to use a control
scheme based on Iterative Learning Control (ILC), which
was implemented as an outer loop of the controller. The
aim of this controller is to reject periodic disturbances.
It is important to keep in mind that no direct knowledge
on the perturbation (except for its period) is presumed
and no specific model is necessary, neither for the contact
nor the robot.

III. An ilc controller for the compensation of

physiological motions

A. Motivations and hypothesis

As illustrated in Figure 4, the force feedback controller
of Figure 2 is not able to reject the perturbation induced
by physiological motions. Doing high gain control, in
order to overcome this problem, is not possible because
of the limited bandwidth of surgical robots. In addition,
surgical tools used for MIS are long instruments intro-
duced through small incisions. So the robot grasps this

instrument at a long distance from its tip. This induces
delays in the force transmission that make high gain
control exciting so-called non collocated modes.

In this paper, physiological motions are supposed to be
periodic. Since respiration is controlled by an external
ventilator, this hypothesis is not very restrictive as far
as respiratory motions are concerned. Thanks to this
hypothesis the perturbation induced by the motions of
the organ may be predicted by assuming that it will be
almost the same in the next perturbance cycle than in
the previous one. Therefore, the prediction allows this
perturbation to be anticipated.

The control scheme presented in this paper is compo-
sed of an inner control loop presented in section II and
of an outer loop based on ILC. The inner loop allows to
take into account the kinematic constraint induced by
the trocar and the outer loop aims at rejecting the cyclic
disturbance induced by physiological motions. The ILC
control algorithm is presented hereafter.

B. Considered ILC control scheme

As shown in Figure 5, an ILC controller is used for
the regulation of the wrench describing the interaction
between the instrument tip and the organ (forces and
moments in the 3 directions of the space). The desired
wrench w̃d provided to the inner loop is the concatena-
tion of the outputs of six ILC controllers. This subsection
presents the ILC control law implemented for the regula-
tion of one component of force along the instrument axis
d4. The principle of ILC controllers which regulate the
other wrench components is similar. The sampling period

Fig. 5. Considered control scheme.

is noted Te. The desired and measured values of the force
applied by the instrument to the organ, along the axis d4,
at time step k are respectively noted Fzd(k) and Fze(k).
The error at time step k is ez(k) = Fzd(k) − Fze(k). The
output of the ILC controller, F̃zd(k) , is the desired
force provided to the inner force loop. We made the as-
sumption that the disturbance induced by physiological
motion is periodic and that its period is a multiple of
the sampling period. So, we assume that one disturbance
cycle is p steps long.

Under the hypothesis that the disturbance is periodic,
if F̃zd(.) is the same for each disturbance cycle, the
error, ez(.), will be repeated as well. Consequently, ILC
theory suggests to use information from the previous
disturbance cycle to produce a new output F̃zd(.) so that
the error ez(.) will decrease as the number of disturbance
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cycles increase. Experience from previous disturbance
cycles is used such that the ILC controller will gradually
learn the output F̃zd(.) that will result in minimal error.
The current output F̃zd(k) is computed by correcting
the output at the previous disturbance cycle, F̃zd(k−p),
linearly with respect to the previous values of the error
signal :

F̃zd(k) = F̃zd(k − p) +

if∑

i=0

Φ(i) ez(k − p + γ + i) (1)

where Φ(i) are constant learning gains. The terms
ez(k + p + γ + i) with γ + i > 1 allows to anticipate the
organ’s motion.

The summation in (1) is a convolution sum. Thus, the
z transform of equation (1) gives :

F̃zd(z) =
zγΦ(z)

zp − 1
ez(z) (2)

In [10], the author derives stability conditions for linear
systems controlled by ILC control laws such as equation
(1). A coarse linear model of the closed loop system
presented in section II may be identified. Applying the
stability conditions derived in [10] to this model may help
tuning the controller given by equation (1).

As mentioned in [10], the control law equation (1)
may lead to bad transients. Thus, it may not be ap-
plicable in practice even if the closed loop is proven
stable. Indeed, the error may decrease during the first
disturbance cycles, then start to increase to high values
prejudicial for the hardware and decrease to zero after a
prohibitive time. Such a phenomenon has been noticed
during the experimentations that we have conducted (see
Section V). Therefore, the considered ILC control sche-
me’s performances have to be improved in order to ensure
satisfactory transients. The proposed improvements are
presented in the following section.

IV. Wavelet transform based ilc

As mentioned above, the ILC which has been described
in the previous section could lead to bad transients
during learning process. To overcome this problem, expe-
rimentations have shown that it is interesting to filter the
error signal with a low-pass filter (see [11]). However, a
constant cut-off frequency may not lead to good enough
performances. Therefore, better performances may be
expected from a varying cut-off frequency at each time
step.
Indeed, at time steps where the tracking error falls into
low frequency range, the cut-off frequency may be chosen
low enough in order to reduce the influence of noise.
At time steps where the tracking error presents high-
frequency components, the cut-off frequency may be
chosen high enough to fasten the learning process.
The Wavelet Packet Decomposition (WPD) preserves
signal properties for both time and frequency domains.
It is possible to perform a frequency analysis of the error
signal ǫw for each time step k.

Here, we consider the wrench error, during one perturba-
tion cycle (p samples), as the input signal. It is defined
such that :

ǫw = wd − we (3)

To perform such analysis of ǫw, the control scheme de-
picted on Figure 5 is modified as follow. A low-pass filter
(Gi, ∀ i ∈ [1..6]) is associated to each ILC controller. The
particularity of Gi resides in a varying cut-off frequency
fci

(k) which is deduced from WPD of the tracking error.
In the sequel of this paper, the WPD will be relative to
a given wrench error component. Thus, subscript i will
be omitted.
For any time step k, we use the algorithm represented
on Figure 6(a). At the beginning of each perturbation

(a) Algorithm for wa-
velet packet decompo-
sition

(b) Signal Processing

Fig. 6. Wavelet Packet Decomposition

cycle, the signal is analyzed. The input signal is filtered
successively with a low-pass filter (Lw) and a high-
pass filter (Hw) as it appears on Figure 6(b). The two
resulting signals are also filtered with the same filters
and so on. To perform this operation, we used the two
following filters deduced from wavelet theory (see [12]) :

{
Hw(z) = 1−z

2

Lw(z) = 1+z
2

(4)

Afterward, we obtain 2N signals (sj, ∀ j ∈ [1..2N ]), where
N denotes the level of decomposition.
Hence, one can rearrange these signals to obtain a matrix
S which describes both time and frequencies components
of the signal :

S =




a1,1 . . . a1,p

...
...

...
a2N ,1 . . . a2N ,p


 (5)

with aft such that f denotes increasing frequencies and
t denotes increasing time steps.
For each column of S, corresponding to a given time step
k, we define M(k) as :

M(k) = argmax
j

|aj,k|, j = [1, ..., 2N ] (6)

For example, if M(k) = 1 then fc(k) is such that it
belongs to the lowest frequency range, [0; f0], to reduce
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noise effects. f0 is the cut-off frequency of a low-pass filter
used to eliminate noises on measurements. More precisly,
the upper bound f0 is chosen to prevent high frequencies
effects. Therefore, fc(k) can be obtained for each time
step with respect to Equation 7 :

fc(k) =
M(k)

2N
f0 (7)

The results that we present in the section V have been
obtained by choosing a Hamming window to design a
non-causal filter used for preprocessing. The advantage
of using a WPD appears with experiments that we have
conducted.

V. Experimental results

This section describes the results obtained from put-
ting the ILC into practice. After describing the experi-
mental setup, the results are presented. The first series
of results reflects the use of a classical ILC without any
low-pass filter, while the second reflects the use of wavelet
decomposition to tune a low-pass filter with varying cut-
off frequencies.

A. Experimental setup

Two robots were used to conduct these experiments :

1) MC2E (see section II for details) is controlled using
the control scheme depicted in Figure 5.

2) a planar 2R robot which allows us to generate
a periodic disturbance, with a known period. It
is controlled in position with a PID and its end-
effector is in contact with the end-point of the
MC2E’s instrument.

Both robots are controlled with a real-time operating
system. Periodic main threads are the same and periods
are equal to 1.5ms.
The movements of the planar 2R robot create a periodic
error in the force measurements. The aim of this expe-
riment is to compensate for this error with an ILC.

B. Classical ILC controller

The desired force created along the axis of the instru-
ment is such that :

Fzd(t) = 0.7 + 0.4 sin(2π × 1.2 t)

A periodic disturbance with a frequency of 1.2Hz is
created with the planar 2R robot. The corresponding
desired trajectory is such that :

qd(t) = 2 sin(2π × 1.2 t)

As shown in Figure 7, there is a periodic error in the
force measurements. The parameters for ILC controller
are such that if = 0, γ = 40 and Φ(0) = 0.5 to obtain a
constant anticipation.
To evaluate the ILC performance, the Mean Square (MS)
error is examined. At time k it is calculated as the
following :

E =

l=p∑

l=0

(Fzd(l) − Fze(l))
2 (8)

Fig. 7. Response of the system with a conventional force control
(no learning)

A zero-tracking error is obtained if : E = 0.
The Figure 8 shows the evolution of the MS error,

Fig. 8. MS Error

calculated at the start of each perturbation cycle.
The MS error reaches a minimum value after 12 cycles.
However, this minimum is unstable and the error in-
creases quickly afterward. This phenomena, which is des-
cribed in [10] and [11] is a consequence of high frequencies
in the system, which tend to destabilize the system. To
preserve system safety, the controller was turned off when
instability was observed.
A WPD was then used to solve this problem.

C. ILC controller with WPD

Here the desired forces and the disturbance are exactly
the same as in the previous experiment. At the beginning
of each cycle, the error signal is analyzed with a wavelet
decomposition. We are thereby able to design a low-pass
filter with a variable cut-off frequency for the subsequent
cycle.
The parameters are chosen for the wavelet decomposition
such that N = 4. Since the frequency of the controller
is higher than 600Hz, this level allows an acceptable
compromise between time and frequency resolutions.
Results plotted in Figure 8 show that the minimal level
of MS error remains stable.
The Figure 9 shows how ILC has improved the response
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of the system. Disturbances appearing in Figure 7 have
been rejected.

Fig. 9. Response of the system with wavelets decomposition

VI. Overview and conclusions

This paper has presented first results for physiological
motions compensation by force feedback in order to allow
accurate surgical tasks involving a contact between the
surgical instrument and a moving organ.

A first proposition involving conventional ILC leads to
bad transients during the learning period which makes it
not applicable in practice. This problem has been mainly
solved by filtering the tracking error with a low-pass filter
which cut-off frequency is deduced from discrete wavelets
transform. Experimental results showed that this algo-
rithm leads to a significant decrease of the tracking error.
The next step of the research will focus on the tuning
of the algorithm in order to prevent bad transients. This
tuning could be performed by using a coarse model of the
system in order to satisfy the monotonic decay conditions
presented in [10]. The satisfaction of these conditions
would also ensure the stability of the control scheme.

The proposed algorithm supposes that the perturba-
tion is periodic. Since respiration is controlled by an
external ventilator, the motions induced by respiration
may be considered as periodic. However, this hypothesis
may be too restrictive concerning the motions induced by
heartbeat. Thus future work will focus on the robustness
of the proposed algorithm with respect to disturbances
in the periodicity of physiological motions.
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