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Abstract— We consider the problem of generating global
feasible trajectories for nonholonomic mobile robots in the
presence of moving obstacles. The global trajectory is composed
of regional path segments, which are parametric polynomials
incorporating collision avoidance criteria. Collision avoidance
with moving obstacles is achieved by changing parameters of
the regional trajectories, and the collision avoidance parameters
are solutions to a second-order inequality and are obtainable
analytically. To have a smooth global trajectory, we also develop
a smooth irregular curve method to generate continuous bound-
ary conditions to connecting regional trajectories. Steering
control laws are constructed by means of differential flatness.
The proposed technique works in dynamic environments where
a set of global way-points are available, and the velocities of
the obstacles are obtainable real time. Simulation results show
the effectiveness of the methods.

Keywords: Motion planning, trajectory generation, collision
avoidance, moving obstacles, steering control.

I. INTRODUCTION

In many applications of autonomous mobile robots, the
robot needs to plan a global path and execute on it. Path plan-
ning is to determine a sequential set of discrete path points
leading to the goal from the start position. There are mature
path planning algorithms in an environment with stationary
obstacles, such as road map, cell decomposition, heuristic
search (A* and D* [14]), and potential field methods, see [6].
Motion planning in a dynamic environment is an inherently
difficult problem. It involves prediction or calculation of
future trajectories of moving obstacles. Motion planning
methods reported in the presence of moving obstacles in-
clude discretization of configuration-time space [1], path
and velocity planning decomposition [5], velocity obstacle
[10], kinodynamic planning [7], and recently parameterized
trajectory generation [12], to name a few.

Many autonomous robots have nonholonomic motion con-
straints, and any given path in a configuration space does
not necessarily correspond to a physically feasible path for
the robot. Path planning and motion control are usually
treated in different subject areas such as artificial intelligence
and control theory. Trajectory generation for nonholonomic
systems is discussed in [8], [16], where steering control
was designed and represented by sinusoidal, polynomial, or
piecewise constant functions. The analytic trajectory genera-
tion methods works for environments without obstacles. As
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studied in [13], [15], optimal path are very difficult to find
for nonholonomic robots.

Continuous-curvature paths for autonomous vehicles was
presented in [9], where path primitives were used on lane
changing maneuvers and symmetric turns. In [11], global
path planning is conducted by machine vision based meth-
ods, and quintic G2-splines (splines with second-order ge-
ometric continuity) are constructed for iterative steering of
autonomous vehicles. Moving obstacles were not considered
in the work.

In this paper, we study global motion planning strategies
that combine benefits of heuristic and analytic methods. We
argue that path planning methods such as A* and D* are
efficient in a global scale at a coarse resolution to save
computational expenses, and analytic methods are good at
a regional scale for real time control. The idea was first
presented in [3] by the first author and her co-authors. Global
way-points was selected to be close to static obstacles so
that constraints of static obstacles are active, and regional
trajectory generation was applied between adjacent way-
points. While it focuses on the general framework and
discusses performance issues in [3], we present analytic
solutions of trajectory generation at a global scale in this
paper. In order to find the solution, we first solve a sub-
problem, which is to generate feasible trajectories between
two way-points given a set of boundary conditions in the
presence of moving obstacles. Then, we generate continuous
boundary conditions using a method for smooth irregular
curves. Continuous steering control laws are constructed by
means of differential flatness. Simulation results show the
effectiveness of the proposed methods.

The rest of the paper is organized as follows. Section
II presents the kinematic model of nonholonomic robots,
and two problems are formulated towards generating global
collision-free trajectories. In Section III, parameterized tra-
jectories are presented, and steering control laws are con-
structed in Section IV. In Section V, collision avoidance
criterion is presented together with solutions to Problem 1.
A global smooth curve method is presented in Section VI
and solutions to Problem 2 are presented. Simulation results
are given in Section VII. The paper is finally concluded with
brief remarks in Section VIII.

II. SYSTEM MODEL AND PROBLEM STATEMENT

Consider a car-like mobile robot shown in Figure 1. The
front wheels of the mobile robot are steering wheels and
the rear wheels are driving wheels with a fixed forward
orientation. The kinematic model of the mobile robot can
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be written as⎡
⎢⎢⎣

ẋ
ẏ

θ̇

φ̇

⎤
⎥⎥⎦ =

⎡
⎢⎢⎣

cos θ
sin θ

tan φ/l
0

⎤
⎥⎥⎦u1 +

⎡
⎢⎢⎣

0
0
0
1

⎤
⎥⎥⎦ u2 (1)

where q = [x, y, θ, φ]T is the system state, (x, y) represents
the Cartesian coordinates of the middle point of the rear
wheel axle, θ is the orientation of the robot body with
respect to the X-axis, φ is the steering angle; l is the
distance between the front and rear wheel-axle centers, u1

is the driving velocity, and u2 is the steering velocity. φ ∈
(−π/2, π/2) due to the structure constraint of the robot.

Fig. 1. A car-like robot.

We make the following assumptions on the robots and its
environment.

Assumption 1: The robot is represented by a circle with
the center at O(t) = (x(t), y(t)) and of radius R. Corre-
sponding to the physical model shown in Figure 1, O(t) is
the reference point of the robot, and R is the radius of the
minimum circle to bound the robot.

Assumption 2: The robot has onboard sensors that detect
the positions and velocities of obstacles. Specifically, at each
sampling time of the sensors, the robot detects the ith object
centered at Oi(t) = (xo

i (t), y
o
i (t)) and of radius ri with

velocity vector vi(t)within its sensor range.
An illustration of the configuration of the robot and

obstacles is shown in Figure 2.
Assumption 3: A set of way-points (xi, yi), i = 1, . . . , N

are available by a global path planner.
We define the following two problems to be solved:
Problem 1: Given Assumptions 1 and 2, find a feasible

trajectory between two points and the steering control input
u1, u2 that avoids obstacles detected by the robot. Feasible
trajectories are defined to be smooth trajectories satisfying
a given set of boundary conditions. By smooth trajectory,
we mean that the trajectory has continuous second-order
derivatives at every point of the trajectory.

Problem 2: Given Assumptions 1 to 3, find a smooth
collision-free trajectory and steering control u1, u2 to con-
nect global way-points from (x1, y1) to (xN , yN ).

Fig. 2. Robot and obstacle configuration.

Problem 1 focuses on collision avoidance in the presence
of moving obstacles. Problem 2 generates global smooth
trajectories.

In the next, we consider Problem 1 first, and then solve
for Problem 2 based on the result of Problem 1.

III. PARAMETERIZED TRAJECTORY
GENERATION

We use a sixth-order parametric polynomial to represent
the trajectory between two points O0 = (x0, y0) and Of =
(xf , yf), and we designate t0, tf as the initial and final
time to get from O0 to Of , respectively. The trajectory is
described as a function of t:

x(t) =
[

c0 c1 c2 c3 c4 c5 c6

]
f(t)

y(t) =
[

d0 d1 d2 d3 d4 d5 d6

]
f(t) (2)

where

f(t) =
[

1 t t2 t3 t4 t5 t6
]T

, (3)

and c0, c1, . . . , c6, d0, . . . , d6 are constants.
For a set of given boundary conditions (with the initial

time, t0, and the final time, tf , both given):(
x0, y0,

dx

dt

∣∣∣∣
t0

,
dy

dt

∣∣∣∣
t0

,
d2x

dt2

∣∣∣∣
t0

,
d2y

dt2

∣∣∣∣
t0

,

xf , yf ,
dx

dt

∣∣∣∣
tf

,
dy

dt

∣∣∣∣
tf

,
d2x

dt2

∣∣∣∣
tf

,
d2y

dt2

∣∣∣∣
tf

)
, (4)

if we represent the constant parameters c0, . . . , c5 and
d0, . . . , d5 using c6, d6 respectively, we get the trajectory as
a function of design parameters c6, d6:

x(t) =
[

G−1(E − Hc6)
c6

]T

f(t)

y(t) =
[

G−1(F − Hd6)
d6

]T

f(t) (5)
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where

G =

⎡
⎢⎢⎢⎢⎢⎢⎣

1 t0 t20 t30 t40 t50
1 tf t2f t3f t4f t5f
0 1 2t0 3t20 4t30 5t40
0 1 2tf 3t2f 4t3f 5t4f
0 0 2 6t0 12t20 20t30
0 0 2 6tf 12t2f 20t3f

⎤
⎥⎥⎥⎥⎥⎥⎦

E =

[
x0 xf

dx

dt

∣∣∣∣
t0

dx

dt

∣∣∣∣
tf

d2x

dt2

∣∣∣∣
t0

d2x

dt2

∣∣∣∣
tf

]T

F =

[
y0 yf

dy

dt

∣∣∣∣
t0

dy

dt

∣∣∣∣
tf

d2y

dt2

∣∣∣∣
t0

d2y

dt2

∣∣∣∣
tf

]T

H =
[

t60 t6f 6t50 6t5f 30t40 30t4f
]T

(6)

We will choose the parameters c6, d6 in Section V using
the collision avoidance criterion.

IV. STEERING CONTROL DESIGN

The nonholonomic car-like robot (1) satisfies the property
of differential flatness1. From (1), we obtain:

dy

dx
= tan θ

d2y

dx2
=

tanφ

l cos3 θ
(7)

It is clear that θ, φ can be represented by the derivatives of
the flat outputs, defined as x, y. Substituting the trajectory
representation (2), we get:

dy

dx
=

d1 + 2d2t + 3d3t
2 + 4d4t

3 + 5d5t
4 + 6d6t

5

c1 + 2c2t + 3c3t2 + 4c4t3 + 5c5t4 + 6c6t5
,

d2y

dx2
=

2d2 + 6d3t + 12d4t
2 + 20d5t

3 + 30d6t
4

2c2 + 6c3t + 12c4t2 + 20c5t3 + 30c6t4

θ = arctan
dy

dx
,

cos θ =

√√√√ 1

1 +
(

dy
dx

)2 ,

φ = arctan
(

l cos3 θ · d2y

dx2

)
,

u1 =
c1 + 2c2t + 3c3t

2 + 4c4t
3 + 5c5t

4 + 6c6t
5

cos θ
,

u2 =
1

1 +
(
l cos3 θ · d2y

dx2

)2 . (8)

The analytic solution of the steering control u1, u2 drives the
robot on the trajectory (2) from t0 to tf .

Note that θ has to be within the range of (−π
2 , π

2 ) to avoid
singularity of u1. In the case that the θ is out of the range, a
rotation of the global axis can be performed and the process
continues in the new global coordinate.

1A system is defined differential flatness if there exists a set of outputs,
such that all states and inputs can be expressed in terms of the outputs and
their finite-order derivatives ([2]).

V. COLLISION AVOIDANCE CRITERION

To develop the collision avoidance criterion, we use simi-
lar arguments as in [12]. Assume that the robot detects mov-
ing obstacles at time t0+kTs centered at Ok

i = [xk
i , yk

i ] with
velocity vk

i = [vk
ix, vk

iy ], where Ts is the sampling time of
robot sensors. The collision avoidance criterion is to ensure
that the future trajectory x(t), y(t) for t ∈ [t0+kTs, tf ] does
not collide with the obstacle. Note that the relative velocity
between the robot and the obstacle is [ẋ − vk

ix, ẏ − vk
iy].

Taking the obstacle as “static”, to avoid collision, whenever
x′ ∈ [xk

i − ri − R, xk
i + ri + R], the distance between the

centers of the robot and the obstacle must satisfy:(
x′(t) − xk

i

)2
+
(
y′(t) − yk

i

)2 ≥ (ri + R)2 (9)

where x′(t) = x(t) − vk
ixτ, y′(t) = y(t) − vk

iyτ (relative
position of the robot with respect to the “static” obstacle),
τ = t − (t0 + kTs), and t ∈ [t0 + kTs, tf ]. Note that if
x′ /∈ [xk

i − ri − R, yk
i + ri + R], there won’t be a collision.

An illustration of the collision avoidance scheme is shown
in Figure 3.

Fig. 3. Relative distance between the robot and the moving obstacle.

Substituting the trajectory expression (5) into (9), simplify-
ing and reorganizing it, we obtain a second-order polynomial
inequality in terms of c6, d6 as follows:

g2(t)c2
6 + g1(t)c6 + g0(t) + h2(t)d2

6 + h1(t)d6 + h0(t)
−(ri + R)2 ≥ 0 (10)

where

g2(t) = (t6 − f̄G−1H)2

g1(t) = 2(t6 − f̄G−1H)(f̄G−1E − vk
ixτ − xk

i )
g0(t) = (f̄G−1E − vk

ixτ − xk
i )2

f̄ =
[

1 t t2 t3 t4 t5
]
,

h2(t) = g2 = (t6 − f̄G−1H)2

h1(t) = 2(t6 − f̄G−1H)(f̄G−1F − vk
iyτ − yk

i )

h0(t) = (f̄G−1F − vk
iyτ − yk

i )2 (11)
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We can now choose the design parameters c6, d6 to satisfy
(10). Let c6 = 0, since h2 is positive, the following second-
order polynomial in terms of d6 has always solutions:

h2d
2
6 + h1d6 + [g0 + h0 − (ri + R)2] ≥ 0. (12)

Similarly, let d6 = 0, we can get a set of values for c6 to
satisfy the collision avoidance criterion by solving

g2c
2
6 + g1c6 + [g0 + h0 − (ri + R)2] ≥ 0. (13)

Since (12) and (13) are second-order inequalities with co-
efficients of the second-order term positive, solutions always
exist and are obtainable analytically.

Note that the above process is iterated at every sampling
time for k = 1, 2, . . . within (t0 +kTs, tf ), so that all sensed
obstacles are avoided.

We summarize the results of Sections III, IV, V in the
following theorem:

Theorem 1: Problem 1 is solved by the parameterized tra-
jectory (2) and the steering control (8), with c6, d6 satisfying
the second-order polynomial inequality (10).

Remark 1: The above design provides options for
collision-free trajectories. Let’s denote the trajectory with
c6 = d6 = 0 as the nominal trajectory corresponding to
no moving obstacles detected. By choosing zero c6 and
non-zero d6, collision avoidance is achieved by altering the
trajectory in the y direction. In contrast, choosing zero d6

and nonzero c6, the trajectory in the x direction is altered to
avoid potential collisions. In the simulation, we choose the
values of c6 or d6 that are closest to their nominal values,
0. Further study on the performances (such as shortest path)
needs to be done and will be in our future research.

Figures 4 and 5 show the collision-free paths with different
choices of the design parameters c6, d6. We can see that
collision avoidance is achieved by changing the path in
Figure 4, and by changing the velocity in Figure 5.

14 16 18 20 22 24 26 28 30 32 34
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22

24

26

X

Y

Robot movement

Obstacle movement

Fig. 4. Collision-free path (solid) and obstacle path (dashed). Circles are
drawn in a 5-second interval. c6 = 0, d6 = 1.0877 × 10−7.

VI. GLOBAL SMOOTH CURVES

For a set of discrete way-points, we need to determine
continuous boundary conditions in (4) so that the global
trajectory is smooth at every point. Inspired by the method

15 20 25 30 35
14
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22

24

26

X

Y

Robot movement

Obstacle movement

Fig. 5. Collision-free path (solid) and obstacle path (dashed). Circles are
drawn in a 5-second interval. d6 = 0, c6 = 2.0874 × 10−7.

presented in [4] for generating smooth irregular curves, we
propose the following procedure.

We consider a local subset of six points to define sequen-
tially a local polynomial approximation to the curve between
the third and fourth points in the local subset. After each
step, a new point is added and the first point is deleted. It
iteratively generates polynomial segments between adjacent
points and there is no slope discontinuity.

We designate the time to reach each way-point from
the beginning to be 0, t2, t3, t4, . . ., and use the time t as
the parameter, which is single-valued and monotonically
increasing. Use cubic polynomials to generate three curves:
the left, which uses the first 4 points in the data subset,
the middle, which uses the middle 4 points, and the right,
which uses the last 4 points in the 6-point data subset. Since
boundary conditions are well-defined as:

(t, x, y)L = {0, x1, y1; t2, x2, y2; t3, x3, y3; t4, x4, y4},
(t, x, y)M = {t2, x2, y2; t3, x3, y3; t4, x4, y4; t5, x5, y5},
(t, x, y)R = {t3, x3, y3; t4, x4, y4; t5, x5, y5; t6, x6, y6},

the cubic polynomials are generated as

x = a1 + a2t + a3t
2 + a4t

3,

y = b1 + b2t + b3t
2 + b4t

3, (14)

where the constant coefficient matrices can be calculated as

A = T−1X

B = T−1Y, (15)

and T and X are matrices defined from the boundary
conditions of each of the Left, Middle, Right polynomials:

AL = [a1L a2L a3L a4L]T , BL = [b1L b2L b3L b4L]T ;

AM = [a1M a2M a3M a4M ]T , BM = [b1M b2M b3M b4M ]T ;

AR = [a1R a2R a3R a4R]T , BR = [b1R b2R b3R b4R]T ;

XL = [x1 x2 x3 x4]
T

, YL = [y1 y2 y3 y4]
T ;

XM = [x2 x3 x4 x5]
T , YM = [y2 y3 y4 y5]

T ;

XR = [x3 x4 x5 x6]
T

, YR = [y3 y4 y5 y6]
T ;
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TL =

⎡
⎢⎢⎣

1 0 0 0
1 t2 t22 t32
1 t3 t23 t33
1 t4 t24 t34

⎤
⎥⎥⎦ ,

TM =

⎡
⎢⎢⎣

1 t2 t22 t32
1 t3 t23 t33
1 t4 t24 t34
1 t5 t25 t35

⎤
⎥⎥⎦ ,

TR =

⎡
⎢⎢⎣

1 t3 t23 t33
1 t4 t24 t34
1 t5 t25 t35
1 t6 t26 t36

⎤
⎥⎥⎦ .

The approximation for the unknown curve between the
third and fourth points of the subset makes use of the
preliminary cubic polynomials to obtain slopes and the
change of the slope. That is, for the third point,

dx

dt

∣∣∣∣
t3

=
1
2

[
dxL

dt

∣∣∣∣
t3

+
dxM

dt

∣∣∣∣
t3

]
, (16)

dy

dt

∣∣∣∣
t3

=
1
2

[
dyL

dt

∣∣∣∣
t3

+
dyM

dt

∣∣∣∣
t3

]
, (17)

d2x

dt2

∣∣∣∣
t3

=
1
2

[
d2xL

dt

∣∣∣∣
t3

+
d2xM

dt2

∣∣∣∣
t3

]
, (18)

d2y

dt2

∣∣∣∣
t3

=
1
2

[
d2yL

dt2

∣∣∣∣
t3

+
d2yM

dt2

∣∣∣∣
t3

]
. (19)

Replacing the left and middle polynomials with the middle
and right ones respectively, we obtain the following equations
for the fourth point:

dx

dt

∣∣∣∣
t4

=
1
2

[
dxM

dt

∣∣∣∣
t4

+
dxR

dt

∣∣∣∣
t4

]
, (20)

dy

dt

∣∣∣∣
t4

=
1
2

[
dyM

dt

∣∣∣∣
t4

+
dyR

dt

∣∣∣∣
t4

]
, (21)

d2x

dt2

∣∣∣∣
t4

=
1
2

[
d2xM

dt

∣∣∣∣
t4

+
d2xR

dt2

∣∣∣∣
t4

]
, (22)

d2y

dt2

∣∣∣∣
t4

=
1
2

[
d2yM

dt2

∣∣∣∣
t4

+
d2yR

dt2

∣∣∣∣
t4

]
. (23)

Figure 6 shows the process, that is, by generating the
left, middle, right curves of 6-point data set, a smooth curve
between the third and fourth points is generated.

Repeating the above process by adding one point at the
end and deleting the first point in the subset, the middle
and right polynomials becomes the left and middle ones
for the next subset respectively, so the resulting polynomials
between the fourth and fifth points join smoothly with the
previously determined curve between the third and fourth
points. In another words, the second-order derivatives at any
points of the trajectory are continuous.

Since the calculated segment for each local subset is from
point 3 to point 4, the first and the last two way-points are

0 1 2 3 4 5 6 7 8
0

0.5

1

1.5

2

2.5

3

Left
curve

Middle
curve

Right
curve

Smooth curve between points 3 and 4

1

2

3

4

5

6

Fig. 6. Generating polynomial approximation of a 6-point data set

not included in the smoothing process. Therefore, 2 new data
points, a and b, are added on the straight line connecting the
first two points. They are chosen to be very close to the
first point and to each other. This will lead to the first point
being the third in the first local subset. Similarly, two points,
c and d, are added to the end of the curve to make the graph
complete. Figure 7 illustrates the idea.

Fig. 7. Pseudo-points are added at the beginning and the end of the way-
points.

We summarize the solution to Problem 2 in the following
theorem:

Theorem 2: Problem 2 is solved by generating boundary
conditions at each way-point according to (16)-(23), and then
following the procedure in Theorem 1.

VII. SIMULATION RESULTS

We have performed Matlab simulations for generating
global collision-free trajectories. Figure 8 shows a smooth
trajectory connecting four way-points (denoted as rectangular
in red) between the start and the goal, and avoiding two
moving obstacles at the last two path segments. The robot
parameters we used are R = 1, l = 0.8, and the obstacles’
radius is ri = 0.5, i = 1, . . . , 4. The starting positions of the
four obstacles, denoted as O1, O2, O3, O4 in the figure, are
(9, 17), (15, 18), (30, 17), (40, 17), respectively.

When the robot is at the third way-point, it detects
O1 and O2 with constant moving velocities (vx, xy) =
(−0.2, 0.32) and (−0.1, 0.2) respectively. It plans path 1
and the corresponding control parameters are (c6, d6) =
(0,−8.4854 × 10−7). When the robot detects the change
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Fig. 8. Global collision-free trajectory. Circles are drawn in equal-time intervals.

of the velocity of O2 to (vx, xy) = (0.55, 0.12), it re-
plan its path to path 2 and (c6, d6) = (0,−1.4269 × 10−5)
correspondingly. Then, at the fourth way-point, the robot
detects O3 and O4 with velocity (vx, xy) = (0.6, 0.1) and
(0.1, 0.1), it plans its path as path 3 denoted in the figure with
(c6, d6) = (0, 0). When it detects the change of the velocity
of O3 to (vx, xy) = (0.5, 0.08), path 4 is planned with
(c6, d6) = (0,−1.0015× 10−6). It then detects the velocity
change of O4 to (vx, xy) = (0.35, 0.15), path 5 is planned
with (c6, d6) = (0,−3.8644 × 10−6). When the second
velocity change of O4 is detected as (vx, xy) = (0.245, 0),
path 6 is planned with (c6, d6) = (0,−2.2675 × 10−4). we
can see that the final path denoted by the solid line in the
figure avoids all moving obstacles successfully. The planned
path is not optimal due to no performance of the path is
takin into consideration in the design. The recalculation of
the path parameters c6 and d6 is very fast due to their analytic
expressions and the robot is able to respond real time.

VIII. CONCLUSIONS

We have studied global trajectory generation for car-like
robots in the paper. The global trajectory is composed of
regional path segments, which are parametric polynomials.
A collision avoidance criterion was developed, and collision
avoidance with moving obstacles is achieved by changing
parameters of the regional trajectories. The global trajectory
is smooth since 1) the regional trajectory is smooth, and
2) the boundary conditions at way-points has second-order
continuity. The later one was guaranteed by a smooth irreg-
ular curve method developed in the paper. The global path is
physically feasible by car-like robots that have nonholonomic
constraints. Explicit steering control is constructed in light
of differential flatness. Simulations show satisfactory results.
Future work includes performance analysis and shortest path
generation.
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