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Abstract— This paper presents an algorithm for visual SLAM
based on a visual plane, a reliable grouping of salient visual
features along sonar line features. The grouping of visual
features improves data association and reduces the number
of landmarks against individual visual features. To accomplish
this, we propose three techniques: 1) selection of visual features
which are invariant to image changes in indoor environment
and suitable candidates for the visual plane, 2) extraction of
sonar line features with current sensor data, which filters out
uncertain outliers efficiently and 3) a scheme on grouping visual
features with respect to sonar line features and maintaining
database of the extracted visual planes for reliable data associ-
ation. We integrate above three techniques into one framework
and propose a SLAM algorithm for the visual planes. Exper-
imental results in two types of real home environment show
that the algorithm can successfully be executed with no human
intervention.

I. INTRODUCTION

Reliable data association is one of the most essential
parts of practical SLAM (Simultaneous Localization And
Mapping) in indoor environment. Solutions with vision have
made good progress in practical SLAM on account of its
affluent information and high cost-performance. Especially,
visual SLAM using salient visual features such as SIFT
(Scale Invariant Feature Transform) [1], invariant to image
variations, has achieved outstanding results [2]–[5].

In another aspect to visual SLAM, an object-based method
[6] increases performance by clustering the visual features
via object recognition with object model database. A visual
object, a set of visual features, represents a physical object
as a landmark in the map. This reduces the number of
landmarks, making SLAM more computationally feasible
and improves data association process, being more reliable
than individual matching between a large number of similar
visual features. And, additionally, looking for certain objects
in the database allows the robot to filter out moving objects
and helps it in dynamic environment where people may be
moving around the robot.

However the visual object scheme deviates somewhat from
the fundamental SLAM assumption of unknown environ-
ment. Although it still estimates the position of landmarks
and robot, having a set of object database in advance
means that it is restricted to known environment. For fully
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(a) (b)

Fig. 1. Examples of visual plane extracted on (a) a wall and (b) electronics
(red circles : clustered visual features, blue rectangles : boundaries of
extracted visual planes)

automated SLAM, it has to group visual features without
pre-constructed database.

To the authors’ knowledge, extraction of physical objects
by segmenting out background region from images without
any database is a difficult problem, especially in a cluttered
environment. For that reason, we focus on extracting planar
elements from images, which can be used in SLAM instead
of visual objects as clustering constraints.

To segment an image area belonging to a plane, homog-
raphy, a transformation between perspective views of the
plane in different images has been used [7], [8]. And a
method to extract quadratic plane relied upon perceptual
grouping of edge segments [9]. However they could be
prone to detect wrong planes when planes are segmented
in a cluttered environment. To resolve this problem, some
approaches have used a range sensor because it improves
accuracy of metric information of each pixel in images.
Using simultaneously vision and laser range finder to cluster
3-D points into planar structures are presented in [10], [11].
Despite of great accuracy, it does not satisfy economical
efficiency for practical indoor SLAM due to cost problem
of laser range finder.

In this paper, a visual plane is developed as a vertical
plane that consists of salient visual features located on walls
or planes of furniture and electronics in indoor environment
as shown in Fig. 1. To extract the visual plane, we propose a
scheme of reliable grouping of visual features with a help of
line features of current sonar data. For that purpose, we adopt
salient visual features which are suitable for visual matching
in home environment [6]. And the sonar line feature that
can effectively disregard problematic specular reflection and
multi-path echo of sonar sensors is proposed.

Furthermore, in order to apply the visual plane to SLAM,
a management method for a database of the extracted visual
planes is also presented: registering a new plane to the
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(a)

(b) (c)

Fig. 2. Sequence of (a) Extracting multi-scale Harris corner and SIFT de-
scriptor (yellow circles), (b) Selecting features that have metric information
(blue circles) and (c) Choosing stable features (cyan circles)

database and updating the database with the re-observed
plane to increase quantity of visual information. It can help
to increase the consistency of SLAM and guarantee feasible
computation by means of reliable data association.

The proposed scheme has several properties. Firstly, it is
a multi-sensor SLAM to fuse stable metric data of sonar
line features and excellent discriminating ability for data
association of salient visual features. Secondly, it inherits the
advantages of the aforementioned visual object [6] and even
human intervention is unnecessary. Finally, by generating a
group of visual features autonomously as the robot moves in
indoor environment, the system can be more applicable to
SLAM in unknown environment.

This paper is organized as follows. In Section II, the details
of the essential components of the visual plane are described.
Section III presents a way of generating reliable groups of
visual features and maintaining the database of visual planes.
Then section IV shows experimental results of the proposed
method implemented with EKF-SLAM in home environment
and conclusion follows.

II. PREREQUISITES FOR VISUAL PLANE

A. Visual features

1) Extracting visual features: In this paper, salient visual
feature in images is obtained by combining advantages of
multi-scale Harris corner and SIFT descriptor (Fig. 2(a)).
Multi-scale Harris corner is chosen as a detector because it is
suitable for detecting invariant corner-like features of natural
objects in indoor environment. After extracting the detector,
we use a descriptor that contains local characteristic around
the detector by the same way of SIFT descriptor. Our method
offers repeatability and stability in wide baseline matching
[6].

(a) (b)

(c) (d)

Fig. 3. Problematic sensor errors result from (a) specular reflection and (b)
multi-path echo. Both can be disregarded by the definition of bubble circle:
(c) specular reflection case and (d) multi-path echo case. (green solid line
: correct reading, blue slid circle : bubble circle, red dashed line : false
reading, purple dashed circle : non-bubble circle

2) Selecting features with metric information: We use
a stereo camera because each visual feature needs metric
information instantaneously to be clustered along sonar line
features. After extracting visual features, visual features
having reliable depth range (for our Bumblebee camera,
z ≤ 4.0m) are chosen from stereo camera (Fig. 2(b)).

3) Choosing stable features: Unstable features placed on
boundaries of a planar element can adversely affect formation
of visual plane. They can be eliminated by investigating
depth discontinuity, which is feasible with a stereo vision.
A statistical method can be used to detect such unsta-
ble features as follows. Firstly, a small sampling window
(0.3m × 0.3m) at each corresponding feature location is
set. Then the standard deviation from depth map of the
stereo vision within the window is calculated. Finally, the
feature whose resulting standard deviation violates the pre-
determined condition (0.0m < σz ≤ 0.2m) can be removed
(Fig. 2(c)). This process eliminates most of features which
are not located on the real planar element with spurious
disparity values.

B. Sonar line features

1) Filtering specular reflection of sonar data: Specular
reflection and multi-pass echo disturb range accuracy of
sonar data frequently. However, fortunately, they occur under
specific conditions. Specular reflection is shown up when
the incident angle of ultrasonic wave from sonar sensors is
larger than a certain angle (Fig.3(a)) and multi-pass echo
usually appears at corners (Fig.3(b)). In both cases, namely,
the problematic sensor readings have peculiarly long ranges
than their neighbor ones.

The Bubble circle (BC) is motivated by those characteris-
tics of sensor errors and the procedure is as follows.

i) We present sonar sensor readings based on centerline
model [12] as points (Fig.4(a)).
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Fig. 4. Procedure to obtain bubble circles: (a) Replacing 12 sonar readings
with points via center line model, (b) Generating 12 circles formed by 12
sonar range points and the robot and (c) Bubble Circles (BCs)

Fig. 5. Experimental result of the proposed sonar line features (red lines)
in indoor environment (Fig. 15)

ii) If we have 2 different points, a circle whose diameter
is a length between the two points can be formed.
Accordingly, 12 circles can be formed using 12 points
and the robot (Fig. 4(b)).

iii) We define the bubble circle: a circle that does not
contain any other points inside it (Fig. 4(c)).

By the definition of BC, it can discriminate peculiarly long
sensor readings from normal neighbor ones. For example,
in Fig. 3(c) and Fig. 3(d), since the purple dashed circles
contain their neighbor points, the peculiarly long readings
cannot be BCs. Therefore, troublesome sensor readings of
specular reflection and multi-path echo can be removed by
BCs.

To filter out the errors, we choose sonar sensor readings
that used to form BCs and then acquire line features by using
them.

2) Extracting line features: Sonar sensor has wide range
of aperture angle. When a line element is shown up in front
of sonar ring, the property leads that three adjacent sonar

(a) (b)

Fig. 6. An example of grouping visual features along a sonar line feature:
(a) an image (red circles : grouped visual features) and (b) a diagram of
the grouping (red points : grouped visual features, blue points : ruled-out
visual features, cyan line : one of the candidates for a visual plane parallel
to a sonar line feature)

sensors have similar range and the middle one among them
has the smallest range value.

After obtaining the filtered raw sonar data of BC, we can
choose the sonar data that meet the above conditions. Then
a line feature can be extracted from the three adjacent sonar
data as follows:

i) choosing three points based on a centerline sensor
model [12],

ii) applying least square line fitting with these points and
iii) obtaining the length of the line feature from the aper-

ture angle of the sonar sensor.

The result of line feature detection is shown in Fig. 5. It
shows that the line features (red lines) lie along the bound-
aries of the given environment and the proposed method
works well.

III. SLAM WITH VISUAL PLANE

A. Extracting visual plane

Every visual feature has its own 3-D distance acquired
from stereo camera system while sonar line feature is ex-
pressed in 2-D space. For that reason, to group the visual
features, we assume that a vertical plane is located on the
line feature and there can exist candidates for visual plane
parallel to the vertical plane.

In section II-B, a line feature whose range r and angle θ
are presented with respect to current mobile coordinate can
be determined. The equation of a set of the candidates is

[
cos θ sin θ 0

] [
x y z

]T = r + �ri (1)

where �ri is an offset distance for each candidate i. Then
the visual features are classified into corresponding plane
candidates according to the distance from the visual features
to the candidates. If there is a plane which possesses the
maximum number of visual features, at least ten points close
to the plane, then it becomes a good fit of the visual plane.
An example of extracting visual plane is shown in Fig. 6.

B. Adding new landmark to database

When the robot detects a new visual plane, it has to be
augmented to state vector as a landmark for SLAM. One
arbitrary visual feature of the new plane is selected as a
representative point and its 3-D distance with respect to
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the current mobile coordinate is acquired. Then it works in
SLAM as a point landmark like visual object [6].

And information about the new visual plane is also regis-
tered at a database for data association as the robot navigates
the environment. The components of the database are as
follows: for each visual feature within the plane,

i) position with respect to the image coordinate
ii) scale, orientation, descriptor vector and

iii) relative 3-D distance to the representative point.
The relative distance of visual features is required to up-

date the position of every feature in the plane and supplement
features that the database does not include, when the plane
is re-observed.

A relative state of the jth visual plane, Xrel,j with respect
to the representative point xt,j is presented as

Xrel,j =
[
xT

1t,j xT
2t,j · · · xT

nt,j

]T
,

xit,j = xi,j − xt,j (2)

where XV P,j = [xT
1,j ,x

T
2,j , · · · ,xT

n,j ]
T is 3-D distance of

the n visual features of the jth plane with respect to the
current robot coordinate. And a corresponding covariance,
Prel,j can be determined as

Prel,j = Ri,j + Rt,j (3)

where R·,j is a measurement covariance of each visual
feature of the jth plane. The measurement covariance is com-
puted by noise parameters σu, σv, σd for pixel uncertainties
in image position u, v and disparity d as follows:

R·,j = ∇g·,j




σ2
u 0 0
0 σ2

v 0
0 0 σ2

d


∇gT

·,j (4)

where ∇g·,j is Jacobian of

g·,j =




z·,j
x·,j
y·,j


 =




fB/d·,j
u·,jz·,j/f
v·,jz·,j/f


 =




fB/d·,j
u·,jB/d·,j
v·,jB/d·,j


 (5)

with respect to u, v, d. f and B are the camera focal length
and base line, respectively.

C. Reinforcement of database

When the robot observes the visual plane again, by means
of the same strategy as an object recognition in [6], the robot
can match an observed plane to the database. Basically, we
use the RANSAC clustering based on descriptor vectors of
visual features to recognize robustly the plane by retrieving
the previously registered database.

As mentioned earlier, the old database has relative 3-D
distance with respect to the position of the representative
point. After an observed visual plane is matched to the old
database, the relative state of the old database can be updated
via the matched (re-observed) points and then the unmatched
(new) features can be inserted into the old database by using
a relation to the matched points. Consequently, it can lead
to increase chance of reliable data association and result in
an improvement of the SLAM estimation. Fig. 7 shows a
schematic diagram of reinforcement of the database.

Fig. 7. A diagram for updating re-observed visual features and adding new
visual features to the old database

Fig. 8. Reinforcement of database (left: old database, right: updated
database with added new features (green circles))

1) Update re-observed visual features: In order to update
the relative state of each visual feature in the database,
Kalman update [13] is used.

3-D distance of visual features in an observed plane after
data association with the jth plane is presented as follows:

M =
[
xT

m1
· · · xT

mk
xT

u1
· · · xT

ul

]T
(6)

where xm1 , · · · ,xmk
are matched to the visual features

xϕ(m1),j , · · · ,xϕ(mk),j in XV P,j respectively, ϕ(·) is data
association describing the mapping between indices of visual
features and xu1 , · · · ,xul

are unmatched features.
Hence a following relation can be established by relative

information of the matched pair.

xmp
− xmq

≈ xϕ(mp),j − xϕ(mq),j

= xϕ(mp)t,j − xϕ(mq)t,j (p < q) (7)

And a relative consistency constraint

HXrel,j = b (8)

where

H =
[
0 · · · 1 · · · −1 · · · 0

]
(9)

b =
[
xmp

− xmq

]
(10)

is obtained.
By applying the constraint by Kalman update to the

relative state Xrel,j and covariance Prel,j , a constrained
relative state Xc

rel,j and covariance Pc
rel,j can be updated.

Xc
rel,j = Xrel,j + K(b − HXrel,j) (11)

Pc
rel,j = Prel,j − KHPrel,j (12)

K = Prel,jHT [HPrel,jHT + R]−1 (13)
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Fig. 9. Overall process of SLAM with visual planes

2) Adding unmatched visual features to old database:
Based on the updated visual features, we can insert the
unmatched features to the database. In other words, 3-
D distance (xi, yi, zi) of the unmatched features can be
reconstructed with respect to the mobile coordinate of the
old database with a help of the matched features (Fig. 7).

Then row and column position with respect to the image
coordinate of old database is updated via the camera model,

ri = vo + f
yi

zi
(14)

ci = uo + f
xi

zi
(15)

where (uo, vo) is a camera center point in the image coordi-
nate and f is a focal length of the camera.

The unmatched features can be included in the old
database in this way and it can make the database enriched
incrementally as the robot moves (Fig. 8).

D. Map management of visual plane

The extracted visual planes are located uniquely over the
environment since their salient visual features are invariant
to the image variations. However it has a little chance to
be overlapped because the constraint applied for the visual
features to select the stable ones is so strong that it decreases
the number of visual features to match. This results in a
failure in plane matching and adds a new plane to the
database.

To make up this problem, we adopt a system of fully
automatic construction of a panoramic image using SIFT
[14]. For unordered visual planes, it can stitch them without
human intervention. Additionally, it is robust to changes in
camera viewpoints and illumination. The usage examples of
the mosaic system will be shown up through the experimental
results in the section IV.

E. Overall process

The visual plane of the database can be constructed and
updated when there exists a sonar line feature, as afore-
mentioned. However, in case of SLAM estimation, even
when the robot misses to detect any line features, it is

Fig. 10. Home environment I in ETRI

(a)

(b)

Fig. 11. Comparison of the result of SLAM with (a) visual plane and (b)
visual object in home environment I

necessary to extract the visual plane with use of database and
return accurate metric information for SLAM update. For the
purpose of more frequent update of visual information, the
robot tries to do an object recognition procedure [6] with
the database of the generated visual planes using only stereo
vision.

The overall process of SLAM with visual planes is shown
as Fig. 9.

IV. EXPERIMENTAL RESULTS

To verify the proposed scheme on SLAM using visual
planes, experiments in two different kinds of home environ-
ment were executed using Pioneer3-DX equipped with 12
Murata piezo-electric sonar sensors and bumblebee stereo
camera.
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Fig. 12. Difference between two estimated loops in (a) x direction and (b)
y direction in home environment I

Fig. 13. Extracted visual planes in home environment I

The robot navigated two times with a speed of about
0.2m/s along the wall by using sonar sensors to cover
all planar elements in the environment. Since the robot
moved by a sensor-based navigation (wall following), the
former loop that the robot moved almost corresponded to
the later one. Therefore, we checked the performance of the
proposed method via the degree of the coincidence of the
two estimated loops.

A. Home environment I in ETRI

The ETRI environment (Fig. 10) is a home-like environ-
ment as a test-bed for indoor navigation, which covers in
15m×9m area. Moreover, it has several pieces of furniture,
electronics and picture frames to reproduce a real home.

The experimental result of the proposed SLAM method
with visual planes is shown in Fig. 11(a) and, with the
purpose of comparison, a SLAM result using visual objects
[6] is also presented (Fig. 11(b)). In these results, green

Fig. 14. Adding up the coincident visual planes in home experiment I

dotted line is cumulative odometry path and blue solid line
is the estimated path. The resulting SLAM maps have red
lines and blue circles that represent line and point features
of sonar sensors respectively. And green circles mean visual
planes and visual objects for each case.

The difference of two corresponding estimated loops can
show the capability of the estimation. The magnitude of the
estimated errors for both cases is almost similar (Fig. 12)
and the estimated positions of visual planes quite conform
to those of visual objects (Fig. 11).

However, comparing the estimated paths around the lower
right corner (9m,−2m) of the map (Fig. 11), we were able
to check the discrepancy between the two results. Such an
improvement in SLAM using visual planes is caused by the
characteristic that visual planes have more visual information
than visual objects. More information can be gathered by
updating and reinforcing the database incrementally as the
robot moves. Moreover, we need to keep in mind that visual
objects require a pre-constructed database for SLAM but
visual planes can generate a database autonomously.

Contrary to SLAM with visual objects, SLAM with visual
planes needs more computational time about 0.2sec. for
each step but it is capable of carrying out in real-time
implementation with 1Hz sampling of vision data.

Finally, the robot detected distinct 7 visual planes
(Fig. 13). Although the second and the third planes are
parts of the same picture frame, they were discriminated
as different visual planes for the reason that they have not
enough common visual features to share. By applying the
mosaic algorithm (section III-D) to the two separated planes,
they can be merged into one in the proposed algorithm
framework autonomously (Fig. 14).

B. Home environment II in a real apartment

We expanded the experiment of the visual plane to more
general environment, an real apartment where a family is
living (Fig. 15). The robot navigated two bedrooms, a living
room and a dining room in a wall following manner and the
covered area was 11m× 8m. The final SLAM map and the
estimated path with visual planes is shown in Fig. 16. The
two estimated loops that the robot run were comparatively
coincident (Fig. 17) and we could check the performance of
the proposed algorithm in real environment.

As a result, the robot generated 18 visual planes over the
environment (Fig. 18). After that, the sixth and the seventh
planes and the fifteenth and the sixteenth planes put together
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Fig. 15. Home environment II, an apartment

Fig. 16. The result of SLAM with visual plane in home environment II
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Fig. 17. Difference between two estimated loops in (a) x direction and (b)
y direction in home environment II

Fig. 18. Extracted visual planes in home environment II

(a) (b)

Fig. 19. Adding up the coincident visual planes in home environment II
for two cases: (a) and (b)

(Fig. 19) by the mosaic algorithm and this increases the
quality of the SLAM map.

V. CONCLUSIONS

This paper addressed a SLAM algorithm in indoor en-
vironment with visual planes composed of salient visual
features. It could preserve advantages of SLAM with visual
objects [6] without pre-constructed model database. For
that purpose, we proposed three associated schemes. Firstly,
selection of robust visual features combining advantages of
multi-scale Harris corner and SIFT descriptor was suggested.
Secondly, we analyzed and redeemed problems of sonar
sensors like specular reflection and multi-path echo phenom-
ena. Then robust line features were extracted by using the
filtered sonar data. Finally, we proposed a scheme creating
and managing the clusters of the visual features based on the
sonar line features.

Experiments were performed in two kinds of home envi-
ronment to validate the algorithm. The robot registered the
visual planes autonomously with wall following navigation.
Moreover, the resulting visual planes were located uniquely
with each other and performed data association reliably.
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Future directions would be to attempt to construct a local
map with the proposed robust sonar features and maintain
global consistency by using the visual planes. It is expected
that the visual planes can play more important role in SLAM.
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