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Abstract— This paper presents a method of integrating
kinematic mechanism design and hybrid system analysis for
the design of a single-degree-of-freedom (DOF) planar biped
robot that can achieve dynamic walking gaits that are stable.
Reducing the DOF in a biped can result in a reduction of the
complexity of the control strategies needed to enable stable
walking. Although the biped designed by this procedure is
restricted to a single gait, this biped may be less complex,
lighter, and less costly to construct than one whose multiple
DOF are coordinated via feedback.

I. INTRODUCTION

A. Background

Over the past thirty years, a large assortment of biped
robots have been constructed with varying levels of design
complexity. As an example of the highly complex, consider
Honda’s Asimo, a humanoid that can achieve a variety of
gaits in three dimensions using the twelve actuated degrees
of freedom (DOF) in its legs. At the other extreme is a class
of bipedal robots called passive-dynamic walkers. These
robots are able to walk stably down a slope and require
gravity as their only source of energy [5]. Between these two
extremes exist many robots that employ reduced actuation
strategies and whose motions are restricted to the sagittal
plane. For example, consider RABBIT [1], a planar biped
that requires only four actuators to effect walking in its five
DOF. Collins et al. [2] take reduced actuation further in
their set of walkers that are actuated solely at the ankles
and closely approximate passive-dynamic gaits. As another
example, Ono et. al. [6] apply principles of self-excitation to
create a planar biped that requires a single actuator. While
all of the above machines can walk with human-like gaits,
they accomplish this task in a variety of ways, including their
actuation strategies. To date, a biped robot with point feet has
yet to be constructed that can achieve human-like, dynamic1

gaits by mechanically coordinating its motion with a single
DOF.

B. Mechanism-Coordinated Motion

Mechanical coordination of motion has been explored in
the past. Consider Rygg’s mechanical horse [7] or Wan
and Song’s cam-controlled leg [9]. In the work presented
in this paper, the idea of mechanical coordination used by
Rygg and Wan and Song is taken to an extreme. Compared
with Collins’ work [2], which also examines minimizing the
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1Here, “dynamic gait” refers to a gait in which the biped’s foot-rotation
indicator point [3] is outside of the support polygon.

Fig. 1. 3D rendering of a single-DOF biped. The biped’s design results in
the need for only a single actuator. Since the biped is planar, frontal plane
stability is ensured by including a third leg whose motion is slaved to the
motion of the other outer leg. Note that the inertial properties of the outer
two legs combined must match those of the inner leg.

required actuation, the methods presented in this paper allow
for active coordination of all leg degrees of freedom using a
single input. The obvious disadvantage of reducing the DOF
in this manner is the restriction of the biped’s motion to
a single gait. Despite this restriction, such a design has a
number of benefits. First, the robust design is not limited
to a single speed but is capable of a range of speeds near
the design speed. Second, the motion control of the robot
is simplified significantly. Additionally, a reduction in the
number of actuators needed decreases the robot’s weight and
the number of sensors required.

Using tools from standard kinematic synthesis [4], it is
possible to design a single-DOF mechanism that approxi-
mates the motions of a single leg over the duration of a
biped’s gait. By composing two identical mechanisms and
applying appropriate constraints, one may design a planar
biped robot in which the walking motions are coordinated
by a single DOF. Dynamic properties can be assessed using
known techniques [11], and the design may be refined such
that the biped may walk with a gait that is dynamically stable.
Figure 1 gives a 3D rendering of a single-DOF biped that
has been designed using the methods presented in this paper.
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C. A Dynamic Model of Walking

A walking gait consists of successive strides, with each
stride consisting of two steps. Each step may then be further
broken down into two distinct phases: single support and
double support. Single support is defined as the portion of
the step in which only one leg (mechanism) is in contact with
the ground. During this phase, the leg that is in contact with
the ground is referred to as the stance leg while the other
leg is called the swing leg. Double support is the portion of
the step in which both legs (mechanisms) are in contact with
the ground.

Here, double support is assumed to be instantaneous and is
modeled as a rigid impact. Thus, the dynamic model of walk-
ing consists of successive phases of single support separated
by impulsive transitions associated with foot touchdown and
is therefore hybrid.

D. Paper Organization

Section II of this paper presents the methods of kinematic
synthesis. The section describes how to design a single-
DOF mechanism that approximates a target set of walking
motions for a single leg. The section then details the design
of a single-DOF biped robot through the composition of two
identical mechanisms. Section III presents the methods of
dynamic analysis. The equations of motion governing single
support and the transition mapping to be applied between
steps are derived. Optimization of the robot’s kinematic,
dynamic, and control parameters to meet desired dynamic
and mechanical constraints is also discussed. In Section IV,
an example design is given. Simulation results are then
presented and discussed. Concluding remarks are presented
in Section V.

II. KINEMATIC SYNTHESIS

A. Selecting a Desired Walking Motion

The first step in the design process is to select a gait to
be used as a target for the single-DOF mechanism design.
The gait may be obtained from a variety of sources, for
example, a known stable gait from a biped or human gait
data. The gait is used as a target motion for the initial
mechanism design. Since this initial design only considers
the biped’s kinematics, optimization may be used to refine
the design after the biped’s dynamics are considered to
produce a dynamic gait that is stable.

B. Mechanism Design and Composition

1) Single Leg Mechanism Design: The mechanism is
initially designed to approximate the target motion. The
number of links and their configuration may be decided upon
with the aid of a linkage analysis software package. When
designing, appropriate links should be selected to represent
the body and the leg segments. For example, to approximate
the motion of the femur throughout a walking gait, a four-
bar linkage may be selected such that the crank is the input,
the mechanism’s base link is the body, and the rocker is
the femur. If the motion of the tibia is also of interest,
the design process can be simplified by first designing the

femur mechanism and then building off of that mechanism
to incorporate the tibia motion as well; this is the approach
taken in the example (see Section IV).

The mechanism designed is assumed to satisfy the follow-
ing constraints:

CK1) The mechanism is planar and composed of N rigid
links connected by revolute or prismatic joints.

CK2) The mechanism contacts the ground at only one
point.

CK3) A reference frame is selected such that all link angles
may be measured with respect to that frame.

CK4) Relative to any link, the mechanism is 1 DOF.

CK5) The link angles of all links can be found as analytical
functions of the known quantities: the angle of the
input link, the absolute orientation of one link, all
of the link lengths, and any constant internal link
angles.

Once the mechanism’s configuration has been determined,
the motions that the mechanism generates may be designed
by varying the kinematic parameters (by optimization). Note
that only the relationship between the link lengths—not the
actual values—is significant since the motion generated is
independent of the mechanism’s scale.

2) Composing Two Single Leg Mechanisms: The pro-
cesses given in Sections II-A and II-B.1 produce a mech-
anism that is parameterized by known quantities and ap-
proximates a given walking motion. Assuming the gait is
symmetric, a biped robot can be designed by composing
two separate mechanisms (each mechanism represents one
leg of the robot). The mechanisms and their composition are
assumed to satisfy the following constraints:

CC1) The two mechanisms are identical.

CC2) After composition, the two mechanisms share a com-
mon link.

CC3) The two mechanisms are driven π radians out of
phase.

CC4) The stance leg mechanism is parameterized by the
angle of its input link qi and a link angle qm that
describes the mechanism’s absolute orientation.

CC5) The swing leg mechanism is parameterized by the
angle of its input link qi + π and the angle of the
link that the two mechanisms share qb.

Since qb is shared by both mechanisms, qb of the swing leg
may be written as an analytical function of qi and qm of the
stance leg. Hence, the entire biped can be parameterized by
qi and qm of the stance leg.

III. DYNAMIC ANALYSIS & OPTIMIZATION

A. Applying Dynamic Considerations to the Biped Model

To achieve dynamic walking that is stable, the dynamics of
the biped must be considered. The design process presented
in Section II is based purely on kinematics. It does not
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include dynamic considerations such as inertial and Cori-
olis effects, gravitational forces, and the impulsive contact
forces associated with ground contact at double support. By
considering the dynamics associated with the single support
phase as well as the impacts, stability of the biped’s gait
design may be assessed.

B. Single Support Equations of Motion

Since the biped’s forward kinematics are known, the equa-
tions of motion governing the single support phase may be
readily derived using the method of Lagrange. The equations
of motion are

D(q)q̈ + C(q, q̇)q̇ + G(q) = τ, (1)

where q := (qi; qm) ⊂ T
2, D(q) is the mass-inertia matrix,

C(q, q̇) is the Coriolis matrix, G(q) is the gravity vector, and
τ is the vector of generalized forces. The model in state-
space form is

ẋ =

[
q̇

D−1(q)[−C(q, q̇)q̇ − G(q) + τ ]

]
, (2)

where x := (q; q̇).

C. Impact Mapping and Coordinate Relabeling

The swing leg end touchdown at double support is mod-
eled as a rigid contact between two bodies. The transition
model includes a relabeling of the coordinates so that the
same model for single support (1) may be used irrespective
of which leg is in contact with the ground. The impact
model requires the generalized coordinates to be extended to
include the Cartesian position of the contact point between
the biped’s stance leg and the ground. The extended model’s
generalized coordinates are taken to be qe := (q; x; y).

By modeling the contact between the swing leg and the
ground as a rigid impact, it is assumed that the impulsive
forces acting at the contact point will result in a change of
the conjugate momenta of the generalized coordinates. Since
the swing leg assumes the role of the stance leg at impact, the
velocity of the swing leg end must be zero immediately after
impact. These two assumptions may be expressed compactly
as

Π−1(q−e )

[
q̇+
e

f̂

]
=

[
De(q−e )q̇−e

0

]
, (3)

where

Π−1(q−e ) =

[
De(q−e ) −JT (q−e )
J(q−e ) 0

]
,

q̇−e and q̇+
e are the velocities immediately before and after

impact2, respectively, De(q−e ) is the mass-inertia matrix of
the extended model, J(q−e ) is the Jacobian of the swing leg
end position in the extended model, and f̂ = (f̂h; f̂v) denotes
the vector consisting of the horizontal and vertical impulses
acting at the contact point between the swing leg end and the

2The superscripts “−” and “+” are used from this point forward to denote
values immediately before and after impact, respectively.

ground. It may be shown that Π−1(q−e ) is invertible. Since
the mechanism under consideration is planar, calculation of
the coordinate relabeling function due to the swapping of
roles between the stance and swing legs at impact is trivial.

D. Additional Model Considerations

In addition to Constraints CK1–CK5 and CC1–CC5, the
following constraints are imposed on the biped’s gait:

CG1) The angle qm is strictly monotonic over the duration
of a step.

CG2) The normal ground reaction force is always directed
upward.

CG3) The ratio of the tangential component to the normal
component of the ground reaction force does not
exceed the coefficient of static friction at the contact
point between the stance leg end and the walking
surface.

Constraint CG1 will be key to the developments in Sec-
tion III-E, while Constraint CG2 and CG3 ensure the stance
leg of the robot will not lift off the ground or slip during
single support.

E. Control

Using a feedback controller, the input angle qi will be
slaved to be a function of θ := qm. Since θ is strictly
monotonic over the duration of a step per CG1, a variable s
that parameterizes step progression may be defined as

s :=
θ − θ+

θ− − θ+
, (4)

where θ+ and θ− correspond to the values of θ at the
beginning and end of the step, respectively. Hence, s is
monotonically increasing from s = 0 at step start to s = 1
at step end. The evolution of qi with respect to s may be
chosen to be some desired polynomial. Since s is a function
of only θ, the desired polynomial may also be expressed as
a function of only θ and is represented by hd(θ). The result
is a single-input, single-output system in which a computed
torque or high-gain PD controller can be used to impose the
slaving of qi to θ.

F. Optimization of Walking Motions

To realize a stable gait, the biped’s kinematic, dynamic,
and control parameters must be appropriately chosen. Al-
though it may be possible to choose the parameters by hand,
constrained nonlinear parameter optimization may be used
to make the parameter selection process systematic.

A variety of objective functions may be selected for
optimization. An obvious choice is one that penalizes the
required actuator torque. Considerations necessary to achieve
stable and desirable walking motions are expressed as equal-
ity and inequality constraints. The equality constraints in-
clude constraints on

EQ1) walking rate and

EQ2) gait periodicity.

The inequality constraints include constraints on
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IN1) ground contact forces (such that CG2 and CG3 are
satisfied),

IN2) desirable actuator power requirements, and

IN3) link lengths, masses, and inertias (such that they are
physically realizable, for instance, the link lengths
must be positive).

G. Walking Gait Stability Analysis

The stability of the periodic motion found in Section III-F
may be readily determined using the results of [10], [11],
which makes use of two analysis tools: zero dynamics and
Poincaré return maps. Next, a sketch of the results of [10],
[11] specific to the biped’s model will be given.

Consider the following coordinate transformation on the
robot’s state x,

η :=

⎡
⎢⎢⎢⎣

y

ẏ

z1

z2

⎤
⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎣

qi − hd(θ)

q̇i − ∂hd

∂θ θ̇

θ

σ2

⎤
⎥⎥⎥⎦ , (5)

where σ2 is the angular momentum about the stance leg end.
When the constraints are exactly imposed (y ≡ 0), the free
dynamics that result (the zero dynamics) in the η coordinates
are

ż =

[
ż1

ż2

]
=

[
θ̇

σ̇2

]
=

[
κ(z1)z2

Mtot go xcom(z1)

]
, (6)

where Mtot is the total mass of the robot and xcom is
the horizontal distance between the robot’s center of mass
and the stance leg end. The function κ may be shown
to be only a function of z1 (by inverting the coordinate
transformation and setting y ≡ 0). Manipulation of (6)
followed by integration results in

1
2
(z−2 )2 =

1
2
(z+

2 )2 − Vzero(z−1 ), (7)

where

Vzero(z−1 ) := −
∫ z−

1

z+
1

Mtot go xcom(z1)
κ(z1)

dz1. (8)

Using the impact model developed in Section III-C, the effect
of the impact on z2 may be written as

z+
2 = δzeroz

−
2 , (9)

where δzero is a constant that accounts for the loss of
momentum at impact. Using (7) and (9) and defining ζi :=
1
2z2

i , i = 1, 2, an expression relating ζ2 at steps k and k + 1
may be written as

ζ−2,k+1 = δ2
zeroζ

−
2,k − Vzero(z−1 ). (10)

As long as

ζ−2 > max
z+
1 ≤z1≤z−

1

Vzero(z1)
δ2
zero

, (11)
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Fig. 2. Mechanism schematics. The four-bar mechanism depicted in (a) was
designed to approximate (only) the femur motion. The six-link mechanism
depicted in (b) was designed to approximate the femur and tibia motions.
The initial four-bar (femur) mechanism was unchanged (except for the input
angle) when it was incorporated into the six-link mechanism. �r� is a vector
that extends from the starting point ps

� to the ending point pe
� of each link.

the discrete-time linear system (10), termed the restricted
Poincaré return map, admits a fixed point ζ∗−2 given by

ζ∗−2 = −Vzero(z−1 )
1 − δ2

zero

. (12)

If the fixed point satisfies (11), it will be stable as long as

δ2
zero < 1. (13)

IV. EXAMPLE

A. Kinematic Design of an Example Biped

Experimental data from a 5-link biped designed by the
authors [8] was selected for the target motion profiles. The
trajectories that were chosen to be approximated were those
of the femur and tibia (with respect to a fixed frame). To
simplify the design process, a submechanism is first designed
to approximate only the femur motion. This mechanism is a
simple four-bar linkage, depicted in Figure 2(a). All angles
are measured with respect to the positive x-axis and are
denoted by ϑ�. The link fixed to the body �rb is selected
to be the base link so that qb := ϑb describes the absolute
orientation of the mechanism. Note also that the angle of
the input link is defined as qi := ϑi and the angle of the
femur link is defined as qm := ϑm. While other mechanism
designs were explored, for example, six-bar mechanisms, it
was decided that the modest improvement in approximation
of the desired femur motion did not warrant the complexities
that would be added to both the kinematic and dynamic
analyses.

Once the mechanism configuration was determined, each
link was given a vector representation. After writing the
vector loop equation,

�rb + �r4 = �ri + �r3, (14)
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the full position kinematics of the mechanism are known in
terms of the link lengths, qi, and qb. This motion was then
optimized to approximate the desired femur motion ϑd

m(s),
0 ≤ s ≤ 1, over one step by using the objective function

ffem =
∫ 1

0

(ϑm(s) − ϑd
m(s))2ds. (15)

Link lengths |�ri|, |�r3|, and |�r4| were treated as variable
parameters while the base link length |�rb| was held constant.
Upper and lower bounds were placed on the design variables
to maintain physically realizeable parameters. Note that |�rm|
was not included since ϑ4 = ϑm.

Once the femur mechanism was designed, the tibia mech-
anism was chosen to be a four-bar linkage as well. The
tibia mechanism shares the same ground link as the femur
mechanism and has the end of the femur link connected to
the tibia creating a “knee”. Additionally, the input links of the
mechanism were combined to form a single rigid link. The
resulting six-link mechanism is depicted in Figure 2(b). From
the figure, the vector loop equation governing the kinematics
of the tibia mechanism was identified as

�r6 = �rb + �rm − �r5 − �r7. (16)

It may be readily shown that the position kinematics for the
entire mechanism may be determined in terms of the link
lengths, the constant internal angle of the rigid driving link
αmech, qb, and qi.

To optimize the tibia motions, a new objective function
for optimization, ftib, was defined as

ftib =
∫ 1

0

(ϑ9(s) − ϑd
9(s))

2ds, (17)

where ϑd
9, 0 ≤ s ≤ 1, is the desired tibia motion. All

parameters determined in the femur motion optimization
were treated as constant parameters while |�rm|, |�r5|, |�r6|,
|�r7|, and αmech were selected as the variable parameters.
Again, upper and lower bounds were placed on the design
variables. Note that |�r9| was not included since ϑ7 = ϑ9.
For simplicity, the initial value for the tibia link length was
selected such that |�r9| = |�rm|. Figure 3 gives a comparison
of the mechanism-generated and target motion profiles.

Per CG1, the parameterizing angle describing the absolute
orientation of the biped is required to be monotonically
increasing over the duration of a step3. Since qb was found
to not meet this requirement, qm, which did meet this
requirement, was selected. The mechanism’s kinematics were
derived again by choosing the femur as the base link. By
solving for the new unknowns, a mechanism parameterized
by qi and qm was obtained. Two identical mechanisms (with
different parameterizations) were then composed as specified
in Section II-B.2. This resulting biped is depicted in Figure 1
(with an additional mechanism included to ensure symmetry
about the frontal plane). The forward kinematics of this robot
are expressed as functions of qi and qm of the stance leg.

3In terms of the mechanism input angle qi, the duration of each step is
π radians of rotation.
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Fig. 3. Comparison of mechanism-generated (femur: dash-dot, tibia: dash)
and target motions (femur: solid, tibia: dotted).

B. Dynamic Analysis and Simulation

Using the methods described in Section III, the dynamics
of the model were analyzed using a MATLAB-based hy-
brid system simulator developed by the authors. The initial
mass distribution was chosen such that the femur and tibia
links were the most massive. The moments of inertia were
calculated by approximating each link as a uniform slender
rod. Even though the motion that resulted from this initial
design differed from the target gait once dynamic effects
were accounted for, the design nearly satisfied the conditions
for stability, (11) and (13). The design was then optimized
to minimize the cost function

fcost =
∫ T

0

u4(t)dt, (18)

where u(t) is the required torque of the (single) actuator
and T is total time to complete the step. Here u(t) is raised
to the fourth power to approximately penalize peak control
effort. Constraints EQ1, EQ2, IN1, and IN3 were imposed
on the optimization. A walking rate of 0.49 m/s (2 steps/sec)
and a coefficient of friction of 0.65 were selected. For the
optimization, mm, m9, the initial condition for q̇m, and
the coefficients of the polynomial hd(θ) (which describes
the desired evolution of qi) were chosen as the variable
parameters. Upper and lower bounds were placed on the
design variables such that (i) the link masses were physically
realizable, (ii) the initial condition for q̇m always resulted in
forward motion, and (iii) the polynomial coefficients resulted
in a strictly monotonic function of θ.

The parameters that resulted from optimization are: |�rb| =
0.080 m, |�ri| = 0.021 m, |�r3| = 0.108 m, |�r4| = 0.074 m,
|�r5| = 0.056 m, |�r6| = 0.192 m, |�r7| = 0.128 m, |�rm| =
0.248 m, |�r9| = 0.248 m, mb = 0.500 kg, mi = 0.130 kg,
m3 = 0.068 kg, m5 = 0.350 kg, m6 = 0.120 kg, m8 =
0.024 kg, mm = 1.478 kg, m9 = 0.468 kg, and αmech =
5.97 rad. The acceleration due to gravity is g0 = 9.81 m/s2

and the total mass4 of the robot is Mtot = 6.275 kg. Note

4The total mass of the robot does not include the mass of the motor
and gearhead. Future work will include an analysis of the effects of these
additional masses
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Fig. 4. Joint angles and velocities versus time. Trajectories of qi (solid)
and qm (dashed) indicate that the motion is periodic. The walking rate is
0.49 m/s.
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Fig. 5. Required actuator torque and absolute power versus time. The
required peak actuator torque of 3.6 N-m and peak power requirement of
31.5 W are modest considering the mechanism’s size and mass.

that mm corresponds to the total mass of |�r4| and |�rm| (a
single, rigid link) and m9 corresponds to the total mass of
|�r7| and |�r9| (also a single, rigid link). Figures 4–6 are
plots corresponding to a simulation of three steps of the
mechanism with the parameters given. Plots of the joint
angles and velocities are given in Figure 4, and the actuator
torque and power required for this motion are presented in
Figure 5. The ground reaction force plots are given in Figure
6.

A stability analysis was conducted as specified in Sec-
tion III-G. Conditions (11) and (13) were met with ζ∗−2 =
0.76 N-m-s and δ2

zero = 0.60.

V. CONCLUSIONS

This paper integrates kinematic mechanism design and
hybrid system analysis to produce an algorithm for the
design of a mechanically-coordinated, single-DOF biped
robot that can achieve dynamic walking gaits that are stable.
Requirements for the biped’s design and dynamic analysis
are presented along with methods for optimization. The
example biped designed using this approach exhibits a stable
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Fig. 6. Ground reaction forces versus time. The normal ground reaction
force is always directed upward (positive), while the ratio of the tangential
and normal components does not exceed a reasonable coefficient of friction
(0.65).

walking gait and requires reasonable torques for the single
actuator. The design is physically realizable and less complex
than one whose DOF are coordinated by direct actuation. The
methods presented in this paper are general and may be used
for the design of other single-DOF bipeds that are able to
achieve stable, dynamic walking gaits.
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