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Abstract— A task-oriented robot-assisted therapy 

environment to support activities of daily living tasks was 

developed with the goals of addressing some of the 

shortcomings of current robotic therapy systems.  An 

important aspect of making these environments work is the 

implementation of trajectory planning algorithms that support 

the naturally curving wrist movement seen in real life 

functional tasks.  We explore the challenge of naturally 

supporting the positioning of the wrist for activities of daily 

living tasks such as drinking and feeding.  In this paper, we 

examine the minimum jerk model often used to define 

trajectory planning routines to automatically position the wrist 

and present the results of fitting these two models to natural 

wrist movements for a drinking task.  Also, we present a case 

study to examine how an able-bodied experienced the two 

models as implemented on the ADLER, task-oriented robot-

assisted therapy environment. 

I. INTRODUCTION 

ll physical therapy techniques for stroke survivors have 

the same desired outcome; to train stroke survivors so 

that they are again able to function independently in their 

daily lives. Many differing approaches to therapy that have 

been attempted and there is a debate over which approach is 

the most effective.  Although the most successful paradigm 

of physical therapy may not be easy to identify, certain 

aspects of these therapy methods that have proven to be 

beneficial to the patients can be identified.  These are 

repetition, intense practice, motivation, and task application 

[1-2].  

Repetitive practice of skilled tasks are thought to be 

particularly beneficial to stroke survivors due to the fact that 

they cause neuro-remapping and reinforce these plastic 

changes [4-8].  Patients who perform motivating tasks in 

enriched environments have been shown to have a 

significant increase in learning as compared to those who 

perform tasks that are not motivating [4-7, 9-10].  Highly 

functional, task-oriented, and purposeful environments have 
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been shown to engage patients and increase motor recovery 

as well as carryover of function to the home environment 

[10,11].  

Robotic therapy has the potential to address the aspects of 

physical therapy that have proven to be beneficial to the 

patients.  Some of the robotic therapy environments that 

have been developed and put to use for experimental 

purposes include the MIT-MANUS [12], the MIME [13], 

and the GENTLE/s system [14], just to name a few.  These 

and other similar systems are able to teach patients to 

perform point-to-point reaching movements to targets 

located at different points in 2-D or 3-D space.  The 

effectiveness of these robotic therapy environments and 

other systems has been tested.  It has been shown that in 

general, patients who are given the opportunity to use the 

repeatable, reliable, and precise robotic therapy show a 

faster recovery, decreased impairment, increased accuracy 

of movement, decreased task completion time, and smoother 

movements than their counterparts who received traditional 

therapy [12-15].  However, there are still challenges that 

must be addressed.  One of the biggest challenges being 

faced is increasing carryover of functional gains to the home 

environment.  Patients who use current robotic therapy 

environments show inconsistent carryover of the gains made 

in a therapy session to their home environment [15].  

With the goals of addressing some of the shortcomings of 

current robotic therapy systems, the Activities of Daily 

Living Exercise Robot (ADLER) was created (Figure 1).  

The ADLER system combines the repeatable, reliable, and 

precise therapy afforded by robotics with the engaging, 

motivational, and purposeful ADL therapy [16].  The move 

to integrate these two techniques is new in the field and has 

been addressed by few other systems including the 

AutoCITE and the MIT-MANUS.  From preliminary studies 

this integration of robotics and motivational therapy has 

potential to be more effective for patients but more research 

is needed [17, 18]. 

In order to create a task oriented environment within 

ADLER, it is necessary to understand how functional tasks 

are performed in real life and how these tasks can be 

programmed in the ADLER environment.  The ADLER 

environment consists of a 6 degree of freedom 

HapticMASTER robot designed by FCS Control Systems 

which is attached by way of a gimbal and orthosis to 

patients’ forearms or wrists.  The system also includes a 

grasp assist glove with functional electrical stimulation.  

Trajectories are programmed into ADLER for each task to 
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support positioning of the center of the gimbal, which is 

approximately equivalent to the center of the patient’s wrist.  

 

 

Figure 1: The HapticMASTER robot attached by way of the gimbal and 

orthosis to the patient’s wrist.  In this case the center of the gimbal is 

approximately equivalent to the center of the patient’s wrist.  

 

In this paper, we explore the challenge of naturally 

supporting the positioning of the wrist for activities of daily 

living tasks such as drinking and feeding.  We examine the 

ability of the minimum jerk model as a trajectory planning 

algorithm to position the wrist to fit the natural curves noted 

for a functional drink movement.  We present the results of 

implementing two versions of the model and a case study to 

examine how an able-bodied experienced the two models as 

implemented on ADLER. 

One of the ideal goals of model development is to create 

an algorithm that can operate robustly and accommodate for 

varying movement requirements just as the central nervous 

system (CNS) can, i.e., an algorithm that receives as input 

all visual and spatial information about each task and 

outputs motor control schemes based on these inputs [19].  

To develop a model that acts in this way, the movement 

requirements for each type of task must be analyzed for 

patterns that can be used as inputs to the model. 

The functional requirements for the drink tasks were 

grouped into model inputs according to Table I.  The 

functional requirements for the drink tasks were grouped as 

follows: Events 1 and 4 help define the Table Constraint 

(TC) and TC + Cup Type Object Manipulation.  Events 2 

and 3 help define the Movement Out of the Plane (MOP) 

and MOP + Cup Type Object Manipulation.  In the analysis 

of these functional requirement groups, it was found that the 

critical time point (usually 40% of the event) correlated not 

only to the velocity and curvature maxima and minima but 

also to the maximal deviation from the predicted minimum 

jerk path in Cartesian coordinates.  The magnitude of the 

Cartesian deviation from the original implementation of the 

minimum jerk trajectory thus can be used as the Cartesian 

inputs for the model.  Table 1 presents a summary of all of 

the model input groups as well as the applicable events, the 

critical time for the via point (t1), and the Cartesian inputs 

(X1, Y1, and Z1). 

II. POSSIBLE TRAJECTORY MODELS FOR SUPPORTING ADLS 

A. Minimum Jerk Model (Basic) 

When determining how to model the functional trajectories 

for the ADLER environment the minimum jerk trajectory 

theory was tested, as it is arguably the most used trajectory 

scheme in robot therapy environments [14, 20].  

 The minimum jerk theory was developed by Hogan and 

Flash [21-23].  They proposed that when humans executed a 

point-to-point reaching movement they maximized the 

smoothness of the movement.  The Cartesian equations that 

were developed based on this theory are 5th order 

polynomials scaled to time and can be implemented in the 

ADLER environment.  The model uses the boundary 

conditions of zero beginning and ending velocity and 

acceleration and supplying the initial and final points of the 

movement in the x, y, and z planes.  The entire trajectory for 

the center of the gimbal and thus the center of the patient’s 

wrist can be predicted by way of the following set of 

equations: 
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In Equation 2, ,, oo yx and oz are the starting points of the 

movements (at t = 0) ,, ff yx  and fz are the final points 

(at t = tf).  T is the time scaled by the final time.  

The results of these equations for modeling point-to-point 

reaching movements were verified by many different 

experimenters [14, 21, 22, 24].  This model predicts straight 

lined movements between two points and a bell shaped 

velocity curve. 

B. Minimum Jerk Model with Curvature 

In order to accommodate for movements that have 

curvature, Flash and Hogan took the minimum jerk 

trajectory theory one step further and developed a set of 

equations that can be used to model curved movements 

(Eqs. 3 and 4) [23]: 
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Here, ftt / W , ftt /11  W , and 1S  and 1c are constant 

coefficients that depend on the position coordinates at the 

boundaries and at the interior point and on 1t  (Eqs. 5 and 6) 
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The above equations can be expanded to apply to the Y and 

Z directions.  These equations predict a movement passing 

through the prescribed via point at a given time and take as 

inputs the Cartesian location of the start and end points of 

the path.  For the trajectories tested using these equations, 

the minimal velocity corresponded to the point of maximum 

curvature [23].  

This model was tested for various locations of the via 

point.  Flash and Hogan found that the shape of the 

trajectory depended on the location of the via-point.  When 

the via point was moved closer to the start or end locations, 

the other segment of the movement became elongated [23].  

They also found that bimodal velocity curves had a higher 

peak velocity for the longer segment of the movement.  And 

finally, they found a relationship between the depth of the 

velocity valley and the magnitude of the curvature, which is 

in agreement with the results obtained by Abend and 

colleagues [24].  

This curved minimum-jerk trajectory approach preserves 

many of the features of the basic minimum-jerk model.  It 

was developed using the same optimization approach and 

therefore should create trajectories that mimic natural 

movement.  In order to use this model for the functional 

movements on the ADLER environment, the via point 

between the segments of the task trajectory were chosen. 

III. EXPERIMENTAL METHODS 

A. Method Used to Derive Wrist Data for Testing Models 

The drinking functional task was evaluated (Table 1).  Eight 

right-handed, able-bodied subjects were asked to complete 

this and other functional tasks such as feeding and hair 

combing.  They ranged in age from 20 to 72 years and all 

gave informed consent to participate in our IRB approved 

protocol.  Figure 2 shows the layout of the drink task on the 

table top and Table II shows the four events that comprised 

the drinking task.  When completing the tasks, subjects were 

instrumented with 12 reflective markers attached over 

specific bony landmarks on the upper extremity and seated 

in the motion analysis lab (Froedert Hospital, Milwaukee, 

WI).   

 
Figure 2: A top view of the activity table set up for the drink task. The cup 

is 10 inches from the table edge along the subject’s midline.  

 

The subjects were given instructions for each functional task 

and were asked to perform each task at a self selected 

comfortable pace three times.  Fifteen Vicon cameras (Vicon 

Motion Systems Inc.; Lake Forest, CA) recorded the data at 

120 Hz by tracking infrared light that was reflected from the 

markers worn by the subjects.  The Vicon 524 motion 

analysis system provided the three-dimensional coordinates 

of the markers in space and it was then possible to 

reconstruct the patients’ upper body.  The Cartesian data 

was obtained from kinematic model for the upper extremity 

[25].  The Cartesian trajectory information for the wrist 

center is used in the data analysis.  Events were separated 

based on analyzing subject’s velocity profiles (Table II).  

The data was filtered via a Woltring filter with a predicted 

mean square error of 20.  Task trajectories were normalized 

to (0, 0, 0) starting location.  Data was then processed by 

way of a custom MatLab program.  Trajectories for each 

task and event were then averaged using the polyfit and 

polyval functions in MatLab. 

The curvature and velocity were also analyzed to help 

identify the logical locations of the via points for each of the 

events defined in Table II.  We located the locations by 

examining the temporal correlation between the tangential 

velocity profiles and curvature.  In order to identify 

Cartesian inputs at the via point, functional aspects of the 

tasks were grouped according to their requirements and the 

resulting sets of trajectories were analyzed to obtain patterns 

that can be used as inputs.  The events were then grouped by 

patterns of deviations from the basic minimum jerk 

trajectory scheme and these deviations were quantified.  

Using these deviations as inputs, functional curvature was 

added to the minimum jerk predictions using the more 

advanced paradigm of the minimum jerk theory (Eqs. 3-6).  

The trajectories generated using this approach were 

programmed into the ADLER environment and used to test 

the viability of this model for functional task trajectory 

generation in this robotic therapy environment. 

B. Method Used to Evaluate Models on ADLER 

For the testing of the models, a case study was performed in 

which one normal healthy subject participated.  The subject 

was right handed and age 22.  The subject’s arm was 

secured in the wrist orthosis (Fig. 1), which allows for hands 

free motion.  The subject was then seated at the activity 

table, which was adjusted to a comfortable distance.  The 

subject was asked to perform the ‘Drink’ and other tasks 

with both the original minimum jerk model and the model 

that considered curvature in form and normal modes, three 

times in each mode.  The subject was not cued as to the 

differences in the models nor when either one was being 

used. In form mode, ADLER provided forces to keep the 

subject on the prescribed trajectory as well as assistance in 

the forward direction of movement for task completion.  In 

normal mode ADLER does not provide any forces or 

assistance. The cup was placed in the same locations as were 

used in the motion analysis data collection.  The instructions 

for task completion were the same as those given in the 

motion analysis setting, and the events for each task were 

the same as well.  

ADLER was initialized to offset the weight of the robotic 
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arm.  All tasks were customized to the subject.  A task 

database was used to load the relevant input points that were 

chosen apriority.  Position and force data were recorded for 

each task but only the position data is treated here.  The 

subject was asked a set of questions at the completion of 

each task to help to determine the ‘feel’ of the task.  The 

data collected was analyzed to determine the area between 

the curves of the model data from the old and new paradigm 

and the data collected in normal mode (considered as the 

desired trajectory). 

IV. RESULTS AND DISCUSSION 

A. Drink Task with Basic Model  

Figures 3 and 4 show the wrist paths created for the four 

events of the drink task in the XY and XZ planes.  The 

figures also show the straight-lined trajectories using the 

basic minimum jerk model in section II-A.  It is clear that 

the difference between the actual movement and model 1 

was significant especially in the XZ plane.  In a previous 

study, we showed that this scheme does not appropriately 

model functional task oriented movements [26].  Tasks were 

performed under three conditions; object present, object 

imagined, and object absent were compared, and it was 

found that the presence of functional objects as well as task 

oriented goals caused significant deviations from the straight 

line trajectories predicted by the basic implementation of the 

minimum jerk trajectory theory.  When an object was 

present as a functional goal, trajectories became 

significantly more curved than the minimum jerk trajectory 

predicted.  This curvature was shown to depend on object 

orientation, placement, functional goal, as well as plane of 

movement. 

B. Differences Accounted for with New Model 

The minimum jerk model with curvature considerations 

combined with the model inputs for via points was a better 

fit than the basic model.  The model inputs lead to 

significant reduction of area between data curves was seen 

for all events as compared to the original minimum jerk 

paradigm (old).  An example of this can be seen in Figures 5 

and 6, which shows the XY and XZ plane data for event 1 

(‘Reach’) and event 4 (‘Rest’) of the drink task in the object 

present condition.  The data collected from the motion 

analysis lab is plotted along with data generated from the 

implementation of the old paradigm of the minimum jerk 

model as well as the new paradigm of the minimum jerk 

model.  Table III shows the comparison of the area under the 

position curves for the new and old models.  

C. Case Study of the Model Implemented on ADLER 

 The two versions of trajectory generation (new and old) 

were used on the ADLER environment for the drink as well 

as a feed and comb task.  The results from the case study are 

presented in Figures 7 and 8.  The area between curves was 

significantly reduced for all the drink events.  The new 

model provides a more accurate prediction of the desired 

functional trajectory than the old paradigm of the minimum 

jerk model.  These results show that this trajectory 

generation scheme provides more appropriate wrist center 

paths for implementing functional tasks in the ADLER 

environment.  This improvement was noted by the subject as 

well.  Table IV shows the average responses to the questions 

presented to the subject after each trial.  When using the new 

model and asked if the robot was moving the way he would 

have liked to move he answered with an average value of 7.  

This is a more positive response than for the old model, with 

which he answered 3.  When using the new model and asked 

if he felt as though he had to work against the robot to 

complete the task he answered with an average value of 2.  

This is a more positive response than for the old model, with 

which he answered 5.  His comments reveal that the old 

model did produce movements that did not feel natural. The 

results from the questionnaire show that the differences seen 

between the new and old model can be felt by the subject 

and that using the  new model provides for a more 

comfortable experience and more natural feeling 

movements. 

 

 
Figure 3: Average wrist trajectory for the drink task along with the basic 

minimum jerk model (light dash lines) for the XY plane.  The arrows 

indicate how the events unfold.  

 
Figure 4: Average wrist trajectory for the drink task along with the basic 

minimum jerk model (light dash lines) for the XZ plane.  The arrows 

indicate how the events unfold.  

V. CONCLUSION 

Based on the analysis of the motion data for the drink and 

feed tasks, a modeling scheme was developed that utilizes 

an advanced paradigm of the minimum jerk trajectory 
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theory. This model was implemented on the ADLER 

environment and was shown to accommodate for much of 

the curvature that appears to be the result of the presence of 

the functional object and task specific goals. This model 

accommodates for the differing curvature as the goal and 

direction of movement change as well as when the 

functional object changes. In the case study performed on 

the ADLER system, the subject reported a “more natural” 

feel when operating with the new model rather than the old 

model. This shows that the model appears to meet the goal 

of providing a more natural prediction of functional wrist 

paths. Although these results are promising it is understood 

that much more work to be done. 

Overall, this paper has shown that the minimum jerk 

model with curvature considerations and custom inputs for 

trajectory generation can be used in robotic therapy to allow 

stroke patients to train on ADL tasks in a more natural and 

functional way.  Ideally, the implementation should be more 

robust.  To achieve this, we will use visual servoing 

algorithms to improve automatically define the model inputs 

and the trajectory planning during robot-assisted therapy. 

 

 

Figure 5: XY plane data for the ‘Reach’ and ‘Rest’ events of the Drink task. 

The new model is represented by heavier lines (solid = reach, dotted = rest), 

the average data is represented by lighter lines (solid = reach, dotted = rest), 

and the old model is represented by dashed lines. 

 

 
Figure 6: XZ plane data for the ‘Reach’ and ‘Rest’ events of the Drink task. 

The new model is represented by heavier lines (solid = reach, dotted = rest), 

the average data is represented by lighter lines (solid = reach, dotted = rest), 

and the old model is represented by dashed lines. 
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Figure 7: XY plane data of (from top to bottom) the drink task.  The data 

collected in normal mode is represented by a thick solid line, the data 

collected when using the old model is represented by a thin solid line, and 

the data collected when using the new model is represented by a dotted line.  

 
Figure 8: XZ plane data of (from top to bottom) the drink task. The data 

collected in normal mode is represented by a thick solid line, the data 

collected when using the old model is represented by a thin solid line, and 

the data collected when using the new model is represented by a dotted line.  
 

TABLE I: SUMMARY OF ALL MODEL INPUTS 

THE CRITICAL TIME FOR THE VIA POINT IS LISTED AS T1 AND THE CARTESIAN INPUTS ARE LISTED AS X1, Y1, AND Z1. 

Model Input# Purpose Applicable Events t1 X1 Y1 Z1 

1 

 

Table Constraint (TC) ‘Reach’ 

‘Rest’ 

.40 

.40 

N/A 

N/A 

N/A 

N/A 

42 mm 

28 mm 

2 

 

TC+Cup Manipulation ‘Reach’ 

‘Rest’ 

.40 

.40 

39mm 

39mm 

N/A 

N/A 

T.C. + 12 mm 

T.C. + 7mm 

3 

 

TC+Spoon Manipulation ‘Reach’ 

‘Rest’ 

.40 

.40 

N/A 

N/A 

N/A 

N/A 

T.C. - 15 mm 

T.C. + 6mm 

4 

 

Movement out-of-the-

plane (MOP) 

‘To Mouth’ 

‘Return Object’ 

.40 

.40 

N/A 

N/A 

N/A 

N/A 

59mm 

59mm 

5 MOP + a cup-type object ‘To Mouth’ 

‘Return Object’ 

.23 

.40 

16mm 

16mm 

N/A 

N/A 

10.5mm 

10.5mm 

 

TABLE II: FUNCTIONAL TASK ANALYZED 

 Object Present 

Events 1-4 

Drink 

Reach to cup (E1), Bring cup to mouth (drink) (E2), Return cup to table (E3), 

Return to rest (E4) 

 

TABLE III: SUMMARY OF AREA REDUCTION WHEN IMPLEMENTING THE NEW MODEL FOR THE DRINK TASK 

 Old Model 

XY 

New Model 

XY 

Diff. 

XY 

Old Model 

XZ 

New Model 

XZ 

Diff. 

XZ 

 mm2 mm2 mm2 mm2 mm2 mm2 

E1 2189 (179)  52 (15) 2137  4589 (97)  157 (29) 4432 

E2 584 (42)  398 (43)  186 57 (5.8)  21(12) 36 

E3 584(42)  398(43) 186 57 (5.8)  21(12) 36 

E4 2189 (179) 52 (15)  2137 4589 (97) 157 (29)  4432 

The areas between the old and new model curves as well as the difference are presented in each plane for events 1-4 of the drink task.  

 Difference data is in shaded columns. 

 

TABLE IV: SUBJECT SURVEY AT THE END OF EACH TRIAL 

Question Response Range (1-10) Average Response 

Do you feel as though the robot is moving 

the way you would like to move? 

10 = Yes, completely; 5 = About 

half the time; 1 = No, not at all 

Old Model: 3 +/-1 

New Model: 7 +/- 1 * 

Do you feel as though you need to fight 

against the robot to complete the task? 

10 = Yes, all the time; 5 = About 

half the time; 1 = No, not at all 

Old Model: 5 +/- 1 

New Model: 2 +/- .5 * 

The questions, possible responses, and average responses are listed. Representative comments were chosen for each model. If a result was statistically more 

successful by means of a T-Test it is marked with an asterisk and in bold. 
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