
Dynamic Obstacle Avoidance in uncertain environment combining

PVOs and Occupancy Grid

Chiara Fulgenzi, Anne Spalanzani, and Christian Laugier

Laboratoire d’Informatique de Grenoble, INRIA Rhône-Alpes, France

Email: firstname.lastname@inrialpes.fr

Abstract— Most of present work for autonomous navigation
in dynamic environment doesn’t take into account the dynamics
of the obstacles or the limits of the perception system. To face
these problems we applied the Probabilistic Velocity Obstacle
(PV O) approach [1] to a dynamic occupancy grid. The paper
presents a method to estimate the probability of collision where
uncertainty in position, shape and velocity of the obstacles,
occlusions and limited sensor range contribute directly to the
computation. A simple navigation algorithm is then presented
in order to apply the method to collision avoidance and goal
driven control. Simulation results show that the robot is able
to adapt its behaviour to the level of available knowledge and
navigate safely among obstacles with a constant linear velocity.
Extensions to non-linear, non-constant velocities are proposed.

I. INTRODUCTION

Mobile robots navigation in dynamic environments rep-

resents still a challenge for real world applications. The

robot should be able to gain its goal position navigating

safely among moving people or vehicles, facing the implicit

uncertainty of the surrounding world and the limits of its

perception system.

The problem of autonomous navigation has been deeply

studied in literature and several techniques have been de-

veloped. The global approaches (path planning algorithms)

compute a complete path from the robot actual position to

the goal [2]. In the case of moving obstacles, a common

technique is to add the time dimension to the state space

and reduce the problem to a static one [3]. Also if global

methods can provide optimal solutions, their major drawback

is that they assume a complete and deterministic knowledge

of the environment: in practical applications they are usually

combined with local methods in order to avoid unexpected

obstacles [4], [5]. These last ones, also called reactive

methods, generate just the next input control: they use only

the nearest portion of the environment and update the world

model according to the current sensor observation. Most of

the developed techniques, as the Dynamic window approach

[4], [6], the curvature velocity [7] and the lane curvature

method [8] don’t take into account the dynamic information

of the environment, considering all the obstacles as static

ones. On the other side, the Velocity Obstacles approach

[9], [10], the Inevitable Collision States concept [11] and

[12] use a deterministic knowledge about the velocity of the

obstacles to compute collision-free controls. All the cited

Fulgenzi Chiara is supported by a grant from the European Community
under the Marie-Curie project VISITOR MEST-CT-2004-008270

methods however, rely on a complete knowledge of the static

and dynamic environment and a deterministic representation

of the world.

In this paper we propose a reactive obstacle avoidance based

on a probabilistic framework such to make the connection

between the perception and the navigation system of the

robot. In [1], the Probabilistic Velocity Obstacle approach

(PVO) has been proposed as an extension of the VOs to

the case of uncertain estimation of velocity and of the

radius of circular obstacles. We combined this method with

the dynamic occupancy grid provided by a general sensor

system. The hypotheses on the robot and obstacle shape are

removed. The sensors provide a probabilistic estimation of

the occupied and free space around the robot and of the

velocity with which the objects are moving; the observations

update a 4D probabilistic occupancy grid (space and veloc-

ity) [13]; the probability of collision in time is estimated for

each reachable velocity of the robot. A simple navigation

algorithm is also proposed in order to apply the best control

with respect to safety issues and convergence to the goal.

Simulation results show how the developed algorithm takes

directly into account limited range and occlusions, uncertain

estimation of velocity and position of the obstacles, allowing

the robot to navigate safely toward the goal and to modify

its behaviour according to the quality of its perception.

The paper is structured as follows: in Section II the Bayesian

Occupancy Filter (BOF) and the Velocity Obstacle frame-

work are recalled and discussed; in Section III the developed

solution is described in detail. In Section IV simulation re-

sults are shown and discussed. Section V closes the document

with remarks and purposes for future activities.

II. RELATED WORKS

The method here developed combines two existing frame-

works: the Bayesian Occupancy Filter [14] and the Lin-

ear Velocity Obstacles [9]. The Bayesian Occupancy Filter

(BOF) is a dynamic occupancy grid where an estimation of

velocity is stored as well as the probability of occupation.

Sensor observations are processed from the BOF and the

resulting grid is given as input to the obstacle avoidance

algorithm. The following paragraphs recall respectively the

BOF algorithm and the Linear Velocity Obstacles approach.

Paragraph II-C discusses the advantages of the combination

of the two methods.

2007 IEEE International Conference on
Robotics and Automation
Roma, Italy, 10-14 April 2007

WeE11.2

1-4244-0602-1/07/$20.00 ©2007 IEEE. 1610

(a) (b) (c)

Fig. 1. Simulated detection of two cars crossing each others. (a) Simulated environment : the robot equipped with a laser range finder detects a car
moving from left to right and a second car moving from right to left. (b) Dynamic occupancy grid: red is high, blue is low probability of occupation. The
space behind the cars has low probability of occupation. (c) Clustering: different colours characterise objects and occluded or free space.

A. The Bayesian Occupancy filter (BOF)

Probabilistic occupancy grids are well known structures

used for environmental representation. The space is divided

in a finite number of cells, each representing a position in

the 2D plane (X,Y), X = [x
q
], Y = [y

q
], where q is the

discretization step. The estimation of the state of the system

x(t) at time t is the list of the states of all the cells of

the grid: Occ, when the cell is occupied or Emp if the

correspondent space is free. Given a probabilistic sensor

model P (z(t)|x(t)) where z(t) is the current observation,

the grid is updated following the Bayes rule. Under the hy-

pothesis that each cell of the grid is statistically independent

from its neighbourhood, each cell state estimation is updated

independently [15].

If some moving obstacles is present, the precedent structure

is not sufficient to describe the state of the environment

and it is necessary to introduce a description of velocity

and a dynamical model. To perform an estimation, the

state of the grid is firstly modified according the dynamical

model (prediction step) and then compared with the acquired

observation (updating step). These ideas are at the basis of

the Bayesian Occupancy Filter [13]. Each cell maintains not

only an estimation of its occupation probability, but also

a discretized representation of the probabilistic distribution

function (pdf) over velocities. A minimum and maximum

velocity value is considered for eventual objects in the space,

so that the pdf is given by a finite histogram over velocity

values vn with n = 1...N . The discrete approximation is

performed according to the spatial and time discretization:

given τ the time step, only integer velocities in terms of q
τ

are taken under consideration, in order to perform fast and

rigorous prediction and updating steps. Here we present a

brief scheme of the algorithm:

1) At the beginning of the estimation, the occupancy

grid is initialised with the prior knowledge of the

environment: if no knowledge is available all the cells

are initialised with a 0.5 probability of occupation and

a uniform distribution over velocities;

2) A prediction step is performed according to the state

of the environment and a constant velocity dynamical

model. For each cell c = [i, j] and for each value of

velocity vn = [di, dj], an antecedent cell is considered

: ca(n) = [i − di, j − dj]. Under the hypothesis that

each cell is independent, the predicted occupation of

each cell is computed as follows:

P̂c(Occ) =
∑

n

Pca(n)(Occ) · Pca(n)(vn) (1)

The predicted probability distribution function of ve-

locity of a cell c is obtained by a normalisation over

all velocity probability values P (vn) of each ca(n);
3) Sensor data are acquired and an observed occupation

grid is built according to the probabilistic observation

model;

4) The grid is updated following the Bayes rule:

Pc(Occ|z(t)) ∝ Pc(z(t)|Occ) · P̂ (Occ) (2)

5) The grid is searched for clusters: first the 4-connection

recursive algorithm is applied, than each cluster is

checked for coherent velocity profiles. In case of two or

more groups of cells with coherent velocity, the cluster

is divided again. Each cell is given a cluster index and a

velocity profile for each cluster is calculated according

to the estimation of each cell;

6) Back to step 2.

For further details the interested reader may refere to the

original papers [14]. Fig. 1(a) shows a simulated environ-

ment: the cycab is equipped with a laser range finder and

perceives two cars: the nearest moving from left to right

and another just behind, moving from right to left. Fig.

1(b) shows the dynamic occupancy grid computed: red stays

for high probability of occupation, while blue is for low

probability. Fig. 1(c) shows the clusters found on the grid,

correspondent to the two cars.

B. Linear Velocity Obstacle

Here we describe the classical approach to VO in terms

that could help the understanding of the cell-to-cell approach;

the original algorithm has been introduced by Fiorini and

Shiller in [9].

WeE11.2

1611

Fig. 2. Collision Cone for a punctual robot and a circular obstacle with
linear velocity vo; vr is in collision.

Lets consider a punctual robot r in [xr, yr] free to move

in the 2D plane, and an obstacle o of arbitrary shape, with

centre in [xo, yo] and constant linear velocity vo . With this

definition of the robot, the configuration space (i.e. the

space where each point corresponds to a configuration of the

robot and obstacles correspond to configurations in collision)

is equivalent to the Euclidean space. The velocity space is

defined as the configuration space where linear velocities are

described by vectors attached to the centre of objects. The

idea is to work directly in this space and determine the set of

all linear velocities that lead the robot to a collision in future

time (Velocity Obstacle). Let’s then define the Collision Cone

CCro of the robot r relative to the obstacle o as the set of

all relative velocities v′

r = (vr − vo) that leads the robot in

collision with o in future time:

CCro =
{

v′

r|∃t > 0, (xr + v′

r

−→
i × t, yr + v′

r

−→
j × t) ∈ o

}

(3)

where
−→
i and

−→
j are the unity vectors of x and y

directions, respectively.

The CCro is the positive angle with vertex in (xr, yr)
and rays the right and left tangent to object o . To know if a

velocity vr is in collision with the obstacle o it is sufficient

to consider the relative vector v′

r = (vr − vo) and to verify

if it points in the CCro , i.e. check if the extension of the

vector in the positive direction intercepts the obstacle.

The velocity obstacle V Oro is obtained translating CCro

by the obstacle velocity vo : all and only the velocities vr

pointing outside the cone are collision free. If more than

one obstacle is present in the environment, it is sufficient to

consider the union of each velocity obstacle [9] :

V Or =
⋃

k=1...K

V Orok
(4)

If the robot is circular with centre in (xr, yr) , the corre-

sponding configuration space is given by a punctual robot

in (xr, yr) and all the obstacles enlarged by the radius

of the robot. Under the hypothesis of circular robot and

obstacles, uncertainty in radius and in velocity can be taken

into account [1].

C. Discussion on the chosen methods

To perform a safe navigation in a unknown or partially

known dynamic environment, the mobile robot has to rely

on a feasible representation of the world constantly updated

according to the sensor observations and that allows to

predict the future state of the system with some level of

confidence. Many approaches use a list of objects and

corresponding tracks and velocities which are considered a

priori known or are learned in an off-line phase. The major

drawback of these methods is that they are suitable only

in industrial controlled environments, where a deterministic

and complete knowledge on other agents is available. A

second class of methods rely on an on-line estimation of

the position and velocity of each object. These methods

lie in general on a multi-target tracking algorithm and a

data association technique which can encounter problems in

cluttered environments and do not face the uncertainty due

to the unobserved space. The advantage of considering a

dynamic occupancy grid is that the robot maintains a full

probabilistic information about the present occupation of the

space and an estimation of the velocity of each occupied

cell in the spatial grid. The absence of high level models

makes the robot able to cope with unexpected situations and

previously unknown obstacles. Furthermore, observations

coming from different sensors can be directly integrated into

the grid, so that the method is easy adaptable to different

mobile bases.

The cell-to-cell approach to the linear velocity obstacles

allows to reduce the hypothesis of the method, taking into

consideration robot and obstacles of whatever shape and

whatever discretized approximation of uncertainty in position

and velocity of the obstacles. In contrast with the worst case

approaches [16], the non observed space contributes directly

to the computation of the probability of collision, leading to

a full probabilistic framework.

III. THE DISCRETE PROBABILISTIC VELOCITY

OBSTACLES

In this section we explain in detail the developed al-

gorithm. Paragraph III-A describes the generalisation of

velocity obstacles to the cell-to-cell approach. Paragraph

III-B explains how the probability of collision in time is

computed. Paragraph III-C, finally, details how the control

input is chosen for the obstacle avoidance.

A. Cell-to-cell approach

The VO approach explained in the previous section is

a geometric method that determines if a linear velocity

leads the robot to a collision in the future. In order to

generalise the method for a probabilistic approach and to

the input provided by an occupancy grid, we developed a

cell-to-cell approach. In this paragraph we make reference

to a deterministic representation: the occupation of cells

considered is P (Occ) = {0, 1} and the velocity is a priori

known: Pc(vo) = 1, Pc(vn) = 0 ∀n 6= o. The grid is relative

to the robot.

Lets consider the robot and the obstacles as clusters of

occupied cells. The velocities we study for the robot are

integer linear velocities vn = [i · q
τ
, j · q

τ
] where i, j ∈ N

. The search space is reduced to the velocities reachable

within the next time step: dynamic and kinematic constraints

as a maximum acceleration value and a maximum and

WeE11.2

1612

minimum velocity in each direction are specified. Following

the framework detailed in the previous section, a velocity

(∆ir,∆jr) leads the robot to a collision if it belongs to

at least one of the V Oprco
between one of the points of

the robot pr and an occupied cell of the grid co. Given

[∆io,∆jo] the velocity of an obstacle in the space, and

[∆i,∆j] an admissible velocity of the robot, each relative

velocity (∆′i,∆′j) = (∆i − ∆io,∆j − ∆jo) is considered.

Reasoning in the velocity space, this velocity corresponds to

the vector attached to pr = [xr, yr] pointing [xr + ∆′i, yr +
∆′j]. As shown in Fig. 3(a), this velocity belongs to the

VO relative to pr iff there is at least an occupied cell with

velocity (∆io,∆jo) in the positive direction of the extension

of the velocity vector.

(a) (b)

Fig. 3. Grey cells are searched for obstacles; black cells are occupied.
A point of the robot and a cell are respectively considered in (a) and (b)
image. The arrow is the considered relative velocity while the red dotted
lines delimit searching areas for different times to collision.

To consider all the points in the robot-cell centred in

(xr, yr) we have to check all the cells which fall (also

partially) between the two parallel lines tangent to the cells

centred respectively in (xr, yr) and (xr + ∆′i, yr + ∆′j)

in the positive direction. This region is the search obstacle

region of velocity v′

r relative to cell r and we denote it

SO(v′

r, r). To compute the probability of collision of the

relative velocity at a given time instant t in the future, we

consider the set SOt(v
′

r, r) that should be traversed by the

robot in the interval [t − 1, t]. The considered velocity is in

collision if for at least one of the cell of the robot it is found

one occupied cell with velocity (∆io,∆jo) . It is possible to

introduce some simplification. For each velocity vr :

• It is sufficient to consider just the 4-connected cells on

the contour of the robot, where collisions occur first.

• We can consider just the last contour cells in the velocity

direction.

For what concerns the number of velocities to study, the

search space is reduced to the velocities that can be reached

within the next time step. This dynamic window is centred

around the actual velocity of the robot and is limited by

the maximum acceleration that the motors can exert and

eventually the maximum allowed velocity in function of the

direction.

B. Compute the probability of collision

As detailed in Section II-A, the environment is represented

by a dynamic occupancy grid. Each cell stores a probabilistic

estimation of its state:

• a value of probability of occupation P (Occ) ;

• a probabilistic distribution function on a histogram of

possible velocities P (vn), n = 1...N ;

• an index k = −1, 0, . . . ,K + 1 , where K is the

estimated number of obstacles in the space (clusters of

the grid); cells considered as free are given −1 index,

cells occluded or not reached by the sensor range are

given index 0; cells indicating the robot are given index

K + 1.

Given a robot velocity vr and an obstacle velocity vn, the

probability of collision of a cell r with a cell o in the

SO(vr′ , r) is:

Pcoll(vr, vn, r) = Po(Occ) · Po(vn) (5)

as Pr(Occ) = 1. Considering the whole robot dimension,

the maximum probability of collision in the interval [t−1, t]
is kept for each object k :

Pcoll(vr, k, vn) = max
o∈O

Po(Occ) · Po(vn) · δ(ko) (6)

where o is each cell in SOt(vr′ , r) and δ(ko) = 1 if ko = k,

0 otherwise.

To compute the probability of collision Pcoll(vr) of the

absolute velocity at time instant t, all the possible velocities

of obstacles have to be considered. This value is computed

as follows: for collisions with the same obstacle k the

probability is given by the sum of the probability of each

velocity, as P (vi|vj) = 0 for each i, j = 1...N and i 6= j:

Pcoll(k)(vr) = Pcoll(k)(vr, v1) ∨ . . . ∨ Pcoll(k)(vr, vN)

=
∑

n=1...N

Pcoll(k)(vr, vn) (7)

If the collisions considered are due to different obstacles, the

total probability is given by:

Pcoll(vr) = 1 −
∑

k=1...K

(1 − Pcoll(k)(vr)) (8)

Both equations 7 and 8 are presented and used in the PVO

approach [1].

A cumulative probability of collision from time 0 to the

time step t under investigation is recursively computed.

Applying a velocity vr from present to t leads to a collision

if there is a collision in the interval [0, t− 1] or if there is a

collision at time instant t:

P0...t(vr) = P0...t−1(vr) + (1 − P0..t−1(vr)) × Pt(vr) (9)

with the hypothesis that Pcoll,0 = 0.

Fig. 4 shows how the computation of the probability of

collision in time reflects the uncertain information about the

environment. We simulated the input that could be provided

by a distance sensor as a laser range finder or a radar. A

maximum range of 20·q is considered. Since we are working

with a probabilistic representation, each cell has in general a

positive probability of occupation: the free space scanned by

the sensor is characterised by a probability of occupation that

is nearly 0 while not sensed environment has P (Occ) = 0.5.

WeE11.2

1613

10 20 30 40 50 60

5

10

15

20

25

30

35

40

45

50

55

60

x

y

−10

−5

0

5

10

−10

−5

0

5

10
0

0.2

0.4

0.6

0.8

1

VxVy

P
c
o
ll

−10

−5

0

5

10

−10

−5

0

5

10
0

0.2

0.4

0.6

0.8

1

VxVy

P
c
o
ll

−10

−5

0

5

10

0

5

10

15

20
0

0.2

0.4

0.6

0.8

1

VxVy

P
c
o
ll

(a) (b) (c) (d)

Fig. 4. (a) Simulated occupancy grid: the robot in the centre perceives free space all around, with limited range. (b) The probability of collision for each
velocity of the robot considering T=2, (c) T=4, and (d) T=5.

For what concerns velocities, on each cell we will have a pdf

more and more extended as the prediction is less reliable:

in this example, free cells present uniform distribution over

velocities in vx = [−3, 3], vy = [−3, 3]. Cells that fall out

of the grid are given Po(Occ) = 0.5 and a uniform pdf over

velocities. Fig. 4(a) represents an occupancy grid where the

robot, in the centre, observes the free space around. The

collision probability has been studied for velocities of the

robot in the interval vx = [−10, 10], vy = [−10, 10]. Fig.

4(b), (c) and (d) are plots of the computed values respectively

for T = 2, T = 4 and T = 5 time steps. The probability

of collision is bigger for bigger velocities in each direction

and it grows with the time of application: also if the robot

stands still (vx = vy = 0) the probability of collision grows

with time as the hypothesis that some unseen obstacle could

go toward the robot is considered. Also in the case of no

obstacles in the space, the robot will not move too fast if its

perception is limited to a short range or some portion of the

space is occluded.

C. Choice of the control input

In the dynamic and probabilistic case, the navigation of

the mobile robot has to attend two major issues: minimise

the risk of collision and reach the goal position. The method

described in the previous section gives us a tool to compute

the probability of collision in time for each admissible linear

velocity of the robot, but it is not enough to perform safe

navigation. We consider the robot safe if it can stop before

running into a collision. This means a velocity v can be

applied for an interval ǫ if the robot will not run into collision

up to:

Tsafe(v) = ǫ + Tbrake(v) (10)

where Tbrake(v) is the minimum time to stop applying the

maximum negative linear acceleration. To have an estimation

of the time to collision a threshold of probability of collision

is a priori chosen. This threshold defines the maximum risk

we want to keep while navigating and we call it Psafe. We

call Tpred, the interval of time for which the hypothesis of

constant motion models is reliable. For a given velocity v,

the probability of collision is recursively computed for each

time step t; when Pcoll,0..t(v) > Psafe then the time of

collision is estimated as the minimum between t and Tpred:

Tcoll(v) = min(Tpred, t |Pcoll,0..t(v) > Psafe,) (11)

If Tcoll(v) <= Tsafe(v), the velocity is considered danger-

ous and discarded, otherwise it’ll be considered safe enough

to be applied.

For each time step, the admissible velocities of the robot

are computed taking into account its kinematic and dynamic

constraints. For each velocity, the next robot position and

heading are computed, so to calculate a utility value and

lead the robot toward the goal:

U(v) = 1/(dist(Robot,Goal, v) (12)

In the simple case, the function dist(Robot,Goal, v) is just

the Euclidean distance between the future robot position and

the goal location; in presence of local minima however, or if

some different optimisation parameter is considered, a differ-

ent distance function could be defined in a previous phase of

motion planning. The velocity with the maximum utility is

considered first. Tsafe(v) and Tcoll(v) are computed. If the

velocity is found to be safe enough it is chosen as the next

control for the robot, otherwise it is discarded. The algorithm

is iterated until a safe velocity is found. The chosen control

is then applied and the algorithm is iterated. If none of the

admissible velocities is safe enough, the robot performs an

emergency braking manoeuvre, i.e. reduces at minimum the

module of its velocity.

IV. SIMULATION RESULTS

We implemented the algorithm in a Matlab application and

tested it in various simulated environments. The following

paragraphs show and discuss the obstacle avoidance strategy

in two scenarios and at the variation of the perception

capabilities of the robot.

A. Occlusion

This experiment shows how the occlusion influences the

robot strategy. Fig. 5(a) shows the complete simulated envi-

ronment: the robot is the circle at the bottom and has to go

up toward the goal. The initial velocity of the robot is 0. A

circular obstacle is moving in the y direction with velocity

vy = 3. The robot can’t steer and its admissible velocities

are vx = 0, 0 ≤ vy ≤ 5; a maximum acceleration of 2 ·q per

time step in the y direction is considered. The velocities that

can be represented in the dynamic occupancy grid are integer

values in the interval vx = [−4, 4], vy = [−4, 4]; a maximum

time of prediction is fixed a T = 5 and the probability

threshold is fixed at 0.1. Two different sensor input are

WeE11.2

1614

20 40 60 80
0

10

20

30

40

50

60

70

80

40 60 80 100
0

10

20

30

40

50

60

70

80

(a) (b) (c)

Fig. 5. The robot has to move up to the goal, while an obstacle comes
from the left. (a) A perfect knowledge of the world is simulated; (b) the
robot accelerates and passes before the obstacle, reaching the goal (c).

simulated: in the first case (Fig. 5) the input grid represents

the whole environment: the velocity of the obstacle is known

with certainty and there are not occluded zones. The robot

perceives the moving obstacle and knows its velocity, so it

can safely accelerate at maximum speed and reaches the goal

passing before the obstacle (Fig. 5(b), (c)). In the second

20 40 60 80

10

20

30

40

50

60

70

80

20 40 60 80
0

10

20

30

40

50

60

70

80

40 60 80 100
0

10

20

30

40

50

60

70

80

(a) (b) (c)

Fig. 6. (a) Occupancy grid in the case of occlusion: the robot can’t observe
the moving obstacle. (b) The robot maintains a low speed approaching the
static obstacle and brakes when it sees the moving one, letting it pass before
reaching the goal (c).

experiment (Fig. 6) a distance sensor is simulated: the static

obstacle hides the moving one. The robot maintains a lower

speed as the probability of collision given by the occluded

space forbids higher speeds. The robot arrives later at the

crossing and brakes to let the obstacle pass (Fig. 6(b)). Then

the robot passes also and reaches the goal (Fig. 6(c)).

B. Crossroad

In this example the robot faces a crossing. Fig. 7 shows the

complete simulated environment: the robot is the circle at the

bottom and has a positive velocity in the y direction. Static

obstacles delimit the environment and two other obstacles,

respectively at the right and left of the image move toward

the centre of the crossing. The robot goal location is on the

upper part of the crossing. The admissible velocities for the

robot are −5 ≤ vx ≤ 5, 0 ≤ vy ≤ 5 and an admissible

acceleration of 2 · q per time step in both x and y direction

is considered. As in the previous paragraph, the velocities

that can be represented in the dynamic occupancy grid are

integer values in the interval vx = [−4, 4], vy = [−4, 4];
a maximum time of prediction is fixed a T = 5 and the

probability threshold is fixed at 0.1. In the first experiment

(Fig. 8(a)) the input grid represents the whole environment:

the velocity of the obstacles is known with certainty and there

10 20 30 40 50 60

10

20

30

40

50

60

(a) (b)

Fig. 7. (a) The robot is the circle at the bottom. It faces a crossroad with
two obstacles moving in opposite direction. The goal location is the point
at the top of the image. (b) Input occupancy grid in case of limited range:
entering the crossing, the robot doesn’t see the moving obstacle on the left.

are not occluded zones. In this case the robot performs the

obstacle avoidance passing near the obstacles and reaching

the goal with a short trajectory: it deviates from the straight

line just to avoid the obstacle coming from the right. In

the second experiment (Fig. 8(b)) a Gaussian uncertainty on

obstacles velocity is simulated. The medium value is the real

velocity value, while the standard deviation is σ = 1.5 · q/τ .

Since the beginning the robot tries to keep its trajectory

further away from obstacles; the path results longer as the

robot performs wider curves to avoid collisions. In the third

experiment (Fig. 8(c)) a distance sensor input is simulated.

The visible distance is limited by a short range (30 · q) and

the occluded zones hide obstacles and their shape (Fig. 7(b)).

The obstacles velocities are known with the same Gaussian

uncertainty of the second experiment. The robot goes slower;

as it approaches the crossing it still doesn’t see the obstacle

on the left and enters the crossing; when it perceives the

obstacles it is forced to escape from it and reaches the goal

only after waiting the right obstacle to leave the crossing. It is

however able to reach the goal and, more important, it reacted

appropriately to the unexpected obstacle. Tests with a lower

range cause the robot to perform an emergency manoeuvre

(brake and stop) before facing the crossing.

Fig. 8. The robot trajectory with (a) precise estimation of obstacles
velocities; (b) Gaussian uncertainty on obstacles velocities; (c) Gaussian
uncertainty and limited visibility range.

V. CONCLUSIONS AND FUTURE WORK

In this paper we proposed a method to compute the prob-

ability of collision in time for linear velocities of the robot

WeE11.2

1615

and a reactive algorithm to perform obstacle avoidance in

dynamic uncertain environment. The novelty of the method

consists in the explicit consideration of uncertainty in the

perception system, rising both from the errors and noise in

the model of the environment and from occlusions, sensor

range, noise and failures. The input to the algorithm is an

occupancy grid, it is highly reactive to the environmental

changes and is well suited to be applied in various sensor

settings. The developed algorithm computes a probability to

collision in time working directly in the velocity space. The

dynamic and kinematic constraints of the robot are so taken

into account and the study is reduced to the current reachable

velocities. The case of holonome robot and linear constant

motion of the obstacles has been analysed in this paper:

future work will deal with the generalisation of the method

following the Non Linear Velocity Obstacle approach [10],

[17]. For what concerns the navigation algorithm, the simu-

lation results show that the robot is able to navigate among

static and moving obstacles facing unexpected situations and

moving toward the goal. The robot adapts its behaviour to

the quality of information received and modifies its trajectory

according to the incomplete and uncertain perception of the

environment. However, due to the reactive nature of the

algorithm and to the limited knowledge of the environment,

there is no guarantee that the robot achieves the goal or that

it doesn’t put itself in emergency conditions that could have

been avoided. In order to achieve a better performance, we

plan then to integrate the information of the probability and

time to collision in a motion planning algorithm able to face

more complex scenarios, combining a priori knowledge and

on-line perception, and to test the method on a real mobile

base (Cycab [18]).

REFERENCES

[1] B. Kluge and E. Prassler, “Reflective navigation: individual behaviours
and group behaviours,” in IEEE International Conference on Robotics

and Automation, ICRA, 2004.

[2] J. C. Latombe, Robot Motion Planning. Dordrecht, The Netherlands:
Kluwer, 1991, vol. SECS 0124.

[3] T. Fraichard and A. Scheuer, “Car-like robots and moving obstacles,”
in IEEE International Conference on Robotics and Automation, ICRA,
1994.

[4] M. Seder, K. Macek, and I. Petrovic, “An integrated approach to real-
time mobile robot control in partially known indoor environments,” in
In Proceeding of the 31st Annual Conference of the IEEE Industrial

Electronics Society, 2005.
[5] C. Stachniss and W. Burgard, “An integrated approach to goal-

directed obstacle avoidance under dynamic constraints for dynamic
environments,” in IEEE International Conference on Intelligent Robots

and Systems, IROS, 2002.
[6] D. Fox, W. Burgard, and S. Thrun, “The dynamic window approach to

collision avoidance,” IEEE Robotics & Automation Magazine, vol. 4,
no. 1, Mar. 1997.

[7] R. Simmons, “The curvature-velocity method for local obstacle avoid-
ance,” in IEEE International Conference on Robotics and Automation,

ICRA, 1996.
[8] Y. K. Nak and R. Simmons, “The lane-curvature method for local

obstacle avoidance,” in IEEE International Conference on Robotics

and Automation, ICRA, 1998.
[9] P. Fiorini and Z. Shiller, “Motion planning in dynamic environments

using velocity obstacles,” Int. Journal of Robotics Research, no. 17,
pp. 711–727, 1998.

[10] F. Large, “Navigation autonome d’un robot mobile en environnement
dynamique et incertain,” Ph.D. dissertation, Université de Savoie,
2003.

[11] T. Fraichard and H. Asama, “Inevitable collision states. a step towards
safer robots?” in IEEE International Conference on Intelligent Robots

and Systems, IROS, 2003.
[12] E. Owen and L. Montano, “A robocentric motion planner for dynamic

environments using the velocity space,” in IEEE International Con-

ference on Intelligent Robots and Systems, IROS, 2006.
[13] C. Coué, C. Pradalier, C. Laugier, T. Fraichard, and P. Bessière,

“Bayesian occupancy filtering for multitarget tracking: an
automotive application,” Int. Journal of Robotics Research,
vol. 25, no. 1, pp. 19–30, January 2006. [Online]. Available:
http://emotion.inrialpes.fr/bibemotion/2006/CPLFB06

[14] C. Coué, “Modèle bayésien pour l’analyse multimodale
d’environnements dynamiques et encombrés: application à l’assistance
à la consuite automobile en milieu urbain.” Ph.D. dissertation, Inst.
Nat. Polytechnique de Grenoble, 2003.

[15] A. Elfes, “Using occupancy grids for mobile robot perception and
navigation,” Computer, vol. 22, pp. 46–57, June 1989.

[16] R. Benenson, S. Petti, M. Parent, and T. Fraichard, “Integrating
perception and planning for autonomous navigation of urban vehicles,”
in IEEE/RSJ International Conference on Intelligent Robots and

Systems,IROS, 2006.
[17] Z. Shiller and S. Large, F.and Seckavat, “Motion planning in dynamic

environments: obstacles moving along arbitrary trajectories,” in IEEE

International Conference on Robotics and Automation, ICRA, 2001.
[18] C. Pradalier, J. Hermosillo, C. Koike, C. Braillon, P. Bessière, and

C. Laugier, “The cycab: a car-like robot navigating autonomously and
safely among pedestrians,” Robotics and Autonomous Systems, vol. 50,
no. 1, pp. 51–68, 2005.

WeE11.2

1616

