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Abstract—As one of dynamics-based control of biped walk-
ing, some researchers presented the control method to take
advantage of robot dynamics directly by use of point-contact
state between a robot and the ground. We proposed Passive
Dynamic Autonomous Control (PDAC) previously[13] as one
of point-contact methods. PDAC expresses the robot dynamics
as an 1-dimensional autonomous system based on the two
concepts: 1) point-contact 2) Virtual Constraint (proposed by
Grizzle and Westervelt et al.[8], [10]). We actually realized
3D dynamic walking by means of proposed method, however
stability is not proved and the convergence domain is not clear.
Thus, this paper finds the convergence domain of the previously
proposed controller and proves the stability by the Liapunov
Theory. Finally, the correctness of stability proof is confirmed
by the numerical simulation.

I. INTRODUCTION

In order to achieve natural and energy efficient biped
walking, many control methods based on robot dynamics
had been proposed up to this day. As one of such methods,
some researchers presented the control methods to take
advantage of robot dynamics directly by use of point-contact
state between a robot and the ground[1]-[6]. Miura et al.
produced the point-contact biped robot like stilt and realize
dynamic walking by means of stabilizing control to change
the configuration at foot-contact[7]. Kajita et al. proposed
the control and stabilizing method based on the conserved
quantity derived by designing the COG trajectory parallel
to the ground[9]. Chevallereau presented the control to
converge robot dynamics on optical trajectory by introducing
the virtual time[12]. Grizzle and Westervelt et al. built the
controller by use of the virtual holonomic constraint of joints
named Virtual Constraint realize stable dynamic walking by
means of the biped robot with a torso[8], [10], [11].
As one of point-contact methods, we proposed Pas-

sive Dynamic Autonomous Control (PDAC) previously[13].
PDAC expresses the robot dynamics as an 1-dimensional au-
tonomous system based on the two concepts: 1) point-contact
2) Virtual Constraint (proposed by Grizzle and Westervelt et
al.[8], [10]). We actually realized 3D dynamic walking by
means of proposed method, however stability is not proved
and the convergence domain is not clear. Thus, this paper
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finds the convergence domain of the previously proposed
controller and proves the stability by the Liapunov Theory.

II. PASSIVE DYNAMIC AUTONOMOUS CONTROL

A. Converged dynamics

As mentioned previously, PDAC is base on the two con-
cepts, i.e. point-contact and Virtual constraint. Point-contact
denotes that a robot contacts the ground at a point, that is,
the first joint is passive. Virtual constraint was defined by
Grizzle and Westervelt et al.[8], [10] as a set of holonomic
constraints on the robot’s actuated DoF parameterized by
the robot’s unactuated DoF. Assuming that PDAC is applied
to the serial n-link rigid robot shown in Fig. 1, these two
premises are expressed as follows:

τ1 = 0 (1)
Θ = [θ1, θ2, · · · , θn]T = [f1(θ), f2(θ), · · · , fn(θ)]T

:= f (θ) (2)

where θ is the angle around the contact point in the absolute
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Fig. 1. Mechanical model of the serial n-link rigid robot. θi and τi are
the angle and the torque of ith joint respectively. mi and Ji are the mass
and the moment of inertia of ith link respectively.

coordinate system, that is, θ1 = f1(θ) = θ.
The dynamic equations of this model are given by

d

dt

(
M(Θ)Θ̇

)
− 1

2
∂

∂Θ

(
Θ̇

T
M (Θ)Θ̇

)
− G(Θ) = τ (3)

where M(Θ) := [m1(Θ)T , m2(Θ)T , · · · , mn(Θ)T ]T ,
Θ := [θ1, θ2, · · · , θn]T ,
G(Θ) := [G1(Θ), G2(Θ), · · · , Gn(Θ)]T , τ :=
[τ1, τ2, · · · , τn]T , ∂

∂Θ = [ ∂
∂θ1

, ∂
∂θ2

, · · · , ∂
∂θn

]T .
Since in this model the dynamic equation around the

contact point has no term of the Coriolis force, it is given as

d

dt

(
m1(Θ)T Θ̇

)
− G1(Θ) = τ1 (4)
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By differentiating Eq. (2) with respect to time, the following
equation is acquired,

Θ̇ =
∂f(θ)

∂θ
θ̇ =

[
∂f1(θ)

∂θ
,
∂f2(θ)

∂θ
, · · · ,

∂fn(θ)
∂θ

]T

θ̇. (5)

Substituting Eq. (1), (2) and (5) into Eq. (3) yields the
following dynamic equation,

d

dt

(
M(θ)θ̇

)
= G(θ) (6)

where

M(θ) := m1

(
f(θ)

)T df(θ)
dθ

(7)

G(θ) := G1

(
f(θ)

)
. (8)

By multiplying both sides of Eq. (6) by M(θ)θ̇ and integrat-
ing with respect to time, the dynamics around the contact
point is obtained as follows:∫ (

M(θ)θ̇
) d

dt

(
M(θ)θ̇

)
dt =

∫
M(θ)G(θ)θ̇ dt(9)

⇐⇒ 1
2

(
M(θ)θ̇

)2

=
∫

M(θ)G(θ) dθ. (10)

Therefore, the whole robot dynamics is expressed as the
following 1-dimensional autonomous system (that is, the
phase around contact point),

θ̇ =
1

M(θ)

√
2

∫
M(θ)G(θ) dθ (11)

:=
1

M(θ)

√
2
(
D(θ) + C

)
(12)

:= F (θ). (13)

In this paper, we term Eq. (12) and (13) Converged dynamics.

B. PDAC Constant
Since Converged dynamics is autonomous, in addition,

independent of time, it is considered as a conservative
system. The integral constant in right side of Eq. (10), C,
is a conserved quantity, which is termed PDAC Constant.
Its value is decided according to the initial condition (as for
biped walking, the state immediately after foot-contact), and
kept constant during a cycle of motion. Thus, it is possible
to stabilize the motion by keeping PDAC Constant at certain
value.
The dimension of PDAC Constant is equal to the square

of angular momentum and has relevance to it. As is well
know, assuming that the robot shown in Fig. 1 resides in
the horizontal plane, the angular momentum around contact
point is conserved since there is no effect of gravitational
force on the robot dynamics. In this condition, it is clear
thatM(θ)θ̇(angular momentum)=

√
2C from Eq. (12), since

G(Θ) = 0 in Eq. (3) hence D(θ) = 0. Note that, although
angular momentum is not conserved in the condition which
robot dynamics is affected by the gravitational force, PDAC
Constant is conserved since it includes the effects of the
gravitation. This paper demonstrates the convergency of
PDAC Constant by the Lyapunov theory and proves the
stability of walking.

III. 3D BIPED WALKING

In this section, control architecture of 3D biped walking
is summarize simply.

A. Sagittal motion
1) 3-link model: For the sake of simplicity, in this paper

upper body of a robot is not moved, hence the 3-link model
as shown in Fig. 2 is employed. The dynamic equation of
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Fig. 2. 3-link model in the sagittal plane. mi, Ji, li and ai are the mass,
the moment of inertia, the length of link and the distance from the joint to
the link COG of link i respectively. γ is the angle of the forward tilting.
In the right figure, θ1, θ2 and θ3 are the ankle angle of the stance leg, the
angle from the stance leg to the the swing leg, the relative angle between
the stance-leg and trunk respectively.

this model is described as Eq. (3) and that of the ankle joint
of the stance leg is Eq. (4) where n = 3. The left side of
Eq. (4) is described as follows:

M11(Θ) = J1 + J2 + J3 + m1a
2
1 + m2l

2
1 + m2a

2
2

−2m2a2l1 cos θ2 + m3l
2
1 + m3a

2
3

+2m3a3l1 cos θ3

M12(Θ) = −J2 − m2a
2
2 + m2a2l1 cos θ2

M13(Θ) = J3 + m3a
2
3 + m3a3l1 cos θ3

G1(Θ) = (m1a1 + m2l1 + m3l1)g sin θ1

+m2ga2 sin(θ2 − θ1)
+m3ga3 sin(θ1 + θ3)

where, m1(Θ) = [M11(Θ), M12(Θ), M13(Θ)].
2) Constraints of sagittal joints: Constraints are simply

designed as follows:
• The angle of the torso is constant.
• The swing leg is symmetrical to the stance leg.

That is,

θ1 = f1(θ) = θ (14)
θ2 = f2(θ) = 2θ (15)
θ3 = f3(θ) = −θ + γ (16)

From Eq. (14)-(16) and (1), Eq. (6) is

Ms(θ) = J1 − J2 + m1a
2
1 + m2l

2
1 − m2a

2
2

+m3l
2
1 + m3a3l1 cos(γ − θ)

:= E1 + E2 cos(γ − θ) (17)
Gs(θ) = (m1a1 + m2l1 + m2a2 + m3l1)g sin θ

+m3ga3 sin γ

:= E3 + E4 sin θ. (18)
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Thus,∫
Ms(θ)Gs(θ)dθ

=
∫ (

E1 + E2 cos(γ − θ)
)(

E3 + E4 sin θ
)
dθ

= E2E4

(
sin γ

2
θ − cos(2θ − γ)

4

)
+ E1E3θ

+E2E3 sin(θ − γ) − E1E4 cos θ + Cs

:= Ds(θ) + Cs (19)

where Cs is the integral constant, which is PDAC Constant
of the sagittal motion. From Eq. (12), Converged dynamics
in the sagittal plane is

θ̇ =
1

Ms(θ)

√
2
(
Ds(θ) + Cs

)
(20)

:= Fs(θ). (21)

Note that it is necessary that γ is decided so that Ms(θ) > 0
in order to avoid singular point. Generally speaking, as for
humanoid robots and biped robots, E1 > E2 since l1 > a3.
Thus, we assume Ms(θ) > 0 below.
3) Foot-contact model: Regarding foot-contact, it is as-

sumed that the ground is perfectly inelastic collision and
occurred for a moment similarly to previous works[8], [10],
[2], [5]. That is, the angular momentum around the contact
point is conserved before and after foot-contact.
Fig. 3 shows the angle and length of the inverted pendulum

at foot-contact. Here, consider the foot-contact at the end of
kth step, i.e. at the beginning of k + 1th step. Denoting the
angular velocity of ankle joint of the rear leg at foot-contact
as θ̇e[k], the following equation is derived from Eq. (12):

θ̇e[k] =
1

Ms(θe[k])

√
2
(
Ds(θe[k]) + Cs[k]

)
(22)

where, Cs[k] denotes PDAC Constant of kth step.
Since the torso angle is constant and COG is not rotated,

the angular velocity of ankle joint of the fore leg at foot-
contact, Pi[k + 1], is described as follows:

Pi[k + 1] = mtle[k]li[k + 1]θ̇e[k]
· cos(ξe[k] + ξi[k + 1])

=
mtle[k]li[k + 1] cos(ξe[k] + ξi[k + 1])

Ms(θe[k])

·
√

2
(
Ds(θe[k]) + Cs[k]

)
:= h[k]

√
2
(
Ds(θe[k]) + Cs[k]

)
(23)

where, mt = m1 + m2 + m3.
Since the angular velocity around the passive joint is

P = Ms(θ)θ̇,

PDAC Constant after foot-contact, Cs[k + 1], is represented

as

Cs[k + 1] =
1
2
Pi[k + 1]2 − Ds(θi[k])

= h[k]2Cs[k]
+h[k]2Ds(θe[k]) − Ds(θi[k])

:= s1[k]Cs[k] + s2[k]. (24)

ξiξe [k]θi- [k+1]θi-[k]θe
le [k]

li [k+1]

[k] [k+1]

Fig. 3. Parameters at foot-contact. le[k] and ξe[k] are the length and
inclination of the inverted pendulum which connects the ankle of support
leg and robot COG before impact at the end of kth step. li[k + 1] and
ξi[k + 1] are those after impact. θe[k] and θi[k + 1] are the angles around
the contact point before and after impact.

4) Sagittal motion period: In order to satisfy the condition
of constant step-length, it is necessary to control the lateral
motion so that lateral foot-contact period matches sagittal
one. Since sagittal dynamics is expressed as an 1-dimensional
autonomous dynamics, it is possible to calculate the sagittal
foot-contact period by integrating sagittal Converged dynam-
ics with time as follows:

Ts =
∫

i+1θ−

iθ+

1
Fs(θ)

dθ. (25)

In next section, we design the lateral motion and build the
controller satisfying the synchronization between lateral and
sagittal motion.

B. Lateral motion control
1) Lateral motion: In this section, the lateral motion pro-

posed previously in [13] is summarized briefly. In phase(A),

(A) (B)

Front View

(B)

: Passive joint

Left Foot Contact
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Swing Up

Fall
 D
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Fig. 4. Lateral motion (front view). The inverted pendulum falls off in
phase(A) and swing up in phase(B). l and φ denote the length and the angle
of an inverted pendulum. (l0, φ0) and (l0 + ∆l, φ1) are the coordinates in
ΣR at the beginning and ending of phase (A), (l0 − ∆l, φ2) and (l0, φ3)
is that of ΣL of phase (B) respectively. φ̇1, φ̇2 denotes the angular velocity
at the end of phase (A) and at the beginning of phase (B)

a robot starts to turn over toward its swing-leg-side and
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is accelerated by gravitation from the tilting position at a
standstill on the stance-leg-side to foot-contact. In phase(B),
after foot-contact, a robot is got up toward the tilting position
at a standstill by the energy obtained in phase(A).
2) Constraint of lateral joints: The dynamic equation of

an inverted pendulum is described as follows:

d

dt

(
(ml2 + J)φ̇

)
= mgl sin φ + τ, (26)

where m, l, J , and φ are the mass, length, inertia moment,
and angle of an inverted pendulum. τ is the torque around
contact-point.
At first, we decide the Virtual constraint, that is, pendulum

length l is described as the function of φ. It is clear that
the right side of Eq. (37) can be integrated if f(φ) is a
polynomial equation. Thus in this paper, f(φ) is decided as
follows:

l = f(φ) (27)
= aφ2 + bφ + c (28)

where a, b, and c are determined so as to satisfy the condi-
tions described below. At first, the conditions of pendulum
length at the beginning and ending of phase(A) and phase(B)
introduce the following four equations:

fA(φ0) = l0 (29)
fA(φ1) = l0 + ∆l (30)
fB(−φ2) = l0 − ∆l (31)
fB(−φ3) = l0 (32)

where upper-suffixes denote the differentiation of phases.
In addition, the pendulum motion is designed so that the
angular velocity of robot joints is not discontinuous, that is,
the velocity along pendulum is zero,

∂fA

∂φ
(φ1) = 0 (33)

∂fB

∂φ
(−φ2) = 0. (34)

From Eq. (29)-(34), a and b, c in each phase are decided.
From Eq. (27) and (1), Eq. (6) is

Ml = mf(φ)2 + J (35)
Gl = mgf (φ) sinφ. (36)

Thus, the phase around contact point (phase of passive
joint) is obtained as below,

φ̇ =
1

Ml(φ)

√
2

∫
Ml(φ)Gl(φ)dφ (37)

=
1

mf(φ)2 + J

√
2
∫

mgf (φ)
(
mf(φ)2 + J

)
sin dφ

:=
1

Ml(φ)

√
2
(
Dl(φ) + Cl

)
:= F (φ) (38)

Finally, the value to lift up pelvis, ∆l, is determined. ∆l is
necessary to be decided so that Eq. (38) satisfies the initial
condition of phase(A) and the end condition of phase(B),
that is,

FA
l (φ0) = FB

l (−φ3) = 0

⇐⇒
√

2
(
DA

l (φ1) − DA
l (φ0)

)
MA

l (φ1)
cos(φ1 + φ2) =√

2
(
DB

l (−φ2) − DB
l (−φ3)

)
MB

l (−φ2)
(39)

where upper suffixes denote the differentiation of phases. ∆l
is so small that it is possible to find the appropriate value
satisfying Eq. (39) by use of the quadratic approximation.
3) Control of lateral period: Next we design the period

controller of the lateral motion described in the previous
subsection. The period of lateral motion is decided by the
amplitude of pendulum motion, that is, the period is long if
the amplitude is large and it is short if the amplitude is small.
In this paper, the desired period is realized by controlling the
lateral amplitude.
Assuming that the pendulum angle at the transition from

phase(B) to phase(A) is φ3, the motion period T can be
found properly by the following calculation∫ −φ2

−φ3

1
FB(φ)

dφ +
∫ φ1

φ3

1
FA(φ)

dφ = T. (40)

However, it is not easy to solve this equation for φ3. The
pendulum extension is so small that the desired amplitude
is decided apploximately by use of the model of inverted
pendulum, length of which is not variable, as follows:

φ3 =
φc

cosh
(√

g
l0

T
2

) (41)

where, φc is the pendulum angle in the standing posture, i.e.
the pendulum angle at the foot-contact under the condition
of ∆l = 0.

IV. STABILITY PROOF OF THE SAGITTAL MOTION
A. Constraint of constant step-length
As we presented in the previous work[13], the step-length

is fixed at constant value, λd, in order to stabilize walking.
Under such condition, it is clear that the following is held:

θe[k] = −θi[k] = arcsin
(

λd

2l1

)
:= θc = const (42)

where k ∈ N and 0 ≤ θc < π
2 . Since the torso angle, γ, is

kept constant, ξe[k] and ξi[k], le[k], li[k] are also all constant
similarly. Hence, in Eq. (23),

h[k] := H = const

is held. Besides, in Eq. (24),

s1[k] = h[k]2 = H2 := S1 = const
s2[k] = h[k]2Ds(θe[k]) − Ds(θi[k])

= H2Ds(θc) − Ds(−θc) := S2 = const

are also held.
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B. Requisite to perform walking continuously

We consider the requisite to generate walking. In terms of
practicality, let γ be 0 < γ < π

2 . In order to perform walking
continuously, θ̇ > 0 is required at all times. Considering
Ms(θ) > 0, this condition is equivalent to P = Ms(θ)θ̇ > 0.
Since

dDs(θ)
dθ

= Ms(θ)Gs(θ)

=
(
E1 + E2 cos(γ − θ)

)(
E3 + E4 sin θ

)
,

and also since E3 > 0 and E4 > 0, in can be seen that Ds(θ)
i.e. the angular velocity of passive joint, P , is minimum when

θ = arcsin
(
−E3

E4

)
:= θ̂.

and that it decreases monotonically on −π
2 < θ < θ̂ and

increases monotonically on θ̂ < θ < π
2 . Since

1
2P 2 =

Ds(θ) + Cs, the condition discussed above, P > 0, is
described as below,

P > 0 ⇐⇒ Cs > −Ds(θ̂) := Ĉs. (43)

Therefore, from Eq. (24), the requisite to perform walking
continuously is found as follows:

S1Ĉs + S2 > Ĉs. (44)

Next, we argue the state that dynamics of walking is
converged on a sole trajectory, i.e. the equilibrium state. On
such condition, PDAC Constant of every steps is converged
on constant value. That is,

Cs[k] = Cs[k + 1] := C∗
s .

Hence, from Eq. (24),

C∗
s = S1C

∗
s + S2

⇐⇒ S2 = C∗
s (1 − S1) (45)

is held. Substituting Eq. (45) into Eq. (44),

(1 − S1)(C∗
s − Ĉs) > 0 (46)

is obtained. From Eq. (43), it is clear that

C∗
s > Ĉs. (47)

From Eq. (46) and (47), the requisite to perform walking
continuously, Eq. (44), is described as follows:

1 − S1 > 0. (48)

As for our robot (Gorilla Robot II: Fig. 6, Table I), Eq. (48)
is the range shown in Fig. 5. Although we assume γ < π

2
in Fig. 5, actual upper bound is decided according to the
limitation of robot’s specification such as the torque to swing
a leg forward or to keep a torso angle at constant value.

 0

 0.4

 0.8

 1.2

 1.6

 0  0.1  0.2  0.3  0.4  0.5

Step length [m]

γ [rad
]

Fig. 5. Condition of θ and γ in order to generate continual walking

C. Proof of stability
Lastly, we prove the stability by Liapunov Theory using

the conditions found above. The error between actual Cs and
convergent value is defined as

δCs := C∗
s − Cs. (49)

The following positive definite function, V , is defined,

V = (δCs)2.

Since V (0) = 0 and V > 0 (δCs �= 0), it is apparent that
V is positive definite. From Eq. (24) and (45), (49), finite
difference of V is

∆V = V [k + 1] − V [k]
= δCs[k + 1]2 − δCs[k]2

= (δCs[k + 1] + δCs[k])(δCs[k + 1] − δCs[k])
= −(2C∗

s − Cs[k + 1] − Cs[k])
·(Cs[k + 1] − Cs[k])

= −(2C∗
s − S1Cs[k] − S2 − Cs[k])
·(S1Cs[k] + S2 − Cs[k])

= −(
2C∗

s − S1Cs[k] − (1 − S1)C∗
s − Cs[k]

)
·(S1Cs[k] + (1 − S1)C∗

s − Cs[k]
)

= −(1 + S1)(1 − S1)(C∗
s − Cs[k])2

= −(1 + S1)(1 − S1)∆Cs[k]2. (50)

Since it is clear that 1 + S1 = 1 + H2 > 0 from Eq. (43)
and that 1 − S1 > 0 from Eq. (48), Eq. (50) is

∆V = 0 (δCs = 0). (51)

In addition,

∆V < 0 (δCs �= 0) (52)

is held. From Eq. (51) and (52), ∆V is negative definite.
Therefore, the equilibrium point, C∗

s , is asymptotically stable
in the range shown in Fig. 5.

V. SIMULATION
In this section, stability proof described in the previous

section is confirmed by the numerical simulation.
Fig. 7 is the phase portrait of θ and alteration in terms

of time. From these figures, the convergency of the sagittal
motion can be ascertained. Fig. 8 shows the snapshots of the
simulation. On this simulation, step-length is 0.18[m], the
torso angle is γ =0.035[rad].
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Fig. 6. Gorilla Robot II (about 1.0[m] height, 22.0[kg] weight, 24 DOF)

TABLE I
LINK PARAMETERS OF GORILLA ROBOT II

Mass[kg] link1 m1 2.618
link2 m2 3.451
link3 m3 15.143

COG position link1 a1 0.23
link2 a2 0.28
link3 a3 0.22

Moment of inertia link1 J1 0.042
link2 J2 0.070
link3 J3 0.047

Fig. 9 depicts the return maps of PDAC Constant and the
angular velocity of passive joint at foot-contact. These figures
show that the sagittal dynamics has a sole stable fixed point.

Finally, in order to confirm that the stability of the sagittal
motion is independent of step-length, we perform the simu-
lation of the various step-length. Fig. 10 is the graph of the
return map of the angular velocity of passive joint at foot-
contact v.s. step-length. From this figure, it can be confirmed
that the sagittal dynamics is stable regardless of step-length.

VI. CONCLUSION
This paper proved the stability of sagittal motion designed

previously by means of PDAC. The proof was conducted
by the Liapunov Theory, and the convergence domain was
also investigated. We confirmed the correctness of proof
by numerical simulation. The proof in this paper handled
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Fig. 8. Snapshot of the proposed walking
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the stability of 2D dynamics, thus the future work is to
propose the walking controller achieving the stability of 3D
dynamics, and prove the 3D stability of dynamic walking.
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