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Abstract— The advantages of reconfigurable robots have been
discussed in the specialized literature. Conventionally, reconfig-
urability was a direct result of using modular joints. In this
paper we discuss the configuration control and recalibration
of a different class of reconfigurable robots, one which is
equipped with lockable cylindrical joints with no actuators or
sensors. Such a robot can be as versatile and agile as a hyper-
redundant manipulator, but with a simpler, more compact,
lighter design. A passive joint becomes controllable when the
robot forms a closed kinematic chain and the joint lock is
released. After reconfiguration, the values of the passive joints
are computed from the value of the active joints using inverse
kinematics of the closed chain. That problem is solved using
a globally uniformly asymptotically stable scheme based on
Closed-Loop Inverse Kinematics (CLIK). An asymptotically
stable reconfiguration controller is also devised that takes the
robot from one configuration to another by directly regulating
the values of the passive joints. The controller has a rather
simple structure, which only relies on the robot gravity and
kinematics models. Conditions for the observability and the
controllability of the passive joints are also derived in detail,
and some numerical results are reported.

I. INTRODUCTION

In space applications, systems are generally designed

for minimum weight to reduce the launch cost. Another

design constraint is that it should be compact enough to

be accommodated within its designated space in the launch

vehicle. Since the links of a space manipulator are usually

long, they have to be folded before launch. For instance,

CanadarmII has two long booms, each of which has a hinge

at the middle, which allowed the booms to be folded before

launch and then unfolded manually by astronauts in orbit.

For on-orbit servicing missions whereby no human operator

is present, the robot has to be able to deploy itself. Except

for reconfigurable manipulators, there are two options: (i)
not using long booms or (ii) using hyper-redundant manip-

ulators. The former option may limit the types of operation

possible as the robot would have a short reach, while the

latter increases the complexity of the manipulation system.

Reconfigurable robot were originally introduced in [1] to

increase the versatility of robotic manipulators. The concept

was then developed further in [2]. Cellular robots based

on hexagonal modules and those based on the concept of

robot molecules were described in [3], [4] and [5], [6],

respectively. Reconfigurable robots for space exploration

were proposed in [7]. The design of Conro modules to build
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deployable modular robots that can be reconfigured to take

different shapes such as snakes or hexapods were presented

in [8], which has some similarities with earlier works on

Tetrobot, [9]. All these reconfigurable robots are modular,

hence needing an effective docking system for connecting

and releasing the modules [10].

Here we discuss the recalibration and configuration control

of a new reconfigurable robot that does not rely on modular

joints. To achieve reconfigurability, the new design uses

passive cylindrical joints between adjacent active joints

with noncoinciding axes [11]. Each cylindrical joint can be

considered as the combination of two passive revolute and

prismatic joints. The passive joints have no sensors or driving

actuators, but they are equipped with a normally locked brake

mechanism which can be unlocked simply by activating a

solenoid. When locked, the entire cylindrical joint becomes

a rigid link which connects the two neighboring active joints.

The twist angle and the length of this link is determined by

the value of the locked passive joints.

The modular robots have the great advantage of being

able to change their both morphology and topology; more

specifically, they can change their number of links, form

a closed chain or break it, and create a tree-like structure,

for example. All these capabilities, however, come at the

expense of complexity in the joints and their docking system.

The new design, on the other hand, can offer a simpler and

more effective solution to the problem at hand as there is

no need to detach any link or joint to reconfigure the robot.

Thus, the entire reconfiguration operation can be performed

autonomously with a higher level of reliability. This makes

this new type of reconfigurable robots particularly attractive.

Fig. 1 illustrates the reconfiguration process of a typical

reconfigurable arm with two cylindrical joints. In general,

such an arm can change its configuration by completing

the following steps: (i) The manipulator forms a closed

kinematic chain by restricting the robot End-Effector (EE),

Fig. 1(b); (ii) one or more of the brake mechanisms are

released, thus increasing the degrees of freedom (DOF)

of the constrained system; (iii) the closed-chain system

is controlled in such a way that the desired active-joint

positions are achieved, Figs. 1(c)–1(d); upon converging to

these values, the brakes are locked again; (iv) the constraint

on the motion of the EE is removed. A manipulator with a

new configuration is now born, Fig. 1(h). Depending on the

changes needed, steps (ii) and (iii) may need to be repeated

with one or more of the passive joints unlocked at a time.
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Fig. 1. Reconfiguration maneuver from a short, planar configuration to an anthropomorphic one; (a) the initial configuration; (b) constraining the EE
motion with a ball joint; (c,d,e) unlocking and reconfiguring the first passive joint; (f,g) unlocking and reconfiguring the second passive joint; (h) the final
configuration.

The kinematics of the reconfiguration process is the sub-

ject of Section II. Section III is devoted to the development

of a Lyapunov-based reconfiguration control of the robot

with passive joints; the control uses only the closed-chain

kinematics and gravitational-force models of the robot. The

controllability and singularity of the robot during reconfig-

uration are discussed in Section III-D. Finally, Section IV

presents the numerical results pertaining to the reconfigura-

tions shown in Fig. 1.

II. RECONFIGURATION KINEMATICS

As mentioned before, the reconfigurable mechanical ma-

nipulators proposed in this paper can only achieve recon-

figurability by releasing one or more of their passive joints

and simultaneously constraining the EE motion, the latter

of which makes the originally serial manipulator parallel.

The motion constraints are then used as a tool to change

the joint variable of the released passive joints. The number

of the parameters that can be changed at the same time

depends on such kinematic properties as the manipulator

degrees of freedom, the dimension of the EE constraint

space, and the number of cylindrical joints released. The

first parameter is known for each manipulator; the second

can be considered a design parameter of the manipulator;

the last, however, is case dependent and may need to be

determined for each reconfiguration maneuver based on the

other kinematic parameters of the manipulator.

A. Manipulator Recalibration:

The purpose of reconfiguring a manipulator is to change

some of its DH parameters which are represented by the

passive-joint variables. Since the passive joints are not in-

strumented, after any reconfiguration, the manipulator must

be recalibrated; that can be done by computing the passive-

joint variables from the constraint equations, given the sensor

readings of the active joints. Assuming that there are n active

joints and m released passive, cylindrical joints, we denote

the active and the passive generalized coordinates of the

manipulator by θ ∈ R
n and ψ ∈ R

2m, respectively. Note

that ψ accounts only for the released passive joints; the total

number of the locked and unlocked joints can be higher

than m. The independent external motion constraints of the

end-effector are then described by the r-dimensional vector

function φ
φ ≡ φ(θ, ψ) = 0. (1)

Then, differentiating (1) with respect to time, we obtain

Aθ θ̇ +Aψψ̇ = 0, (2)

where Aθ = ∂φ/∂θ and Aψ = ∂φ/∂ψ. The above equation

can be written in a more compact form as

Aq̇ = 0, (3)

where the vector of generalized coordinates q and the Jaco-

bian matrix A ∈ R
r×(n+2m) of the constraint equation (1)

are defined as

q ,

[
θ
ψ

]

, (4)

A ≡
[
Aθ Aψ

]
,
∂φ

∂q
. (5)

Now, let us assume the following holds:

Assumption 1: The Jacobian Aψ remains full-rank during

a reconfiguration maneuver.

Then, by making use of (2), one can uniquely obtain an

estimate of ψ̇ from the measured value of θ̇ through

ψ̇ = Qθ̇, where Q , −A+
ψAθ, (6)

with “+” denoting the pseudo-inverse. Note that the matrix

Aψ ∈ R
r×2m being full-rank requires that

r ≥ 2m. (7)
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This means that, in order to be able to observe the value

of ψ, the number of passive DOFs should not exceed the

number of the constraints.

1) Dynamic Estimator: Having computed ψ̇, one can then

integrate it to obtain the time-history of the passive-joint

variables during a reconfiguration maneuver. The integration,

however, will inevitably lead to a drift in the position error.

In order to suppress this drift, we can use a dynamic

estimator which employs the constraint equations φ as a

measure of the estimation error. For convenience, it would

be easier to use the same number of “measurements” as the

number of variables to be estimated. Therefore, we choose

a combination φ′ ∈ R
2m of the constraint equations defined

by

φ′ , Wφ,

where W is a full-rank constant matrix. Then, premultiplying

the velocity constraint (2) by W , we obtain

A′
θ θ̇ +A′

ψψ̇ = 0,

in which A′
θ , WAθ and A′

ψ , WAψ . Equation (6) can

then be simplified as

ψ̇ = Q′θ̇, where Q′ , A′−1
ψ A′

θ. (8)

As shown in Fig. 2, we realize the dynamic estimator by

closing the loop using an A′T
ψ KO φ

′ feedback; This feedback

in addition to the feedforward given by (8) results in

˙̂
ψ = Q′(θ, ψ̂)θ̇ −A′T

ψ (θ, ψ̂)KOWφ(θ, ψ̂). (9)

In the above equation, ψ̂ denotes the estimate of the value

of the passive joints, and KO ∈ R
2m×2m is the positive-

definite estimator gain matrix. The inputs and outputs of the

estimator loop are {θ, θ̇} and {ψ̂,
˙̂
ψ}, respectively.

Proposition 1: Let us assume that Aψ remains a full-rank

matrix during the estimation precess, and that an estimate of

ψ is obtained from system (9). Then, the constraint equation

φ(θ, ψ̂) as a function of the estimated values of the passive

joints globally uniformly asymptotically converges to zero.

The estimator will also be globally exponentially stable.

Proof: Consider the positive-definite Lyapunov function

candidate

V =
1

2
φ′TKO φ

′,

which satisfies the following bounds

λmin(KO)‖φ′‖2 ≤ V ≤ λmax(KO)‖φ′‖2. (10)

Differentiating V with respect to time along the trajectories

of (9) yields

V̇ = φ′TKOA
′
θ θ̇ + φ′TKOA

′
ψ

˙̂
ψ

= φ′TKOA
′
θ θ̇ − φ′TKOA

′
ψ

(
A′T
ψ KOφ

′ +A′−1
ψ A′

θ θ̇
)

= −φ′TKOA
′
ψA

′T
ψ KOφ

′

≤ −λmin(A′T
ψ A

′
ψ)λ2

min(KO)‖φ′‖2. (11)

Therefore, based on the Lyapunov stability theory for non-

autonomous system [12, p. 138], it can be inferred from (10)

−

+
∫

Q′

A′T
ψ KoWφ(θ, ψ̂)

θ̇ ψ̂

˙̂
ψ

Fig. 2. Estimating the states of the passive joints

and (11) that φ′(ψ̂, θ) = 0 must be a globally uniformly

asymptotically stable equilibrium point of the system (9).

As φ′ → 0 when t → ∞, ψ̂ → ψ and φ → 0. Furthermore,

because the bounding functions of V and V̇ are of the form

a‖φ′‖b where a and b are strictly positive constants, the

system is also globally exponentially stable [12, p. 140].

Apparently, the estimator (9) is similar to the closed-

loop inverse kinematics (CLIK) scheme [13], [14], where

the inverse kinematics problem is solved by reformulating it

in terms of the convergence of an equivalent feedback control

system. CLIK ensures that the constraint error remains inside

a small ball. Our estimator, however, eliminates the constraint

error.

III. RECONFIGURATION CONTROL

During any reconfiguration maneuver, the robot will have

some unactuated joints. Then, the main challenge will be to

develop a dedicated controller for reconfiguration.

A. The Projection Method

Consider that the reconfigurable robot forms a closed chain

with some of its passive joints unlocked. The dynamics

equations of the constrained mechanical system can be

derived as

Mq̈ + C(q, q̇)q̇ + g(q) = τ − τ c (12)

subject to φ(q) = 0, where τ ∈ R
n+2m is the vector

of generalized forces; τ c represents the constraint force;

q ∈ R
n+2m contains the active joints together with the

released passive joints; M(q) ∈ R
(n+2m)×(n+2m) is the

inertia matrix; C(q, q̇) ∈ R
(n+2m)×(n+2m) contains the

Coriolis and centrifugal terms; and g(q) ∈ R
n+2m is the

gravity torque.

Now, given the constraint Jacobian matrix

A ∈ R
r×(n+2m), we can uniquely define symmetric

matrix P [15] given below as its null-space orthogonal

projector:

P , I −A+A (13)

where I is the (n+ 2m) × (n+ 2m) identity matrix. Be-

cause P is an orthogonal projection onto the null-space of

the Jacobian—a.k.a. the tangent space—any vector in the

null-space of A is projected onto itself, whereas any vector

perpendicular to the tangent space lies in the null-space

of P . The vector of augmented generalized coordinates q̇
belongs to the former group, as Aq̇ = 0, and the vector
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of constraint generalized forces τ c belongs to the latter, as

∀ q̇ ∈ R(P ) = N , N (A), q̇T τ c ≡ 0. In other words, these

two relations hold:

P q̇ = PT q̇ = q̇, and Pτ c = 0. (14)

Hence, premultiplying (12) by P , one can eliminate τ c from

the set of equations:

PMq̈ = P
(
τ − C(q, q̇)q̇ − g(q)

)
. (15)

Moreover, the generalized force can be decomposed into two

components denoted by subscripts ‖ and ⊥, lying in the

orthogonal subspaces the tangent space N and the null-space

N⊥ of P , respectively:

τ = τ‖ + τ⊥. (16)

Because τ⊥ ∈ N⊥ and the constrained motion occurs in N ,

by definition, this component of the actuation generalized

forces does not contribute to the motion of the system [16].

B. The Control Law

The control objective is to regulate the passive joints

of the system to their desired values ψd. The number of

independent generalized coordinates of the system is d =
n + 2m − r, the DOF of the system. This means that

one can control the constrained mechanical system by only

controlling an independent set χ(q) ∈ R
d of the generalized

coordinates.

Assumption 2: Assume that the elements of the passive

joint vector ψ be a set of independent variables.

Then, χ(q) can be selected as

χ ,

[
ψ
η(θ)

]

,

where the elements of vector η(θ) ∈ R
n−r can be any

independent functions of θ. Therefore, the addition of the

auxiliary variables η makes χ a complete set of indepen-

dent variables. Clearly, in the case that the number of EE

constraints is equal to that of active joints, i.e., n = r,

the auxiliary variable η vanishes and hence χ = ψ. The

time derivative of χ, which constitutes an independent set of

generalized velocities, can then be obtained from

χ̇ ≡ Dq̇ = DPq̇ (17)

where

D ,
∂χ

∂q
=

[
02m×n I2m×2m

∂η/∂θ 0(n−k)×2m

]

is the Jacobian of the independent variables.

Now, let us consider the following control law:

τ‖ = −PDT
(
KDχ̇+KP (χ− χd)

)
+ Pg(q) (18)

where KD and KP are d×d, positive-definite feedback gains,

and vector χTd =
[
ψTd ηTd

]
contains the desired variables.

Theorem 1: The constrained mechanical system (12) un-

der the control law (18) asymptotically converges to the

desired position χd.

Proof: Substituting control law (18) in the dynamics

equation (15), we obtain

PMq̈ = −PC(q, q̇)q̇ − PDTKDχ̇− PDTKP e, (19)

where e = χ − χd is the position error. Now consider the

following candidate Lyapunov function:

V =
1

2
q̇TMq̇ +

1

2
eTKP e, ∀ q̇ ∈ N . (20)

Then, using (17) and the first of (14), one can compute

the time-derivative of the above function along the solution

of (19):

V̇ =
1

2
q̇T Ṁ q̇ + q̇TMq̈ + χ̇TKP e

=
1

2
q̇T Ṁ q̇ + q̇TPMq̈ + χ̇TKP e

=q̇T (
1

2
Ṁ − C)q̇ − χ̇TKDχ̇

However, since Ṁ−2C is a skew-symmetric matrix, we will

have

V̇ = −χ̇TKDχ̇ ≤ 0 (21)

which is negative-semidefinite. Clearly, we have V̇ = 0 only

if χ̇ = 0, namely, q̇ = 0, in which case we can find the

largest invariant set with respect to system (19) as

Ω = {χ, χ̇ : χ̇ = 0, PDTKp(χ− χd) = 0} (22)

On the other hand, from (17), one can see that DP—and

thus its transpose PDT—must be a full-rank matrix as χ̇
are selected to be a complete set of independent generalized

velocities. Therefore, the vector equation inside (22) can only

hold if e = χ − χd vanishes. Then, Ω = {χ = χd, χ̇ = 0}
is the largest invariant set which satisfies V = 0. Therefore,

according to LaSalle’s Global Invariant Set Theorem [12, p.

115], the solution of (19) asymptotically converges to the

invariant set Ω. Consequently, as the time progresses, χ and

thus ψ asymptotically approach their desired values χd and

ψd, respectively.

C. Constrained Systems with Passive Joints

Because the passive joints are unactuated, the vector of the

generalized forces should contain as many zeros as twice the

number of the released passive joints:

τ ≡ τ‖ + τ⊥ =

[
τact
02m

]

(23)

where vector τact ∈ R
n represents the actuation torque,

applied at the active joints. The problem here is that there is

no guarantee that τ‖ is directly realizable. Therefore, we will

have to find the τ⊥ that can be added to the control torque

to produce an actuation torque in the form of (23). It should

be noted that this will not change the dynamics behavior of

the system because τ⊥ lies in the null-space of P .

Premultiplying both sides of (23) by P , we arrive at

τ‖ =
[
P1 P2

]
[
τact
02m

]

= P1τact, (24)
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in which the projection matrix has been partitioned into

submatrices P1 ∈ R
(n+2m)×n and P2 ∈ R

(n+2m)×2m.

Given τ‖, the above equation will have at least one solution

for τact if

N ⊆ R(P1). (25)

In that case, there is a τact that can produce the general-

ized torque control τ‖. The minimum-norm solution, i.e.,

‖τact‖ → min, can be obtained using the pseudo-inverse

of P1:

τact = P+
1 τ‖. (26)

Finally, substituting τ‖ from (18) into (26), we can derive

the motor-torque control law as

τact = −P+
1 PD

T
(
KDχ̇+KP (χ−χd)

)
+P+

1 Pg(q). (27)

Remark 1: The two submatrices P1 and P2 of the projec-

tion matrix P can be used to select the θ̇ and ψ̇ parts of

q̇:

θ̇ = PT1 q̇, ψ̇ = PT2 q̇ (28)

Remark 2: From the second of (28), it is clear that As-

sumption 2, i.e., the requirement for the entries of ψ̇ to be

independent, implies that P2 should be a full-rank matrix.

D. Kinematic Conditions for Controllability

1) Equivalent Conditions: Condition (25) may seem too

restrictive or difficult to satisfy, especially that one cannot

easily manipulate either of the two subspaces involved to

satisfy the condition. However, this concern is a nonissue.

In fact, we can show that, if Assumption 1 holds, (25) is

automatically satisfied. In other words, if the values of the

passive joints can be uniquely determined from those of the

active joints, then they can also be changed to their desired

values.

Proposition 2: If the Jacobian matrix Aψ is full-rank, then

i) there is no nonzero vector that lies in both N and

N (PT1 ):

N (PT1 ) ∩N = ∅ (29)

ii) the range of P1 is the same as the null-space of the

constraint Jacobian:

R(P1) = N . (30)

Proof: We prove the first part of the proposition by

contradiction. To this end, let us consider a vector ξ 6= 0
that lies in both N and N (PT1 ). Then, by definition, ξ must

satisfy both

Aξ = 0 and PT1 ξ = 0. (31)

The first relation is the same as (2); as such, one can divide ξ
into two sub-arrays u ∈ R

n and v ∈ R
2m—corresponding to

θ̇ and ψ̇, respectively—such that ξT =
[
uT vT

]
. Moreover,

if Aψ is full-rank, one can compute v from u using a relation

similar to (6): v = Qu. Then, comparing the second of (31)

with (28), we can see that

u = PT1 ξ = 0 ⇒ v = Qu = 0 ⇒ ξ ≡
[
uT vT

]T
= 0,

êi

pi

ê

êi+1

p

fixed point

ith active joint

cylindrical joint

Fig. 3. Axes of the manipulator joints

which is a contradiction, i.e., the only vector ξ that sat-

isfies (31) is the zero vector, the trivial solution. That

completes the proof of the first part of the proposition.

For the second part, we notice that (29) amounts to

N ⊆ N⊥(PT1 ). (32)

To relate the above relation to the range of P1, we resort

to the fundamental theorem of linear operator transforma-

tion [15], which states that the range of a linear operator is

the same as the null-space orthogonal of its transpose. Then,

R(P1) = N⊥(PT1 ) (33)

which combined with (32) results in N ⊆ R(P1). However,

R(P1) is evidently a subset of R(P ) ≡ N . Hence, we must

have

N ⊆ R(P1) ⊆ N ⇒ R(P1) = N ,

which completes the proof.

The results of the above development can be briefly stated

as follows:

Corollary 1: Let both Assumptions 1 and 2 hold. Then,

i) the states of the passive joints can be uniquely obtained

from those of the active joints, e.g., equations (6) or

(9), and

ii) the torque-control law (27) forces the actual positions

of the passive joints, ψ, and the auxiliary variable, η,

asymptotically converges to their desired values ψd and

ηd, while demanding minimum actuation force.

2) Singularity Analysis: The condition that Aψ should re-

main non-singular during the configuration change is critical

for both observability and controllability of the passive joints.

Therefore, the robot should properly be positioned, so that

the initial and final configurations are not in the vicinity of

singularities. For the general case of a reconfigurable robot,

it is difficult to identify all postures that render the constraint

Jacobian singular. Nevertheless, we can find the singular

postures for a simple, yet important case, namely, when

only one cylindrical joint is released, and all translational

motions of the EE is constrained using a spherical constraint,

as shown in Fig. 3. In that case, the constraint Jacobian A
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TABLE I

PARAMETERS OF THE RECONFIGURABLE ROBOT

Link 1 & 2 Link 3

d = 0.2 m -
1 < L < 2 m L = 0.7 m

−180 < α† < 180 deg α† = 0 deg

ρ
‡
x = 0.5 m ρx = 0.15 m

ρ
‡
y = ρ

‡
y = 0 ρy = ρz = 0

m‡ = 1 kg m = 0.3 kg

I
‡
xx = 0.0025 kgm2 Ixx = 0.00075 kgm2

I
‡
yy = I

‡
zz = 0.0833 kgm2 Iyy = Izz = 0.0022 kgm2

† Twist angle
‡ Quantities associated with each segment of cylindrical links

is of this form:

A =
[
p1 × ê1 · · · pn × ên
︸ ︷︷ ︸

Aθ

ê p× ê
︸ ︷︷ ︸

Aψ

]
(34)

where êi’s are unit vectors along the active-joint axes, and

pi’s are the vectors connecting the fixed point to the joints;

similarly, e and p represent the unit and the position vectors

associated with the passive joint. The two submatrices Aθ
and Aψ are essentially blocks of the Jacobian matrix of a

serial manipulator pertaining to the manipulator translational

motion. A detailed discussion on the structure of the Jacobian

matrix of serial robots can be found in [17], among others.

It is apparent from (34) that the two columns of Aψ will

be independent unless p× ê vanishes.

Remark 3: For the case of the constrained robot where

m = 1, n = 3, and only the translational motions of the EE

are constrained (e.g., Fig.1), Assumption 1 holds if the fixed

point or the robot EE does not lie on the axis of the released

cylindrical joint.

IV. SIMULATION

In this section, we resort to a simulation to demonstrate

that the proposed controller can indeed realize the config-

uration change of a robot as depicted in Fig. 1. The robot

has three active joints and two lockable cylindrical joints,

of which only one is released at a time. The kinematic

and inertial parameters of the robot used in the simulation

are given in Table I, and the controller gains are set to

Kp = diag([5 0.8]) and Kd = diag([6 1]). The configuration

change takes place in two stages:

i) the first link is twisted −90 deg and its length is

increased by 0.5 m, as shown in Figs. 1(b)–1(e), and

ii) the second link is twisted by 90 deg and its length is

increased by 0.5 m, as shown in Figs. 1(f)–1(g).

The two above stages can be described by

1st CJ

2ndCJ







1.1 m
0 deg
1.1 m
90 deg







1st

−−→
stage







1.6 m
−90 deg
1.1 m
90 deg







2nd

−−→
stage







1.6 m
−90 deg
1.5 m

180 deg






.

Therefore, the desired values of the passive joints are set to

ψd1
=

[
1.6 m

−90 deg

]

and ψd2
=

[
1.6 m

180 deg

]

.

In free space, when all cylindrical joints are locked, a

conventional controller drives the active joints to achieve

the desired values θd =
[
26.32 −35.76 16.60

]T
deg in

order to grasp a point at r0 =
[
2.7 0.0 0.4

]T
m. It turns

out that forming a closed chain at this point allows both

configuration changes to be performed consecutively without

running into any singularity. Also, assume that the function

r(θ, ψ) ∈ R
3 represents the position of the robot EE. Then,

the constraint can be expressed by

φ(θ, ψ) = r(θ, ψ) − r0 = 0

The projection matrix required to implement the controller

is calculated from the above kinematic function.

The time histories of the passive joints, active joints, joint

velocities, and joint torques during the configuration change

are illustrated in Figs. 4 and 5. Note that the transition from

the first stage of the reconfiguration to the second one takes

place at t = 10 sec. As can be seen from the time histories of

the link lengths and the twist angles in Figs. 4(a) and 4(b), the

controllers was able to reconfigure the robot as was intended,

and the designated kinematic parameters are changed to

their desired values. The robot reconfiguration procedure is

illustrated in Figs. 1(b)–1(g) at t = 0, 0.8, 1.8, 10, 10.8, 20
seconds, respectively; Figs. 1(a) and 1(h) show the manipu-

lator before and after its reconfiguration, respectively.

V. CONCLUSION

The calibration and reconfiguration control of a new class

of reconfigurable robots with passive cylindrical joints was

discussed. These robots have a simpler design compared to

the conventional reconfigurable robots, which are based on

modular joints. Moreover, since one does not need to connect

or disconnect the joints and the links, the configuration

change can be performed reliably and autonomously.

For reconfiguration, the end-effector of the robot is con-

strained and then one or more passive joints are released.

The Lyapunov-based controller then drives the active joints

so that the released passive joints reach their desired value.

The controller requires only the models of the constraint

kinematics and the links gravity, thus making the controller

implementation easy. The conditions for observability and

controllability of the passive joints were also derived. We

proved that these conditions would require that Jacobian

of the constraint with respect to the passive joints be full-

rank. Finally, some simulation results for a system with three

active revolute joints and two passive cylindrical joints were

presented.

REFERENCES

[1] T. Fukuta and Y. Kawauchi, “Cellular robotic system (CEBOT) as one
of the realization of self-organizing intelligent univeral manipulator,”
in Proce. IEEE Int. Conf. Robotics and Automation, 1990, pp. 662–
667.

[2] C. Paredis and P. Khosla, “Design of modular fault tolerant manipu-
lators,” in Proc. First Workshop Algorithmic Foundations of Robotics,
1995, pp. 371–383.

[3] E. Yoshida, S. Murata, S. Kokaji, K. Tomita, and H. Kurokawa, “Micro
self-reconfigurable robotic system using shape memory alloy,” in Proc.

Distributed Auton. Robotic Systems, 2000, pp. 145–155.

FrC6.4

4082



0 5 10 15 20
1

1.1

1.2

1.3

1.4

1.5

1.6
L

in
k

le
n
g
th

(m
)

Time (sec)

L1 L2

(a)

0 5 10 15 20
−100

−50

0

50

100

150

200

T
w

is
t

an
g
le

(d
eg

)

Time (sec)

α1

α2

(b)

Fig. 4. Trajectories of quantities associated with the passive joints during
the configuration change

[4] Murata, H. Kurokawa, and S. Kokaji, “Self-assembling machine,” in
Proc. IEEE Int. Conf. Robotics Automation, 1994, pp. 441–448.

[5] K. Kotay, D. Rus, M. Vona, and C. McGray, “The self-reconfiguring
robot molecule,” in Proc. IEEE Int. Conf. Robotics Automation, 1998,
pp. 424–431.

[6] D. Rus and M. Vona, “A basis for sel-reconfiguring robots using crystal
modules,” in Proc. IEEE/RSJ Int. Conf. Intell. Robots Systems, 2000,
pp. 2194–2202.

[7] S. Farritor, S. Dubowsky, N. Rutman, and J. Cole, “A systems level
modular design approach to field robotics,” in Proc. IEEE Int. Conf.

Robotics Automation, 1996, pp. 2890–2895.

[8] A. Castano, A. Behar, and P. Will, “The conro modules for reconfig-
urable robots,” IEEE/ASME Trans. on Mechatonics, vol. 7, no. 4, pp.
403–409, December 2002.

[9] G. Hamlin and A. C. Sanderson, Tetrobot: A Modular Approach to

Reconfigurable Parallel Robotics. Boston, MA: Kluwer Publishers,
1998.

[10] B. Khoshnevis, P. Will, and W. M. Shen, “Highly compliant and self-
tightening docking modules for precise and fast connection of self-
reconfigurable robots,” in IEEE Int. Conf. Robotics Automation, 2003,
pp. 2311–2316.

[11] F. Aghili and K. Parsa, “Design of a reconfigurable space robot with
lockable telescopic joints,” in Proc. IEEE/RSJ Int. Conf. Intelligent

Robots and Systems, Beijing, China, October 9–15 2006.

[12] H. K. Khalil, Nonlinear Systems. New-York: Macmillan Publishing
Company, 1992.

[13] P. Chiacchio, S. Chiaverini, L. Sciavicco, and B. Siciliano, “Closed-
loop inverse kinematics schemes for constrained redundant manipula-
tors with task space augmentation and task priority strategy,” The Int.

Journal of Robotics Research, vol. 10, no. 4, pp. 410–425, August
1991.

0 5 10 15 20

−150

−100

−50

0

50

Jo
in

t
an

g
le

(d
eg

)

Time (sec)

θ1

θ2

θ3

(a)

0 5 10 15 20
−80

−60

−40

−20

0

20

− −

Jo
in

t
v
el

o
ci

ty
(d

eg
/s

)

Time (sec)

θ̇1

θ̇2

θ̇3– · –

—

(b)

0 5 10 15 20
−20

−10

0

10

20

30

Jo
in

t
to

rq
u
e

(N
m

)

Time (sec)

τact1

τact2

τact3

(c)

Fig. 5. Trajectories of quantities associated with the active joint during
the configuration change

[14] W. A. Wolovich and H. Elliott, “A computational technique for inverse
kinematics,” in IEEE Conf. On Decision and Control, New York, 1984,
pp. 1359–1363.

[15] G. H. Golub and C. F. V. Loan, Matrix Computations. Baltimore and
London: The Johns Hopkins University Press, 1996.

[16] F. Aghili, “A unified approach for inverse and direct dynamics of
constrained multibody systems based on linear projection operator:
Applications to control and simulation,” IEEE Trans. on Robotics,
vol. 21, no. 5, pp. 834–849, October 2005.

[17] J. Angeles, Fundamentals of Robotic Mechanical Systems: Theory,

Methods, and Algorithms, 3rd ed. New York: Springer–Verlag, 2007.

FrC6.4

4083


