
 
 

 

  

Abstract—This paper deals with a class of over-constrained 
parallel manipulators that can be obtained from architecturally 
singular parallel mechanisms with legs of type US (U and S 
stand for universal and spherical joints respectively) by the 
addition of legs of type UPS (P stands for actuated prismatic 
pair). These manipulators can be internally preloaded in order 
to tune the system stiffness, to diminish system backlash and to 
control the state of tension of their structural elements. The 
paper, in particular, addresses the static and stiffness analyses 
of this class of manipulators. A symmetric stiffness matrix 
defined as the Hessian of the elastic potential energy of the 
system is used, as an alternative to the Cartesian stiffness 
matrix used in this field, to describe the stiffness characteristic 
of these manipulators. An over-constrained 2-dof parallel 
spherical wrist is analyzed as a case study. 

I. INTRODUCTION 
RCHITECTURALLY singular mechanisms [1]-[3] 
with n legs of type US (n-US-PMs for short) are 

unactuated closed-loop mechanisms that comprise a fixed 
base and a moving platform connected to each other through 
n kinematic chains (legs) each consisting of a binary link of 
type US (U and S are for universal and spherical joints, 
respectively) having constant length. These mechanisms are 
finitely mobile with mobility m greater than (6 – n) (as the 
Grübler's formula would predict). They are over-constrained 
mechanisms that feature simple elements such as 
compression rods and lightweight cables. In practice, these 
mechanisms can be employed as internally preloaded, zero-
backlash, stiff, strong and lightweight complex kinematic 
pairs to build over-constrained parallel manipulators with m 
degrees of freedom (dof).  
A class of over-constrained parallel manipulators can indeed 
be obtained from n-US-PMs by the addition of m actuated 
legs of type UPS (P stands for actuated prismatic P joint), 
each connected to the base and platform by means of a U 
joint and an S joint respectively, and placed so that its axis 
(the line passing through the centers of the U and S joints) 
does not belong to the linear variety of lines spanned by the 
axes of the other (n + m – 1) legs. Over-constrained parallel 
manipulators of this kind potentially possess large 
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(eventually tunable) stiffness, low inertia, high accuracy and 
large payload capacity. 
An example of a manipulator belonging to this class is 
depicted in Fig. 1. The system comprises a Wren’s 
mechanism [4], i.e. an n-US-PM with finite mobility 1m =  
and platform with a helical motion, made by n legs (n = 6 in 
Fig. 1) of equal length and of type US whose U and S joint 
centers are arranged identically on equal circles in the base 
and in the platform, and by one leg of type UPS whose U 
and S joint centers are located on the centers of the 
aforementioned circles. This manipulator can be used to 
control the relative helical motion of base and platform 
about the axis of the leg of type UPS. The helical motion is 
provided by Wren’s mechanism (a linear-to-angular 
displacement device [5]) that works as an unconventional 
helical pair that may enjoy high strength, low weight, high 
efficiency, absence of lubricants and low cost with respect to 
traditional transmissions based on gears or ball screws [5]. 

Effective design, optimization and performance evaluation 
of this class of over-constrained parallel manipulators 
requires a framework to study their stiffness characteristic. 
Due to the slenderness of the legs with respect to the base 
and platform, such systems can be modeled as simple 
compliant couplings [6] (i.e. frictionless and massless 
mechanisms made by a rigid base and a rigid platform 
connected by translational springs by means of U and S 
joints) that are internally preloaded in their equilibrium 
position. In the literature [6]-[15], the stiffness characteristic 
of simple compliant couplings is always described by the 
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Fig. 1.  Over-constrained parallel manipulator made by an 
architecturally singular 6-US-PM (Wren’s mechanism) and by one 
actuated telescopic leg of type UPS. 

2007 IEEE International Conference on
Robotics and Automation
Roma, Italy, 10-14 April 2007

WeB6.5

1-4244-0602-1/07/$20.00 ©2007 IEEE. 561



 
 

 

Cartesian stiffness matrix, which defines how the 
components of a wrench acting on the platform change as 
the platform moves along basis twists. In particular, the 
Cartesian stiffness matrices of simple compliant couplings 
that stay near their unloaded configurations were discussed 
in [6]-[10] where these matrices were shown to be always 
symmetric. The Cartesian stiffness matrices of simple 
compliant couplings that stay near their (externally) loaded 
configurations were discussed in [11]-[15] where these 
matrices were shown to be usually asymmetric. 
This paper discusses an approach for the study of the 
stiffness characteristic of a class of over-constrained parallel 
manipulators that are derived from architecturally singular 
mechanisms. In particular, the paper deals with the stiffness 
analysis of internally preloaded compliant couplings that 
stay near both their unloaded configurations and their 
(externally) loaded configurations. In this context, an 
alternative form of the stiffness matrix is presented, which is 
obtained from the elastic potential energy of simple 
compliant couplings via the second partial derivatives with 
respect to the independent generalized coordinates that 
uniquely describe the configuration of the system. It is 
shown that the alternative stiffness matrix has the property 
of being always symmetric even when the compliant 
couplings are near their loaded configurations. An 
application to a simple compliant coupling derived from a  
2-dof spherical over-constrained parallel manipulator 
devised in [16] is provided which shows the potentials of the 
proposed approach and highlights the static and stiffness 
properties of the manipulator. 

II. INTERNALLY PRELOADED COMPLIANT COUPLINGS 
In this section, internally preloaded compliant couplings are 
described by taking as a reference the system depicted in    
Fig. 2 that, in practice, can be used to model the stiffness 
characteristic of the over-constrained parallel manipulator 
shown in Fig. 1.  

Internally preloaded compliant couplings consist of two 
rigid bodies, a fixed base and a moving platform, which are 
connected by (n + m) frictionless and massless translational 
springs acting in parallel (in Fig. 2 n = 6 and m = 1). Each 
translational spring is connected to the base and to the 
platform by a U joint and an S joint. It is worth mentioning 
that, for each translational spring, the location of the U and 
S joints can be interchanged. Thus, for clarity of 
representation, both U and S joints are depicted by the same 
symbol (a dot) in Fig. 2. By comparison with the over-
constrained parallel manipulator shown in Fig. 1, it can be 
understood that the n springs model the structural 
compliance of the legs of type US while the m springs model 
the structural and servo (i.e. related to the loop gain of the 
control system) compliance of the P actuators of the legs of 
type UPS.   
For every (both regular and singular) configuration of the 
system, i.e. for every relative location of base and platform, 
the axes of the n translational springs form a linear variety of 
lines with rank (6 – m). For every (regular) configuration of 
the system the axes of the m translational springs do not 
belong to the linear variety of lines spanned by the others    
(n + m – 1) so that the axes of the (n + m) translational 
springs form a linear variety of lines with rank 6. The linear 
dependency of the lines of action of the n translational 
springs allows the system to be internally preloaded. Indeed, 
by properly changing the stiffness and the free lengths of the 
n legs it is possible to tune the state of tension of the n 
springs without affecting the state of equilibrium 
(configuration and external loads) of the overall system. 
Internal preload is important since it makes it possible to 
define the state of tension and consequently the type of 
elements (compression rods or lightweight cables) that 
compose the system so as to make it stiffer and more 
lightweight, to reduce system backlash and tune the stiffness 
characteristic of the system to make it stable and more or 
less compliant. 

III. NOTATION 
In this section, the symbols and the definitions that 
characterize the geometry and the configuration of preloaded 
compliant couplings are introduced.  
For each h-th translational spring, B(h) and P(h) are the 
attachment points, i.e. the centers of the U and S joints 
connected to the base and to the platform respectively. Each 
translational spring is linear and characterized by its actual 
length ( ) ( ) ( )h h hl B P= , free length l(h)0 and stiffness κ(h). The 

length l(h) varies and depends on the relative location of the 
base and platform, while l(h)0 and κ(h) are constant and 
known. The ratio between the free and the actual length of 
the h-th spring is defined by δ(h), i.e. ( ) ( )0 ( )h h hl lδ = . 
Description of the relative location of base and platform 
requires the definition of the two coordinate systems                  
Sb ≡ {Ob; ib, jb, kb}, with origin Ob, and Sp ≡ {Op; ip, jp, kp}, 

 
Fig. 2.  Internally preloaded compliant coupling to be used as a model 
for the study of the stiffness characteristic of the over-constrained 
parallel manipulator depicted in Fig. 1. 
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with origin Op, which are embedded in the base and in the 
platform respectively. Here, ib, jb, kb are the unit vectors of 
the axes X, Y, Z of the system Sb and ip, jp, kp are the unit 
vectors of the axes x, y, z of the system Sp.  
The geometry of compliant couplings is defined by the 
arrays of coordinates P(h) = [x(h), y(h), z(h)]T of the attachment 
point P(h) with respect to Sp and by the arrays of coordinates       
B(h) = [X(h), Y(h), Z(h)]T of the attachment points B(h) with 
respect to Sb. 
The relative location of base and platform is characterized 
by the three displacements, q1, q2, q3 of point Op with respect 
to the X-axis, Y-axis and Z-axis, respectively, and by three 
successive rotations defined by the angles q4, q5 and q6 
performed in the following sequence: first q6 about the         
z-axis, then q5 about the y-axis and finally q4 about the         
x-axis. In compact form, the configuration of a compliant 
coupling is uniquely identified by the generalized coordinate 
vector q of the independent parameters qi 
 

[ ]1 2 3 4 5 6
Tq q q q q q=q . (1) 

IV. ELASTIC POTENTIAL ENERGY AND STATIC EQUILIBRIUM 
Compliant couplings are conservative systems whose 
associated elastic potential energy Ψ  is given by 
 

2

( ) ( ) ( )0
1

1
2

n m

h h h
h

l lκ
+

=

⎡ ⎤Ψ = −⎣ ⎦∑ , (2) 

 
which is a function of the generalized coordinate vector q 
through the relation 
 

( )( ) ( ) ( ) ( ) ( ) ( )2T T
h h h h h hl = + + RP P U U P , (3) 

 
where 
 

( ) p ( )h h= −U O B , (4) 
 

[ ]p 1 2 3
Tq q q=O , (5) 

 
and R is the 3 × 3 rotation matrix for the transformation of 
vector components from Sp to Sb. According to the 
generalized coordinates defined in Section III, R reads as 

 

5 6 5 6 4 6 4 5 6 4 6 4

5 6 5 6 4 6 4 5 6 4 6 4

5 5 4 5 4

c c s c s s c s c c s s
c s s s s c c s s c c s

s c s c c

− +⎡ ⎤
⎢ ⎥= + −⎢ ⎥
⎢ ⎥−⎣ ⎦

R . (6) 

 
where ci = cos (qi) and si = sin (qi), for i = 4, 5, 6. 
Based on the principles of statics, a compliant coupling is in 
a configuration of static equilibrium when 

( )( )( ) ( ) ( ) ( )
1

1
n m

i h h h h i
hi

Q
q

κ δ
+

=

∂Ψ
= = − +

∂ ∑ RU P , i = 1, 2, 3 (7.1) 

 

( )( ) ( ) ( )
1

1
n m

T
i h h h h

hi i

Q
q q

κ δ
+

=

∂Ψ ∂
= = −

∂ ∂∑ RU P , i = 4, 5, 6 (7.2) 

 
where the Qi are the generalized forces related to the system 
of external forces and moments (all but the elastic ones) that 
act on the compliant coupling. Note that, in Eq. (7.1) and in 
the following ones as well, the notation ( )iv  is used to 
indicate the i-th component of a vector v with respect to Sb.  
As for the physical interpretation, the generalized forces Q1, 
Q2 and Q3 are the components of the total elastic force F E  
 

( )( ) ( ) ( ) ( )
1

1
n m

E
h h h h

h

B Pκ δ
+

=

= −∑F , (8) 

 
along the unit vectors ib, jb and kb respectively, while the 
generalized forces Q4, Q5 and Q6 are the components of the 
total elastic moment 

p

E
OM  (with respect to Op) of the elastic 

forces 
 

( )p ( ) ( ) p ( ) p ( )
1

1
n m

E
O h h h h

h

O B O Pκ δ
+

=

= − ×∑M , (9) 

 
along the unit vectors ip, j′ and kb, where j′ is the unit vector 
of the moving axis about which the rotation by the angle q5 
is performed (the components of j′ in Sb are [-s3, c 3, 0] T ). 
In compact notation, Eqs. (7) can be rewritten as 
 

= AQ f , (10) 
 
where 
 

[ ]1 2 3 4 5 6
TQ Q Q Q Q Q=Q , (11) 

 
is the 6x1 vector of the generalized forces, 
 

( ) ( )(1) (1) (1)0 ( ) ( ) ( )0...
T

n m n m n ml l l lκ κ + + +
⎡ ⎤= − −⎣ ⎦f , (12) 

 
is the (n + m) × 1 vector of the elastic forces exerted by the 
translational springs, and 
 

( ) ( )(1) (1) (1) ( ) ( ) ( )

(1) (1) ( ) ( )
(1) ( )

...

1 1...

n m n m n m

T T
n m n m

i n m i

l l

l q l q

+ + +

+ +
+

⎡ ⎤+ +
⎢ ⎥

= ∂ ∂⎢ ⎥
⎢ ⎥∂ ∂⎣ ⎦

R R
A R R

U P U P

U P U P
, (13) 

 
is the 6 × (n + m) matrix that maps the spring forces f into 
the generalized forces Q. In regular configurations, since the 
axes of the (n + m) springs form a linear variety of lines 
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with rank 6, matrix A has rank equal to 6. 
The generalized force Q is a function of the relative position 
of the base and platform and is representative of the external 
load that is required to keep the system in equilibrium in the 
configuration q. Indeed, for a given compliant coupling with 
known κ(h) and l(h)0, for h = 1, …, (n + m), the generalized 
coordinate vector q defines the actual length l(h) and thus it 
defines the vector f that determines via Eq. (10) the external 
load Q required for equilibrium. 
If a q exists for which f = 0 (that is δ(h) = 1, for every h), 
then Q vanishes, which means that no external load is 
required to maintain the system at q. If a q exists for which   
f ≠ 0 (δ(h) ≠ 1, for some h) and Q = 0, then the system is 
internally preloaded but no external load is required to 
maintain the system at q. 

V. EXTERNAL AND INTERNAL PRELOAD 
Compliant couplings, which are in equilibrium in the 
configuration q under the external load Q, are said to be 
preloaded when some components of the elastic force vector 
f are non zero. The study of the preloading of a compliant 
coupling amounts to finding all the elastic force vectors f  
that satisfy Eq. (10) for known q and Q. Since the matrix A 
has dimension 6 × (n + m), i.e. it has more columns than 
rows, it cannot be directly inverted. As customary in linear 
algebra, solution of the problem can be obtained by resorting 
to both the notion of weighed pseudoinverse of A, i.e. the           
(n + m) × 6 matrix +

WA  defined as 
 

( ) 1+
W

T T −
=A WA AWA , (14) 

 
where the (n + m) × (n + m) weighting matrix W is chosen 
here as 
 

( )(1) ( )diag ,..., n mκ κ +=W , (15) 
 
and the notion of nullspace of A, i.e. the vector space 
defined by the (n + m – 6) linearly independent vectors ni 
such that 
 

0i =An . (16) 
 
Note that, the vectors ni can be obtained by either the QR 
decomposition or the singular value decomposition of A. 
As a matter of fact, the expressions  
 

6
+
W

1

n m

i i
i

a
+ −

=

= + ∑Af Q n , for ia∀  (17) 

 
are solutions of Eq. (10). Equations (17) collect the ∞(n+m-6) 
states of preloading that guarantee the equilibrium of the 
compliant coupling in the configuration q under the external 
load Q. The term +

WA Q  represents the (external) preload 

that is necessary in order to balance the external load Q. 
Note that, among all the possible choices, the solution 

+
W= Af Q  minimizes the elastic potential energy Ψ, given 

in Eq. (2), which is stored in the compliant coupling in the 
state of equilibrium defined by the configuration q and by 

the external load Q. The term 
6

1

n m

i i
i

a
+ −

=
∑ n  represents the 

internal preload that can be given (as desired) to the 
compliant coupling in order to simplify the type of elements 
of the system (compression rods and lightweight cables), to 
stabilize the system, to reduce system backlash and to tune 
the system stiffness (for details refer to section VI). 
Note that once a desired preload f is chosen, it can be given 
to the system by choosing the following free lengths l(h)0 
 

1
( )0 ( ) ( ) ( )h h h hl l fκ −= − ,    h = 1, …, (n + m). (18) 

VI. STIFFNESS MATRIX 
Stiffness is a geometric mapping that transforms variations 
of the generalized coordinates of the mechanism into 
incremental changes of the generalized forces acting on it. 
As such, the stiffness of compliant couplings can be 
described by the stiffness matrix K whose components Kij 
(also called coefficients of influence) read as 
 

2
i

ij
j i j

QK
q q q

∂ ∂ Ψ
= =

∂ ∂ ∂
,    i, j = 1, …, 6. (19) 

 
Of course, matrix K is 6 × 6 and is symmetric (because of 
the Schwartz theorem). 
Use of Eqs. (7) in Eq. (19) leads to the following 
expressions 
 

( )
( )

( )
( ) ( )( )

( ) ( ) 2
1 ( ) ( ) ( )

1 δ
    

n m h h ih
ij h h ij

h h h h j

K
l
δ

κ δ
+

=

⎧ ⎫⎡ ⎤+ ⋅⎪ ⎪⎢ ⎥= − +⎨ ⎬⎢ ⎥⋅ +⎪ ⎪⎣ ⎦⎩ ⎭
∑

R

R

U P

U P
, (20)  

i, j = 1, 2, 3 
 

( )
2

( )

( ) ( ) ( )
1 ( )

( ) ( )2
( )

1

          +

hn m
i jT

ij h h h
h h T

h h
h i j

q q
K

l q q

δ

κ
δ

+

=

⎧ ⎫⎡ ⎤∂
− +⎪ ⎪⎢ ⎥∂ ∂⎪ ⎪⎢ ⎥= ⎨ ⎬⎢ ⎥∂ ∂⎪ ⎪⎢ ⎥⎪ ⎪∂ ∂⎢ ⎥⎣ ⎦⎩ ⎭

∑

R

R R
U P

P U
, (21) 

i, j = 4, 5, 6 
 

( )

( )

( ) ( )

( )
1 ( )

( ) ( ) ( ) ( )2
( )

1

     +

h hn m
j i

ij h
h h T

h h h hi
h j

q
K

l q

δ
κ

δ

+

=

⎧ ⎫⎡ ⎤⎞⎛ ∂⎪ ⎪− +⎢ ⎥⎟⎜⎜ ⎟∂⎪ ⎪⎢ ⎥⎝ ⎠= ⎨ ⎬⎢ ⎥
∂⎪ ⎪⎢ ⎥+⎪ ⎪⎢ ⎥∂⎣ ⎦⎩ ⎭

∑

R

RR

P

U P U P

,  (22) 

i = 1, 2, 3 and j = 4, 5, 6 
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which are functions of the generalized coordinate vector q, 
i.e. of the relative position of base and platform. Note that 
the Kronecker delta δij has been used in Eq. (20). As for the 
terms that contribute to the coefficients of the stiffness 
matrix, the terms multiplied by (1 – δ(h)) represent the 
contributions provided by the internal and by the external 
preloads, while the terms multiplied by δ(h) represent the 
contributions provided by the system geometry.  
Equations (20)-(22) show that, for a given internally 
preloaded compliant coupling that is in equilibrium in the 
configuration q under the external load Q, the coefficients of 
the matrix K, and thus the stiffness characteristic of the 
system, can be tuned by proper choices of the free lengths 
l(h)0 that lie within the space defined by Eq. (18). In 
particular, choosing the l(h)0 that render the matrix K positive 
definite is the way to make the system stable; choosing the 
l(h)0 that guarantee that certain coefficients Kij are above or 
below a given threshold is the way to make the system 
selectively compliant in certain directions. 

VII. EXAMPLE: ANALYSIS OF AN OVER-CONSTRAINED         
2-DOF SPHERICAL PARALLEL MANIPULATOR 

In this section, the framework proposed for the stiffness 
analysis of internally preloaded compliant couplings is used 
to investigate the preloading and the stiffness characteristic 
of an over-constrained 2-dof spherical parallel manipulator. 
The architecture of the system and the states of equilibrium 
about which the analyses are performed have been kept as 
simple as possible in order to obtain results that are 
meaningful yet fit within the size of the paper. 

A. Manipulator Description 
A class of over-constrained 2-dof spherical parallel 
manipulators that can be obtained from three families of 
architecturally singular spherical 5-US-PMs (n = 5, m = 2) 
by the addition of 2 actuated legs of type UPS were 
described in [16].  
One of these manipulators is depicted in Fig. 3. It features a 
fixed base and a moving platform, five legs of type US 
(P1B1, P2B2, P3B3, P4B4 and P5B5) and two legs of type UPS 
(P6B6 and P7B7) with actuated prismatic pairs. The locations 
of the U and S joints in the base and in the platform, and the 
lengths of the five legs of type US are chosen so that for 
every configuration of the US-PM their axes belong to a 
degenerate congruence with rank 4, i.e. the variety of lines 
that lie in the plane defined by the unit vectors kb and ip or 
pass through point Op (the intersection of kb and ip). The 
center B6 of the joint that connects leg P6B6 to the base is 
located on the axis kb, while the center P7 of the joint that 
connects leg P7B7 to the platform is located on the axis ip. 
The manipulator has two decoupled degrees of freedom that 
are represented by a rotation of the platform about ip that is 
controlled by P6B6 only, and of a rotation of the platform 
about kb that is controlled by P7B7 only. 

By properly choosing the stiffness and the free lengths of the 
five legs of type US (PiBi, i = 1, …, 5), the manipulator can 
be internally preloaded to increase the mechanism stiffness-
to-weight and strength-to-weight ratios, to reduce system 
backlash, to tune the system stiffness and to allow the 
system to be built through simpler elements such as 
compression rods and lightweight cables (e.g. legs P4B4 and 
P5B5 can be compression rods while legs P1B1, P2B2 and 
P3B3 can be lightweight cables, or vice versa). The 
manipulator offers the potential for stiff, lightweight yet 
robust systems and is suited for high demanding 
applications, for instance in aerospace and automotive fields, 
such as pointing systems for mirrors and antennas, steering 
systems of vehicles and joints for biomimetic robots. 
The manipulator considered in this example has the 
following geometry: the parameters X(4,5,6), Y(1,4,5,6), Z(1,2,3,4,5), 
x(1,2,3,6), y(1,2,3,4,5,7) and z(1,2,3,4,5,6,7) are zero, while                 
X(1) = a,   X(2) = a cos(2π/3), X(3) = a cos(-2π/3), X(7) = -d,  
Y(2) = a sin(2π/3), Y(3) = a sin(-2π/3), Y(7) = -d, Z(6) = (a – b), 
Z(7) = a, x(4) = a, x(5) = -a, x(7) = -d, y(6) = b. The lengths of the 
legs of type US are (1,2,3,4,5) 2l a= . The vectors kb and ip are 
orthogonal. 
The configuration of the manipulator is defined by the 
generalized coordinate vector q = [0, 0, a, q4, 0, q6]T, for 
every q4 and q6 (i.e. the degrees of freedom of the system). 

B. Preloading and Stiffness Analysis 
The stiffness characteristic of the manipulator described in 
the previous subsection is studied by resorting to the 
internally preloaded compliant coupling (i.e. the model) that 
is obtained from the system depicted in Fig. 3 by replacing 
the links P(h)B(h), h = 1, …, 7, with translational springs. In 
particular, the links of the legs P1B1, P2B2 and P3B3 are 
replaced by springs with equal stiffness κ and equal free 
length l(1)0, the links of the legs P4B4 and P5B5 are replaced 
by springs with equal stiffness κ and equal free length l(4)0, 
and the telescopic legs P6B6 and P7B7 are replaced by 

 
Fig. 3.  2-dof spherical over-constrained parallel manipulator made by 
a spherical architecturally singular 5-US-PM [16] and by two actuated 
telescopic legs of type UPS. 
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springs with stiffness κ(6) and κ(7) and free lengths l(6)0 and 
l(7)0 respectively. In practice, κ models the structural rigidity 
of the manipulator legs of type US, while κ(6) and κ(7) model 
the total (structural and servo) rigidity of the telescopic legs. 
The free lengths l(1)0 and l(4)0 are independent of the 
manipulator configuration q and are chosen at the outset, 
while l(6)0 and l(7)0 depend on the manipulator configuration, 
i.e. on q4 and q6, and are controlled by the servos.  
The internal preloading and the stiffness studies were 
performed according to the guidelines reported in Sections 
IV, V and VI. For brevity, only the results that are related to 
the ∞2 states of unloaded equilibrium (no external loads, i.e. 
Q = 0) in the configurations q = [0, 0, a, q4, 0, q6]T, for every 
q4 and q6, are reported in the following.  
As for the internal preloading, use of Eqs. (7) shows that for 
the ∞2 states of unloaded equilibrium the free lengths must 
comply with 
 

( )(6)0 (6) 42 1 sl l b= = + , (23) 

 

(7)0 (7)0 6 63 2c 2sl l d= = − − , (24) 

 

(1)0 (4)0
5 2 2

3 3
l a l= − . (25) 

 
That is, the actuated legs P6B6 and P7B7 can be externally 
preloaded only. The internal preload acts on legs P1B1, P2B2, 
P3B3, P4B4 and P5B5 and can be governed by one 
independent parameter, either the free length l(1)0 or l(4)0. No 
internal preload exists if (1)0 (4)0 2l l a= = . Legs P1B1, P2B2, 
P3B3, and legs P4B4, P5B5 can be made, respectively, by 
lightweight cables and by compression rods when 

(4)0 2l a>  (vice versa if (4)0 2l a< ). 
As for the stiffness, use of equations (20)-(25) shows that 
for all the ∞2 states of unloaded equilibrium the manipulator 
has 10 (among 36) coefficients of influence that are always 
zero. The expressions of the vanishing and non-vanishing 
coefficients are given in the Appendix. Equations          
(A.1)-(A.17) show that the coefficients of influence are 
functions of the parameters q4 and q6, i.e. functions of the 
configuration of the system. These expressions also show 
that the coefficients K11, K12, K15, K22, K25 and K55 are linear 
functions of l(4)0 and, therefore, can be properly tuned by 
internally preloading the system. For example, a large value 
of l(4)0 ( (4)0 2l a> ) can be used to increase the absolute 
values of K15, K25 and K55 so that the system become more 
stiff against external torques that act on the platform about 
the axis kb and ip (which act in the plane defined by vectors 
kb and ip). 
 

VIII. CONCLUSION 
Architecturally singular parallel mechanisms with legs of 

type US (U and S stand for universal and spherical joints 
respectively) can be employed as complex kinematic 
couplings to build reduced-backlash, stiff, strong and 
lightweight over-constrained parallel manipulators. These 
mechanisms have redundant elements (legs of type US) 
which on one hand act in parallel to sustain the loads applied 
to the system and on the other make it possible to internally 
preload the mechanism in order to compensate for backlash 
in the kinematic pairs and to modify the overall stiffness of 
the system. 

This paper discussed an approach for the study of the 
static and stiffness analyses of these manipulators. In 
particular, a symmetric stiffness matrix defined as the 
Hessian of the elastic potential energy of the system has 
been proposed, as an alternative to the Cartesian stiffness 
matrix systematically used in this field, to investigate the 
stiffness characteristic of these over-constrained parallel 
manipulators. 

Application to a 2-dof spherical over-constrained parallel 
manipulator has been reported which highlights the effective 
potentials of the proposed approach and shows the stiffness 
performances of the manipulator. 

APPENDIX 
In the following, the expressions of the influence 

coefficients of the over-constrained 2-dof spherical parallel 
manipulator (described in Section VII) that is in equilibrium 
in one of the ∞2 configurations defined by the generalized 
coordinates q = [0, 0, a, q4, 0, q6]T, for every q4 and q6, under 
no external load, i.e. Q = 0, are provided: 
 

35 53 36 63 45 54 0K K K K K K= = = = = = , (A.1) 
 

46 64 56 65 0K K K K= = = = , (A.2) 
 

( )
( )

( )
( )

2 2 2
6 (4)0 4 6

(6)
4

11
2

6
(7)

6 6

2c 1 c s5
4 2 1 s2 2

1 c
                         

3 2c 2s

l
a

K

κ κ

κ

⎧ ⎫⎡ ⎤−
⎪ ⎪⎢ ⎥+ + +

+⎪ ⎪⎢ ⎥⎪ ⎪⎣ ⎦= ⎨ ⎬
⎪ ⎪−

+⎪ ⎪
− −⎪ ⎪⎩ ⎭

, (A.2) 

 

( )
( )( )
( )

2
(4)06 6 4 6 6

(6)
4

12 21
6 6

(7)
6 6

s c c c s
2 1 s2

1 s 1 c
        

3 2c 2s

l
a

K K

κ κ

κ

⎧ ⎫
− +⎪ ⎪+⎪ ⎪= = ⎨ ⎬

− −⎪ ⎪+⎪ ⎪− −⎩ ⎭

, (A.3) 

 
4 6

13 31 (6)
c s

2
K K κ= = − ,  (A.4) 
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( )
2
4 6

14 41 (6)
4

c s
2 1 s

K K bκ= = −
+

, (A.5) 

 
6

15 51 (4)0
c
2

K K lκ= = − ,  (A.6) 

 
( )( )
( )

6 6 6
16 61 (7)

6 6

s c 1 c
3 2c 2s

K K dκ
− −

= =
− −

, (A.7) 

 

( )
( )

( )
( )

2 2 2
6 (4)0 4 6

(6)
4

22
2

6
(7)

6 6

2s 1 c c5
4 2 1 s2 2

1 s
                        

3 2c 2s

l
a

K

κ κ

κ

⎧ ⎫⎡ ⎤−
⎪ ⎪⎢ ⎥+ + +

+⎪ ⎪⎢ ⎥⎪ ⎪⎣ ⎦= ⎨ ⎬
⎪ ⎪−

+⎪ ⎪
− −⎪ ⎪⎩ ⎭

, (A.8) 

 
4 6

23 32 (6)
c c

2
K K κ= = ,  (A.9) 

 

( )
2
4 6

24 42 (6)
4

c c
2 1 s

K K bκ= =
+

, (A.10) 

 
6

25 52 (4)0
s
2

K K lκ= = − , (A.11) 

 

 
( )( )
( )

6 6 6
26 62 (7)

6 6

s c 1 s
3 2c 2s

K K dκ
− −

= =
− −

, (A.12) 

 
( )4

33 (6)

1 s1
2 2

K κ κ
+

= + ,  (A.13) 

 
4

34 43 (6)
c
2

K K bκ= = , (A.14) 

 

( )
2

24
44 (6)

4

c
2 1 s

K bκ=
+

,  (A.15) 

 

55 (4)02
aK lκ= , (A.16) 

 
( )

( )

2
6 6 2

66 (7)
6 6

s c
3 2c 2s

K dκ
−

=
− −

. (A.17) 
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