
 
 

 

  

 Abstract – In this paper the first application of utilizing a 
unique 3D real-time mapping sensor for sequential 3D map 
building within a Visual Simultaneous Localization and 
Mapping (SLAM) framework in unknown cluttered urban 
search and rescue (USAR) environments is proposed. The 
sensor utilizes a digital fringe projection and phase shifting 
technique to provide real-time 2D and 3D sensory information 
of the environment. The proposed sensor is unique over current 
technologies, in that it can directly map rubble in 3D and in 
real-time at a frame rate of up to 60 fps. Furthermore, we 
propose the development of a novel 3D Visual SLAM method 
utilizing both 2D and 3D images taken by the sensor for robust 
and reliable landmark identification, mapping and localization 
algorithms utilizing a Scale Invariant Feature Transform 
(SIFT) -based approach. Preliminary experiments show the 
potential of the proposed 3D real-time sensory system for such 
unknown cluttered USAR environments.  

 Index Terms – Urban search and rescue, structured light, 3D 
Visual SLAM, SIFT. 

I.  INTRODUCTION  

The catastrophic earthquakes that hit northern and 
southern California in 1989 and 1994, and Kobe, Japan in 
1995 and the terrorist attacks on the World Trade Centers in 
2001 have clearly demonstrated the need for specially 
trained resources to respond to incidents of partial or 
complete structural collapse caused by these types of major 
disasters. Urban search and rescue (USAR) is defined to be 
the emergency response function which deals with the 
collapse of man-made structures [1].  

With the advancement of robotic research in recent 
years, rescue robots have been developed to address this 
particular conundrum and to lessen the burden on rescue 
workers. However, there are a number of challenges that 
roboticists must face in designing a USAR robot. In 
particular, major advances are needed in sensor techniques 
and sensor information interpretation for two main tasks: (i) 
victim identification, and (ii) navigation of the robot. Most 
robots’ relationship to their environments is limited by 
sensor technologies and cost, where their location in the 
environment, the layout of the environment, and the 
presence of victims is usually extracted from a single 2D 
video camera [1]. Furthermore, all robots that operate in 
USAR environments do not have any a priori information 
about landmarks in the scene and due to the nature of the 
surroundings cannot employ GPS. A robot operator in 
USAR environments faces the important tasks of 
remembering, recognizing and diagnosing a scene and how 
 

 

the robot and its camera are positioned and oriented within 
the scene merely from this camera. Often times, this leads to 
disorientation, the robot getting stuck, and not being able to 
identify victims that are present in the scene. In order to 
address the limitations of current sensors utilized in USAR, 
we propose the development of a 3D mapping sensory 
system for the effective 3D mapping of USAR environments 
and localization of mobile robots to minimize the stress and 
burden on the operator.  

This paper presents a major effort in developing a 
compact 3D sensory system for robotic search and rescue 
operations in unknown chaotic environments. We describe 
the first application of using a structured light sensor for 
sequential map building within a 3D Visual Simultaneous 
Localization and Mapping (SLAM) framework. The 
proposed sensory system is a unique cost-effective solution. 
Its main advantages over current technologies, is that it can 
directly map rubble in 3D and in real-time at a frame rate of 
up to 60 fps. With this sensor, 3D images along with 2D 
images of the rubble surrounding the robot can be made 
available to the operator in real-time. The performance of 
the 3D real-time mapping sensor will be independent of 
three main limiting factors of current sensors: (i) the use of a 
scanning mechanism, which is time-consuming in real-time 
applications, (ii) slow scanning speed; our sensor can 
provide 3D mapping in real-time, and (iii) the illumination 
conditions of the environment; our sensor will successfully 
work in dim lit and dark environments. The proposed system 
will map the 3D environment fast and reliably without the 
need for human intervention. The three main conundrums 
that will be addressed in order to generate an accurate 3D 
map of the environment are: (i) acquirement of 3D 
information about the landmarks in the scene, (ii) landmark 
identification, and matching, and (iii) 3D SLAM. 

In Section II, we review the current sensors utilized for 
mapping and define the SLAM problem. In Section III, we 
outline the overall 3D real-time mapping sensory system 
architecture. Experimental results are shown in Section IV. 

II.  SENSORY SYSTEMS FOR MAPPING USAR ENVIRONMENTS  

A. Current Sensors for Mapping 
Among all the existing sensory techniques that can be 

potentially used for mapping, stereovision is probably the 
most studied method. A stereo camera is the prime example 
of a passive optical triangulation system. Traditional 
stereovision methods estimate shape by establishing spatial 
correspondence of pixels in a pair of stereo images. 
Determining the correspondences between left and right 
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view by means of image matching, however, is a slow 
process. Furthermore, for 3D reconstruction, passive 
stereovision techniques depend heavily on cooperative 
surfaces, mainly on the presence of surface textures, and on 
ambient light [2]. Such texturing is absent in USAR 
environments where the surroundings are dark and covered 
in gray dust. Recently, Zhang et al., [3] developed a new 
concept called spacetime stereo, which extends the matching 
of stereo images into the time domain, where the 
shortcoming again is the requirement of the time-consuming 
task of matching of stereo images. Therefore, it is difficult to 
reconstruct high-resolution 3D shapes from stereo images in 
real-time. 3D cameras have also been proposed for mapping. 
However, the pixel array size of these cameras is limited and 
hence the resolution of both the 2D and 3D images can be 
low.  

Laser scanning consists of using a laser light source that 
sweeps a thin laser stripe across a scene. Simultaneously, a 
light sensor, i.e. camera, acquires the scene, where the 
surface of the scene is measured via triangulation, or time-
of-flight. The main disadvantage of laser scanners for 
robotic 3D mapping of USAR environments is that they 
require a lot of time for scanning, due to the fact that the 
laser stripe has to be physically moved across the scene to 
digitize the surface, and hence cannot provide real-time 
range data acquisition. Other disadvantages of laser scanners 
are high cost of production of their hardware components 
(i.e., costs are in the range of several tens of thousands), 
they are bulky and heavy for a small robot, and they can 
produce a variety of wrong points in the vicinity of edges.  

Due to the aforementioned limitations of laser scanning 
and stereovision for mapping in cluttered USAR 
environments, a hand full of research projects have been 
proposed for the development of unique sensors for such 
environments. In [4], Kurisu et al. proposed the use of two 
different laser range finders for 3D mapping of rubble: (i) a 
ring of laser beam module and an omnivision CCD camera, 
(ii) and an infrared laser module with a CCD camera to 
capture the laser image and another camera for capturing the 
texture. The optimal range of this system was determined to 
be 300 mm. There are two main limitations to these types of 
sensors: (i) they do not address real-time range data 
acquisition, and (ii) their reliance on robot internal sensors 
for mapping, in particular they can only measure in the x,y 
plane, the z-direction measurement for the 3D information is 
based on the robot’s inaccurate internal sensors.  
B. The SLAM Problem 

In order to map its environment, the robot must be able 
to determine where it is in relation to its surroundings. Due 
to the increase in uncertainty over time, robot sensors such 
as odometers are not sufficient for such a task. In indoor 
environments, usually the robot is mapping scenes in which 
known landmarks exist; hence the location of these 
landmarks can be utilized in order to localize the robot. In 
outdoor environments, accurate sensors such as GPS can be 
utilized to determine the location of the robot. However, all 
robots that operate in USAR environments do not have any a 

priori information about landmarks in the scene and cannot 
employ GPS/radio positioning due to the nature of the 
surroundings (i.e., inside cluttered collapsed buildings). 
Furthermore, USAR environments even more unique due to 
the characteristics of the uneven terrain. Hence, a 
localization algorithm is crucial while mapping the unknown 
site.  
 Some attempts have been made to directly formulate 
SLAM for rescue environments [5,6]. In [5], Ishida et al. 
utilized a 2D laser scan matching-based SLAM method to 
explore an environment with flat ceilings. A global map is 
then created using several sphere digital elevation maps 
(SDEM) and the relative locations among them. But the 
robot’s yaw orientation is extremely difficult to estimate by 
this method and it leads to errors in localization. 
Furthermore, the assumption of the environment having a 
flat ceiling limits the method’s application. In [6], 
Yokokohji et al. have conducted some preliminary work on 
3D SLAM assuming known data association. Based on 
robot accelerations and 2D range measurements from a laser 
range finder, an Extended Kalman Filter (EKF) is utilized 
for system state estimation. Only 2D positions of the 
landmarks can be measured, thus, relying on inaccurate 
robot sensory information for the third coordinate. 

Only recently interest has increased in utilizing cameras 
for SLAM applications, known as Visual SLAM [7]. 
Cameras are affordable and compact, and can be used to 
provide 3D range information. Furthermore, they have a 
high rate of acquisition and high angular resolution.  

Recently, attempts have also been made in the literature 
to develop methods for identifying distinctive invariant 
features from images that can be used to perform matching 
of objects from different views. One particular method is the 
Scale Invariant Feature Transform (SIFT) developed by 
Lowe in [8]. This approach transforms an image into a large 
collection of local feature vectors, each of which is invariant 
to image translation, scaling, and rotation, and partially 
invariant to illumination changes and affine or 3D 
projection. The resulting feature vectors are called SIFT 
keys. This method has been utilized effectively on 2D 
grayscale images to identify and match invariant features. 
Moreover, it works efficiently for object recognition 
problems where a training image of the object of interest is 
given.  

For visual SLAM in USAR environments we propose 
the utilization of SIFT features for identifying and matching 
of non a priori landmarks. However, since visual systems 
are restricted to the sensing and processing of information 
which can be displayed as 2D projections, we propose the 
utilization of 3D depth images of the scene. This additional 
information is utilized to extract strong evidence in 
discontinuity between multiple objects detected in a scene in 
order to locate large distinguishable landmarks in a USAR 
environment for 3D mapping of the environment. 

III.  3D MAPPING SYSTEM ARCHITECTURE  

In this section the main components of the proposed 3D 
real-time sensory system are described.  

FrB12.4

3890



 
 

 

A. Real-Time 3D Mapping Sensor 
A major group of 3D scanning techniques is structured 

light, which includes various coding methods and employs 
varying number of coded patterns [9]. Structured light 
systems are commonly adopted because they are simple for 
recognition, sampling, modelling, and coordinate 
calculation. Unlike stereovision methods, structured light 
methods usually use simpler processing algorithms. Unlike 
its laser counterparts, capturing happens in a single step, 
allowing the entire surface to be digitized by a single 
acquisition. Therefore, it is more likely to achieve real-time 
performance. Many techniques in this group have been 
developed, in particular using a single color pattern to boost 
the speed [10-13]. Even though it shows potentials for real-
time 3D scanning, scanning results are affected to varying 
degrees by the variations of the object surface color. Others 
use multiple coded patterns but switch them rapidly so that 
they can be captured in a short period of time. However, the 
need to switch the patterns by repeatedly loading patterns to 
the projector limits scanning speed. 

Huang et al. recently proposed a high-speed 3D shape 
measurement technique based on a digital fringe projection 
and phase shifting technique, which uses three phase-
shifted, sinusoidal grayscale fringe patterns to provide pixel-
level resolution [14,15]. The patterns are projected to the 
object with a switching speed of 360 fps. This technique is 
precisely what is needed to overcome the limitations of the 
aforementioned mapping systems currently in use, but little 
work has been done to apply this technology to the mapping 
and localization problem. Herein, we propose the 
development of a real-time 3D mapping sensor based on the 
basic concept of the digital fringe projection and phase 
shifting technique for mapping of USAR environments, Fig. 
1. Firstly, the technique consists of generating a color fringe 
pattern with its red, green, and blue channels coded with 
three different patterns created by a PC. When this pattern is 
sent to a Digital-Light-Processing (DLP) projector working 
in black-and-white (B/W) mode, the projector projects the 
three colour channels (R,G,B) in sequence repeatedly and 
rapidly over the scene. As a result, three greyscale fringe 
patterns with phase shift are projected onto the scene 
sequentially. A B/W high speed CCD camera synchronized 
with the projector captures the scene image consecutively. 

The fundamental concept behind this structured light 3D 
measurement system is PSI (Phase Shift Interferometry). 
The light intensity of an arbitrary point ),( yx  in images 
captured with patterns ( 1I , 2I , 3I ) can be expressed with 
Eq. (1)-(3) respectively: 

[ ]αφ −+= )y,x(cos*)y,x("I)y,x('I)y,x(I1  ,      (1) 
 

[ ])y,x(cos*)y,x("I)y,x('I)y,x(I φ+=2   ,     (2) 
 

[ ]αφ ++= )y,x(cos*)y,x("I)y,x('I)y,x(I3   ,    (3) 
where )y,x(I ′ is the average intensity; )y,x(I ′′ is the 
intensity modulation; )y,x(φ  is the unknown phase at 
point )y,x( ; andα  is the constant 32 /π . Three unknowns 

)y,x(I ′  )y,x(I ′′ and )y,x(φ  can be solved with the above 
equations. Once the phase information )y,x(φ  is retrieved, 
the 3D information of the scene could be reconstructed by 
applying both a phase unwrapping algorithm and a 
triangulation algorithm. Meanwhile, the texture information 
of the landmarks could be easily retrieved from every 3 
consecutive 2D fringe images, and mapped onto a 
landmark’s 3D model. Due to the fringe pattern projected by 
the projector having a high brightness, the system is more 
robust to environmental noises than those using stereovision 
methods. 

Fig. 1 shows the real-time structured light 3D shape 
measurement system setup. A DLP projector projects fringe 
patterns with the frequency of 360Hz. The B/W high speed 
CCD camera synchronized with the DLP captures the fringe 
images at the frequency of 90Hz. Based on the above PSI 
technique, each frame of the 3D shape is reconstructed using 
three consecutive fringe images. Therefore, the 3D data 
acquisition speed of the system is 30 frames per second. 
Together with the fast 3D reconstruction algorithms and 
parallel processing software we have developed, high-
resolution real-time 3D shape measurement is realized at a 
frame rate of up to 30 3D frames per second and a resolution 
of 532×500 points per frame.  

 
 
 
 
 
 
 
 

Fig. 1: System Diagram. 
 

B. Identifying Landmarks for 3D Visual SLAM 
When traveling in 3D cluttered environments, data 

association (i.e., landmark identification and matching)    
becomes a pertinent problem. In USAR environments there 
could exist many repetitive features. As the robot moves, it 
must be able to determine whether different sensor 
measurements correspond to the exact same landmark in its 
environment. In most cases, the SLAM problem has been 
addressed under known data association [16]. However, in 
most situations including USAR environments, this is not 
the case. Furthermore, incorrect data association can induce 
extreme errors in SLAM solutions. By utilizing a SIFT-
based approach and incorporating 3D grayscale depth 
imagery, we will be able to use more reliable and robust 
recognition and matching between landmarks from different 
images, therefore minimizing false matches. If an object in 
the foreground of an image is similar in intensity to the 
background, it is difficult to determine its boundaries. The 
use of depth images solves this problem, since a foreground 
object will always be at a closer depth, and can therefore be 
easily detected and identified as a potential landmark. The 
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SIFT approach consists of four main stages [17]: (i) Scale-
Space Extrema Detection, (ii) Keypoint Localization, (iii) 
Orientation Assignment and (iv) Keypoint Descriptor 
Assignment. Preliminary work, conducted by Nejat et al, has 
included the development of a Nearest Neighbour (NN) 3D 
keypoint search method and Canny-Deriche edge detection 
for landmark identification [18, 19]. 
 The overall proposed method will be discussed herein 
outlining its most pertinent stages: (i) identifying keypoints, 
(ii) identifying clusters, and (iii) matching of clusters. 

 1) Keypoint Identification: The keypoints of an image 
and their dimensional descriptors are determined (and 
stored) by finding the keypoints and descriptors for the (i) 
2D image, and (ii) corresponding 3D depth image utilizing 
the four stages of the SIFT algorithm, i.e., Table 1. In 
general due to shadowing effects and texture changes, a 
number of keypoints can be identified in the 2D images. Fig. 
2(a) shows keypoints (green circles) found on a box, with 
multiple keypoints on the flat surfaces of the box. In the 3D 
(i.e., depth) image, Fig. 2(b), the keypoints on the flat 
surfaces are no longer present since there is no significant 
change in depth on these surfaces. We can analyze and 
cluster the keypoints we found in the 2D image based on the 
keypoints found in the 3D image in which for the latter 
image shadowing and texture effects are not present. 
 2) Keypoint Clustering: Clustering keypoints is not only 
important in defining landmarks but also in reducing the 
number of keypoints of interest. The 2D and 3D images 
have a one-to-one correspondence. Mainly, if a keypoint 
does not exist in the same pixel in the 3D image, then the 
keypoint is assumed to be due to image shadowing and 
texture effects. Clusters are bound in regions where a large 
number of keypoints in the 3D image do not exist, i.e., they 
have considerably the same depth information. These 
clusters can be used to represent large distinguishable 
landmarks in the scene. Hence, we can identify a cluster of 
keypoints in the 2D image by bounding them by keypoints 
in the 3D image. We will use the clustering technique we 
developed in [19] to do this. 
 

 
 
 
 

 

Fig. 2: (a) 2D image, (b) 3D image of landmarks. 
 

3D Image Analysis 
 Keypoints that are determined in the 3D image are 
grouped together based on grayscale depth information into 
depth clusters, where they represent the cluster boundaries 
for the keypoints in the 2D image. The depth grayscale is 
determined from 0 to 255. 
Step 1: Initially, each keypoint is specified by 5 parameters: 
x location, y location, depth, scale and orientation, and 
stored in the matrix Aln, where l represents the number of 
keypoints and n represents the number of parameters, i.e., 
Table 1. 
 

Table 1: Step 1 of algorithm: Keypoint parameters matrix A. 
Keypoint  x position y position Depth Scale Orientation 
1 80.13 259.74 162 27.14 -1.357 
2 373.37 115.63 123 18.89 -1.751 

 

Step 2: The Canny-Deriche edge detection algorithm is used 
to determine potential boundaries of objects in the scene by 
identifying edge pixels via gradient intensity [20]. Fig. 3(a) 
and (b) show the 3D image of a scene and object boundaries 
obtained using the Canny-Deriche method. In relation to 
other edge detection algorithms, the Canny-Deriche method 
has shown to be the most optimal for our work.  
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 

Fig. 3: Step 2: (a) 3D image of scene, (b) Canny-Deriche 
algorithm to define boundaries for objects, (c) Step 3 of 

algorithm: Search region, (d) Step 4 of algorithm: Finding 
the NN keypoint. 

 

Step 3: The NN search method starts from an arbitrary 
corner of the image and locates the closest keypoint 
(keypointjk, where j=1 represents cluster number and k=1 
represents keypoint number in the cluster) to the corner. A 
square of side length 2r is drawn symmetrically around the 
keypoint to search for its NN keypoints, Fig. 3(c). If no 
keypoints are initially found, r is continuously incremented 
until keypoints are detected. Each detected keypoint and its 
5 parameters are stored in a temporary matrix Bpn for 
evaluation, where p represents the number of detected 
keypoints. For the initial point, only the portion of the 
square that encompasses the image is searched, i.e., the red 
square in Fig. 3(d). 
 

Step 4: A vector is drawn from the initial keypoint, 
keypoint11 to every keypoint in matrix B. N number of points 
on each vector are sampled for depth information, 
samplepointi, where i=1,2,…,N, Fig. 3(d). The NN keypoint, 
keypoint12 is determined to be the keypoint with the 
minimum change in depth information from keypoint11 and 
whose corresponding sample points have the smallest 
variation in depth from itself (i.e. keypointq, where q=1,…,p-
1,p) and keypoint11: 
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The objective of sampling multiple points between the 
keypoints is to ensure that boundaries of objects are not 
crossed. 
 Steps 3 and 4 are repeated until all keypoints in the 
corresponding cluster are identified.  The sample points 
from previous keypoints in the cluster are stored with their 
corresponding keypoints. This information is used along 
with sample points determined for the keypoint of interest in 
deciding whether the keypoint belongs to the cluster and its 
order within the cluster:  

],)(,)int 1)1( jmkimikj intkeypontsamplepoiintsamplepo[(fkeypo ++ = , 
(6) 
where m = 1,…, k-1, k.  For every keypoint that is added to 
the cluster, its A matrix information is updated with the 
following additional parameters: order in the cluster, number 
of connections to other keypoints, depth information stored 
from sample points. In order for a keypoint to be considered 
in the cluster, it must have a minimum of two connections to 
other keypoints in the cluster. 
 Once all keypoints are determined in a particular 
cluster, a new matrix with all the corresponding keypoint 
information is defined for that cluster. The algorithm, then, 
searches for new clusters starting at other corners of the 
image and Steps 2-4 are repeated accordingly. Once 
completed, the algorithm defines the keypoints that have not 
been clustered and determines if they belong to an old 
cluster or will create a new cluster.  

 

2D Image Analysis 
 Once all depth clusters in the 3D image have been 
identified, they can be used to identify their corresponding 
keypoints in the 2D image. Each depth cluster represents the 
boundary conditions for the 2D keypoints. Since there exists 
a one-to-one correspondence between the 3D and 2D 
images, the boundaries can be superimposed on the 2D 
image. Herein, cluster boundaries are represented by the 
connection vectors between the keypoints in the depth 
clusters. Based on the pixel occupancy of the boundaries, 
2D keypoints that are located within these boundaries are 
identified and stored in the cluster matrix. Each cluster is 
defined to represent a landmark in the environment, Fig. 4. 
It is important to note that this clustering method does not 
attempt to represent the shape of the landmark in the 
environment; it merely identifies detectable regions that can 
represent a portion of a true landmark and that can be 
matched in successive images with different viewpoints.  
 

Matching of Clusters 
 Matching of clusters relies on finding the same clusters 
in consecutive images by matching keypoints from the 
clusters from previous frames with ones in the new cluster 
of the current frame. We utilize the Best-Bin-First (BBF) 
method proposed by Lowe, in [17]. Herein, key descriptors 
of the keypoints are matched which can correspond to 
finding a set of NNs to a query point. The advantage of this 
method is its ability to handle high-dimensional spaces, i.e., 

the 128 dimensional descriptor vectors. Fig. 4(c) illustrates 
matching between two clusters determined in two different 
viewpoints of a scene. The blue lines represent the keypoints 
that were matched within the two images. The effectiveness 
of the method is shown in Fig. 4(c), where the majority of 
the matches made are correct matches. 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 4: Cluster results: (a) 3D image, and (b) 2D image, and 
(c) Matching of clusters in different images. 

 

C. Visual SLAM 
 The 3D range information of the landmarks is provided 
by the 3D sensor via a point cloud with respect to the 
camera coordinate frame. This information corresponds to 
the pixels the landmark occupies in the 2D image. Hence, by 
identifying the location of the SIFT keypoints representing 
one landmark in the 2D image, its 3D range information in 
the camera coordinate frame can be determined. The 3D 
coordinates of the same SIFT keypoints (SIFT pairs) in 
different images can be utilized to determine the 6 DOF ego-
motion parameters (i.e., ΔX, ΔY, ΔZ, Δα, Δβ, Δγ). At least 
three pairs of SIFT keypoints are needed to estimate the ego-
motion transformation. Since the position of the camera 
relative to the robot’s coordinate frame is known, the 
transformation between the robot at two locations can be 
determined. By utilizing this information and the 
localization information from the previous position, the 
robot’s location can be estimated. Furthermore, once the 
alignment of the same landmarks is determined between 
different visual sensor locations, the corresponding 3D 
range information of the scene can be stitched together for 
reconstruction of the USAR environment via a 3D global 
map. 

IV.  EXPERIMENTS 

 Several preliminary experiments were conducted to 
verify the proposed sensory system consisting of the PLUS 
U5-632 Digital projector with 1024×768 resolution and 
3000 lumens light output and the Dalsa CA-D6-0512 B/W 
high speed CCD camera (resolution 532×500). The system 
was placed on top of an all-terrain robot, Fig. 5. While the 
robot navigated through an environment filled with brown 
cardboard boxes, 2D and 3D images were taken in real-time. 
The effective range of measurement of the system was 
0.7~1.4m, with the current lens configuration of the camera 
and projector. The brown cardboard boxes mimic a USAR 
environment in the sense that they represent different shapes 
of objects and also the small variation in color of the scene. 

(a) (b)

cluster 

(a) 

(c) 
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Utilizing the images taken by the sensor, the landmark 
identification and matching, and Visual SLAM algorithms 
were implemented.   
 On average 264 and 1073 keypoints were determined in 
the 3D and 2D images, respectively. The maximum 
allowable change in depth between keypoints in a cluster 
was defined to be 80 (on a scale from 0 to 255), and the 
depth threshold for the sample points in Eq. (5) was set to 
20. In the experiment shown in Fig. 5, 8 clusters were found 
and matched at two different robot poses. The matched 
keypoint pairs and their corresponding 3D range information 
were utilized to estimate the 6 DOF ego-motion via the 
Levenberg-Marquadt nonlinear solver: i.e., ΔX=-69.85cm, 
ΔY=-9.99cm, ΔZ=4.99cm, Δα=-4.76o, Δβ=3.02o, Δγ=-4.71o. 
The true ego-motion determined by a high-precision motion 
control system was: ΔX=-70cm, ΔY=-10cm, ΔZ=5cm, Δα=-
5o, Δβ=3.18o, Δγ=-4.87o. This ego-motion estimation can be 
utilized for: (i) alignment in the stitching of 3D range 
information from the images, and (ii) to globally localize the 
robot in USAR environments. The proposed method took 
approximately 10s on a Pentium IV 3.0GHz 1Gb of RAM 
system. 

V.  CONCLUSIONS 

 In this paper, we propose the first application of using a 
structured light sensor for sequential map building within a 
3D SLAM framework. A SIFT-based method is utilized to 
analysis the 2D and 3D images taken by the sensor for 
effectively identifying large distinguishable landmarks in the 
scene and matching the landmarks for 3D Visual SLAM in a 
USAR environment. The preliminary experiments show the 
potential of the proposed method for such applications. 
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Fig. 5: Experimental results. 
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