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Abstract— This paper is a contribution to an invited session
on the benchmarking of parallel mechanisms. The aim of the
session is to compare different existing designs and prototypes
of parallel mechanisms using a common set of benchmarking
criteria. First, the kinematic architectures of parallel mech-
anisms of the multipteron family are presented. In addition
to the Tripteron and the Quadrupteron, the Pentapteron, a
five-degree-of-freedom (dof) parallel mechanism is introduced.
Then, the benchmarking criteria are applied to the prototypes
of the Tripteron (3-dof) and the Quadrupteron (4-dof) pro-
totypes. Although the Tripteron and Quadrupteron parallel
mechanisms have been presented elsewhere, their properties,
highlighted by the benchmarking analysis presented here are
revealed for the first time.

I. INTRODUCTION

Although hexapods, six-dof (degree-of-freedom) paral-
lel mechanisms, can be used as versatile robots and ma-
chine tools, their complexity is a major deterrent to their
widespread in industry. Indeed, in several manipulation and
manufacturing applications, simpler low-cost 3-dof and 4-
dof mechanisms are sufficient. In the machine tool indus-
try, for instance, manufacturers have introduced several 3-
dof parallel machines over the last decade. Most of these
machines are based on the Delta robot [1], a translational 3-
dof parallel mechanism. Examples of such machines include
the Triaglide built by Mikron, the Quickstep by Krause &
Mauser, the VerticalLine V100 by INDEX-Werke, the Urane
SX by Comau, and the PEGASUS by Reichenbacher.

In robotics, 3-dof and 4-dof arms represent a large pro-
portion of all the robots in use. In particular, the Cartesian
robots (translational robots) and the SCARA architecture
[2], which can produce the 4-dof Schönflies motions (also
called SCARA motions), are very widely used. Therefore,
researchers working on parallel mechanisms have proposed
many architectures capable of producing these simple motion
patterns.

Translational parallel mechanisms have been invented in
great numbers, ever since Clavel proposed his Delta robot
[3]. Examples include the typical design with three universal-
revolute-universal-joint legs or its slight variations [4], [5],
[6], or designs including parallelograms [7], other than the
obvious variations of the Delta robot. Several systematic
approaches were also proposed for the type synthesis of
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translational parallel mechanisms, such as methods based
on displacement group theory [8], [9] and methods based
on screw algebra or screw theory [10], [11].1 The Tripteron
[13], the first robot of the family studied in this paper, arose
from the type synthesis presented in the latter reference.

One of the earliest examples of parallel mechanism imple-
menting the Shönflies motions was a variation of the Delta
robot [3]. Later, Angeles et al. [14] proposed an architecture
based on parallelogram linkages, as well as an architecture
based on two legs [15], which can both be thought of as
hybrid architectures. Concurrently, the H4 robot, a fully
parallel Shönflies motion generator, was introduced [16].
Also, the (fully parallel) Kanuk and the (hybrid) Manta ar-
chitectures were proposed [17]. In [18], a synthesis approach
based on motion groups was proposed and new architectures
were revealed. In [19], a synthesis method based on screw
theory was presented and a large number of other new
architectures were discovered. One of these architectures led
to the Quadrupteron [20], a partially decoupled 4-dof parallel
mechanism producing the Schönflies motions.

This paper is part of an invited session that aims at
benchmarking several parallel robots including the Tripteron
[13], the Quadrupteron [20], the Triglide [21], the Orthoglide
[22], the Hexaglide [23], the H4/I4 [16] and the Gantry-Tau
robot [24]. Benchmarking results will be given in this paper
for the Tripteron and Quadrupteron parallel mechanisms.
Before these results are presented, we first describe the kine-
matic architecture of parallel mechanisms of the multipteron
family, including the Tripteron, the Quadrupteron and a new
member of this family — the Pentapteron. The Pentapteron is
a 5-dof parallel mechanism that arose from the type synthesis
performed in [25].

II. PARALLEL MECHANISMS OF THE MULTIPTERON
FAMILY

The three parallel mechanisms discussed in this paper are
part of a family of parallel mechanisms that can be referred
to as the multipteron family. They are based on fixed linear
actuators that are used to drive a common platform with 3,
4 or 5 dofs.

A. The Tripteron

The first member of the multipteron family, the Tripteron
[13], [26], is a fully decoupled [27] 3-dof translational par-
allel mechanism. It is represented schematically in Fig. 1. It

1For a complete list of the references on the type synthesis of translational
parallel mechanisms, see [12].
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Fig. 1. The Tripteron: a 3-dof translational parallel mechanism.

consists of three legs of the PRRR type attached orthogonally
to a common platform. In each leg, the direction of the P
(prismatic) joint and the axes of the R (revolute) joints are all
parallel. Each of the linear actuators thereby controls one of
the translations and the mechanism is fully decoupled. The
kinematics and workspace of the Tripteron were presented
in [13], its design was discussed in [26].

From [13], [26], the inverse (or direct!) kinematic problem
of the Tripteron can be written as

ρ1 = x, ρ2 = y, ρ3 = z, (1)

where ρ1, ρ2 and ρ3 denote the actuated joint coordinates
(linear displacement of the actuators), and x, y and z denote
the Cartesian coordinates of the moving platform.

B. The Quadrupteron

The Quadrupteron [20], represented schematically in
Fig. 2, is a 4-dof parallel mechanism capable of producing
the Schönflies motions, namely all translations plus one
rotation about a given fixed direction. The Quadrupteron is
composed of 4 legs of the PRRU type attached to a common
platform. Here, U stands for universal joints. The four
fixed linear actuators are mounted along three orthogonal
directions. In one of the legs, the last U joint degenerates
into an R joint because of the kinematic arrangement chosen.
Thus, there are three legs each having four R joints and one
leg having three R joints. In each leg, the axes of the first
three R joints (starting from the base) are parallel to the
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(a) Kinematic diagram.

(b) The prototype.

Fig. 2. The Quadrupteron: a 4-dof Schönflies-motion parallel mechanism.

direction of the P joint (linear actuator) within the same leg.
The axes of the R joints on the moving platform are all
parallel.

The mechanism is partially decoupled since the transla-
tion along the direction of allowed rotation is controlled
independently by one of the actuators. Additionally, for
a constant orientation of the platform, the mechanism is
fully decoupled. The kinematics, workspace and singularity
analysis of the Quadrupteron were presented in [20].

Let ρ1, ρ2, ρ3 and ρ4 denote the actuated joint coordinates
and x, y, z and φ denote the Cartesian coordinates of
the moving platform. The inverse kinematic problem of the
Quadrupteron can be written as [20]

ρ1 = x + sx1 cos φ− sy1 sinφ− rx1, (2)
ρ2 = y + sx2 sinφ + sy2 cos φ− ry2, (3)
ρ3 = z + sz3 − rz3, (4)
ρ4 = y + sx4 sinφ + sy4 cos φ− ry4, (5)

where sxi and syi are the coordinates of the attachment
points of the legs on the platform in the coordinate frame
fixed on the moving platform, while rxi, ryi and rzi are the
coordinates of the attachment points of the legs to the base
expressed in the fixed coordinate frame.

The forward kinematic problem can be resolved by solv-
ing a quadratic univariate equation. There are two sets of
solutions to the forward kinematic problem.
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Fig. 3. The Pentapteron: a 5-dof 3T2R parallel mechanism.

C. The Pentapteron

The Pentapteron is a 5-dof parallel mechanism that can
be used to produce all translations and two independent
rotations of the end-effector. Its architecture, obtained from
the type synthesis presented in [25], is depicted in Fig. 3.
It consists of 5 legs of the PRRRR type connecting the
base to a common platform. Similarly to the Tripteron and
Quadrupteron, the motion is produced by the 5 fixed linear
actuators, which are mounted along three orthogonal direc-
tions. Although all legs are of the same type, their geometry
varies slightly. Indeed, the geometric characteristics of the
mechanism are as follows: i) the five R joints attached to the
platform (the last R joint in each of the legs) have parallel
axes, ii) the five R joints attached to the first sliding body
of each leg have parallel axes, iii) the first two R joints of
each leg have parallel axes and iv) the last two R joints of
each leg have parallel axes. Also, for simplicity, the second
and third R joints in each leg are built with intersecting and
perpendicular axes and can thus be assimilated to a U joint.
In addition, the axes of the first R joints in all the legs are
arranged to be parallel to the direction of a group of two of
the linear actuated joints. Therefore, two types of kinematic
arrangements are possible for the legs: a) the parallel type
(see legs y1 and y2 in Fig. 3) in which the direction of the P
joint in a leg is parallel to the axis of its adjacent R joint, and
b) the perpendicular type (see legs x, z1 and z2 in Fig. 3) in
which the direction of the P joint in a leg is perpendicular
to the axis of its adjacent R joint.

In the Pentapteron, the axes of all the R joints are always
parallel to a plane. Thus, the constrained rotational dof is in
a direction perpendicular to the axes of all the R joints. The
position of the moving platform can be represented by x,
y and z while its orientation can be represented by θx and
θy . The orientation (θx, θy) is achieved by first rotating the
moving platform about the x-axis by θx and then rotating it
about the y-axis by θy starting from an initial orientation, in
which the axes of the R joints on the moving platform are
parallel to the x-axis.

The inverse kinematic problem of the Pentapteron is rather
simple. There are usually four solutions for the inverse

TABLE I
LINK LENGTHS OF THE TRIPTERON AND QUADRUPTERON.

Manipulator Leg Link length (mm)
Proximal Distal

Tripteron x 247.5 223.0
y 237.6 203.0
z 272.4 258.0

Quadrupteron x 167.0 167.0
y1 154.0 161.0
y2 154.0 161.0
z 203.0 223.0

kinematic problem in each of the legs (four working modes).
The inverse kinematic analysis of the leg of the parallel type
is equivalent to the inverse kinematic analysis analysis of a
translational parallel mechanism presented in [28], [29]. A
detailed discussion of the inverse kinematic problem of the
Pentapteron will be presented in an upcoming publication.
However, the forward kinematic problem of the Pentapteron
is rather complex and is still under investigation.

III. BENCHMARKING AND EXPERIMENTAL
CHARACTERISATION OF THE TRIPTERON AND

QUADRUPTERON

One of the objectives of the session in which this paper
is included is to compare different parallel mechanisms.
Therefore, a series of properties, discussed below, have been
agreed upon and will constitute the basis of this comparison.
Because the development of the Pentapteron is far less
advanced than that of the Tripteron and Quadrupteron, only
the latter two mechanisms will be treated in this section.
Moreover, since prototypes of the Tripteron (Fig. 1(b)) and
the Quadrupteron (Fig. 2(b)) are available, it was decided
to proceed with experimental measurements rather than to
base the benchmarking on computer simulations. Although
the sections of the links used in the prototypes may differ
from the standard sections proposed for benchmarking, the
experimental results will nevertheless provide valuable infor-
mation that can then be extrapolated to different link sections
if desired.

A. Dimensions of the links

Rectangular or square aluminium tubing was used for the
links of the Tripteron and Quadrupteron. For the Tripteron,
the proximal links are made of tubes of 38.1mm×25.4mm
having a thickness of 3.18mm while the distal links are
made of tubes having a section of 25.4mm× 25.4mm with
a thickness of 1.59mm. For the Quadrupteron, all links are
made of square tubes of 19.05mm side having a thickness
of 1.59mm except for the proximal link of the leg with a
vertical linear actuator, which is made of a square tube of
25.4mm side having a thickness of 3.18mm. The lengths
of the proximal and the distal links are given in Table I for
both prototypes.

B. Workspace to Installation Space Ratio

Referring to Figs. 1 and 2, it is clearly seen that
the Tripteron and Quadrupteron form a “box” around the
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Fig. 4. Ratio of the volume of the workspace to the volume of the
installation space as a function of the orientation φ for the Quadrupteron.

workspace. Therefore, for the Tripteron, the workspace to
installation space ratio is strictly dependent on the ratio
between the range of motion of the linear actuators and the
corresponding sizes of this box. For instance, if the range of
motion of the linear actuators is one half of the corresponding
edge of the box, the volume of the workspace will be
( 1
2 )3 = 1

8 . In practice, the prototype of the Tripteron was
not optimized for compactness and has a lower workspace
to installation space ratio. Indeed, the belt driven linear
actuators have a range of motion of 250mm while the
installation space is 776.5mm by 733.6mm by 653mm. The
workspace to installation space ratio of the prototype is then:

Ratio =
(250mm)3

776.5× 733.6× 653mm3
= 0.042 <

1
8
. (6)

The workspace to installation space ratio of the
Quadrupteron depends on the orientation (φ) of the platform.
Fig. 4 illustrates the relationship between this ratio and the
orientation. The first curve represents the ideal case for which
the motion range of the linear actuators is equal to the edge
of the installation space while the second curve corresponds
to the actual prototype, which has an installation space of
0.59m× 0.62m× 0.49m (0.18m3). One interesting feature
is that the maximum workspace is reached when the platform
is in its reference orientation (φ = 0).

C. Cartesian Stiffness

The stiffness of the two prototypes was determined experi-
mentally using a 6-axis force/torque sensor and displacement
measurements. The measurements were repeated at several
points in the workspace and the results are compiled in
Table II.

D. Natural Frequencies

The lowest natural frequency of the prototypes was deter-
mined experimentally using an accelerometer and a dynamic
signal analyzer. The procedure was repeated for several con-
figurations within the workspace. These configurations in-
cluded the reference configuration (centre of the workspace)
as well as configurations in which the legs were all folded
or all extended. The results are given in Table III. It can

TABLE II
MINIMUM, MAXIMUM AND AVERAGE STIFFNESS OF THE TRIPTERON

AND QUADRUPTERON.

Manipulator Axis Stiffness (N/m)
Min Max Average

Tripteron x 19253 46060 25895
y 23297 46178 30593
z 14821 30556 18696

Quadrupteron x 11501 36743 15147
y 21024 54243 37620
z 10176 27282 15437

TABLE III
MINIMUM, MAXIMUM AND AVERAGE FIRST NATURAL FREQUENCY OF

THE TRIPTERON AND QUADRUPTERON.

Manipulator Axis Lowest Natural Frequency (Hz)
Min Max Average

Tripteron z 14.7 17.7 16.3
Quadrupteron 14.5 16.8 15.4

be observed that the natural frequencies are somewhat lower
than what would be intuitively expected. This is due to the
decoupling of the mechanism: a load applied to the platform
in a given Cartesian direction is essentially taken by only
one of the legs.

E. Singularity measures

As shown in [13] and [20], the Tripteron and Quadrupteron
do not suffer from any constraint singularities. Indeed, the
constraints applied by the legs to the platform can never
become dependent.

Differentiating (1) with respect to time, we obtain the
input-output velocity equation of the Tripteron

ρ̇1 = ẋ, ρ̇2 = ẏ, ρ̇3 = ż. (7)

It can be observed from (7) that the Jacobian matrix of
the Tripteron is the identity matrix. Therefore, the robot
is completely decoupled and globally isotropic (isotropic in
all its configurations) and its kinematic dexterity is perfect
everywhere in the workspace. It can also be guaranteed that
there will never be any singularity inside the workspace,
for any set of design parameters. Singularities of type I
will occur only at the boundaries of the workspace, i.e.,
either when one of the linear actuators reaches one of
its limits or when one of the legs is fully extended or
folded. In the prototype, the geometric parameters have been
chosen in order to ensure that the legs can never be fully
extended or folded and the workspace is solely limited by
the range of motion of the linear actuators (the workspace is
a parallelepiped).

For the Quadrupteron, the Cartesian and joint velocity
vectors are defined as

t = [ẋ ẏ ż φ̇]T , ρ̇ = [ρ̇1 ρ̇2 ρ̇3 ρ̇4]T , (8)

and the velocity equation can be obtained by differentiating
(2)–(5) with respect to time[20]

Jt = ρ̇, (9)
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Fig. 5. Kinematic dexterity as a function of the orientation φ for the
Quadrupteron.

where the Jacobian matrix J is defined as

J =


1 0 0 (−sx1 sinφ− sy1 cos φ)
0 1 0 (sx2 cos φ− sy2 sinφ)
0 0 1 0
0 1 0 (sx4 cos φ− sy4 sinφ)

 . (10)

Since the Jacobian matrix is independent from the position
coordinates and depends only on the angle φ, the dexterity
is constant throughout the workspace for a given value of φ.
Therefore, singularities will occur only for specific values of
φ. This condition is obtained by setting the determinant of
J to zero, which leads to

tanφ =
sx2 − sx4

sy2 − sy4
. (11)

The solutions of this equation are the two following values:
±π

2 . For any other orientation of the effector, the workspace
is free of singularities. This is clearly illustrated in Fig. 5,
where the dexterity of the mechanism is plotted as a function
of the orientation φ. By limiting the orientation of the plat-
form between −π/2 and π/2, the Quadrupteron is singularity
free and its kinematic dexterity is as shown in Fig. 5.

F. Kinematic sensitivity

Referring to (1), it is clear that the inverse and direct
kinematics of the Tripteron are independent from the link
lengths. Therefore, the Tripteron is completely insensitive to
errors in the link lengths. In fact, such errors will affect the
coordinates of the passive revolute joints but not the position
of the platform.

From (2)–(5), it is clear that the inverse and direct kine-
matic problems of the Quadrupteron are independent from
the link lengths. Therefore, the Quadrupteron is completely
insensitive to errors in the link lengths. Similarly to the case
of the Tripteron, errors in these lengths will only affect the
passive revolute joints but not the position and orientation of
the platform.

TABLE IV
MAXIMUM ACCELERATIONS PERFORMED BY THE PROTOTYPES.

Manipulator Maximum acceleration
Tripteron 8.64 g
Quadrupteron 5.19 g

G. Maximum accelerations

1) Trajectory: The maximum acceleration for each of
the prototypes was obtained by generating a simultaneous
trajectory at each of the actuators. The trajectory is based on
a fifth order polynomial that ensures continuity of velocities
and accelerations, namely

s(τ) = ∆p(6τ5 − 15τ4 + 10τ3), (12)

with
τ =

t

T
, (13)

where t is the time, T is the total duration of the trajectory,
and ∆p is the magnitude of the total displacement performed
during the trajectory. Differentiating (12) twice with respect
to time, it is easy to show that T can be adjusted in order
to obtain a prescribed maximum acceleration amax. The
derivation leads to:

T =

√
10
√

3
3amax

|∆p|. (14)

2) Measurements: Since the second order derivative of
the encoders of the prototype is very noisy, an indirect
measurement of the acceleration was used instead. The max-
imum acceleration was computed from the fastest prescribed
trajectory which can be produced without saturation of the
actuators. A verification was also carried out by comparing
the plots of the actual position of the encoder with the
prescribed one, in order to ensure that the manipulator
followed the prescribed trajectory closely. Fig. 6 shows an
example of this comparison between the ideal trajectory
and the actual one. The maximum accelerations obtained
experimentally for the two prototypes are given in Table IV,
where g stands for the gravitational acceleration.

IV. CONCLUSION

This paper discussed several properties of parallel mech-
anisms of the multipteron family. First, the kinematic ar-
chitectures of the multipteron family were presented. In
addition to the Tripteron (3-dof) and the Quadrupteron (4-
dof), a new mechanism, the Pentapteron, was introduced.
The Pentapteron is a 5-dof mechanism that can be used
in applications where a 3T2R motion pattern is required.
Then, the Tripteron (3-dof) and Quadrupteron (4-dof) were
revisited. Several of their properties were highlighted and
measurements were performed on the prototypes in order
to assess some of their characteristics. One of the key
features of the Tripteron and Quadrupteron robots is that
their kinematics is extremely simple, which leads to ideal
dexterity and a singularity free workspace. Their simple
kinematics also leads to decoupling (or partial decoupling
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Fig. 6. Example of a trajectory used to obtain the maximum acceleration
of the two robots.

for the Quadrupteron) and makes these robots insensitive
to errors in the link lengths. Finally, it was shown that the
prototypes built can perform accelerations of approximately
8 g and 5 g respectively.
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d’un Élément dans l’Espace en Particulier pour Robot Mécanique,”
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