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Abstract— Speech has become an important part in Human
Robot Interaction (HRI), e.g. for person detection systems by
using localized sound sources or for applications in Automatic
Speech Recognition (ASR) systems. By using speech in HRI
in real world environments, we have to deal with mostly
high and varying background noise, reverberation and also
with different sound sources superimposing speech and other
noises. Therefore, for real world scenarios a suitable signal
preprocessing is essential.

In this paper, we present a part of the artificial auditory
system implemented on the mobile interaction robot HOROS

using only two low cost microphones. We combined neural Voice
Activity Detection (VAD) and adaptive noise reduction which
are essential aspects for HRI using mobile robot systems in
changing and populated real-world environments.

In the result, our system is able to robustly react on speech
signals from its human interaction partner while ignoring other
sound sources. Experiments show a significantly improved ASR
performance in demanding environments making the system
suitable for the use in real-world scenarios.

I. INTRODUCTION

When interacting with a mobile robot, speech plays an

important role as natural interface between human and a

robot. It is therefore desirable for a mobile robot to robustly

recognize speech in real world scenarios. Unfortunately, real

world environments often lead to reverberation, and besides

the sound source of interest, there may be other interfering

sound sources present, like fans, noises produced by the robot

itself, etc.. In the consequence, the performance of most

speech processing methods, e. g. speech detection, sound

source localization, Automatic Speech Recognition (ASR),

etc., will be significantly degraded. Hence, the preprocessing

of the sound signals is necessary providing an improved

input signal. Aspects that should be considered for the

preprocessing of sound signals should integrate the detec-

tion of different sound sources, the classification of them

as speech/non-speech, and signal enhancement by adaptive

noise reduction.

Sound source localization and separation on mobile robots

requires microphone arrays with at least two microphones.

In our work, we focus on an implementation using only

two low cost acoustic sensors. These provide the minimum

hardware equipment to apply sound source separation and

localization, although the accuracy of both aspects could be

increased using more microphones. The robot BIRON [1]
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also uses two microphones for sound source localization and

separation, but there is no Voice Activity Detection (VAD)

used. Speech is assumed if other sensory cues detect further

hypotheses of a human present at the direction of a detected

sound source (eg. using face detection). Another robot using

two microphones is ARMAR II [2] which implements VAD

based on energy and zero-crossing-rate.

While it is basically possible to gather localization in-

formation from only two microphones, there are several

implementations using more microphones. Both the robots

SIG2 [3] and Spartacus [4] use eight microphones for source

separation and speech recognition. In the result, Spartacus

is able to track up to four sound sources simultaneously.

Furthermore, the simultaneous voice of three speakers can

be separated with this setup.

Speech/non-speech classification of sound sources is also

known as Speech Segmentation or Voice Activity Detecti-

on (VAD). Using energy-based algorithms, one can detect

speech and silence segments at high signal-to-noise ratios

(SNR) [7]. Speech is assumed if the signal level exceeds a

threshold value, even if this is caused by a non-speech sound.

Methods based on spectral entropy have been proposed to

detect signal segments in noisy conditions [8], [10], [11].

These permit the detection even when the SNR is low. But

both energy and spectral entropy based algorithms do not

guarantee that the detected signal really contains speech.

Other sounds (music, hand claps, closing doors, etc.) might

be classified as speech as well. Neural or statistical classifi-

cation of speech and non-speech is able to distinguish these

kinds of sounds from human speech. VAD based on neural

networks using Multi-Layer-Perceptrons (MLP) and cepstral

matrices as input is implemented in [12]. This approach

needs to be trained with noisy input signals of several

background noises, and there is the need to train multiple

MLPs, one for each type of background noise. Our approach

uses adaptive noise reduction to pre-process the input signal

of the VAD, therefore improved input signals can be used

for training and there is no need to train multiple MLPs.

Recurrent neural networks considering temporal aspects,

requiring a more complex training than MLPs, have also

been proposed for VAD [13], showing only slightly better

classification performance.

It is crucial for adaptive noise reduction algorithms to esti-

mate the noise spectrum in order to apply spectral subtraction

and to gather the original speech signal. Cohen [14] proposed

the Minima Controlled Recursive Averaging (MCRA) tech-

nique based on minimum statistics. This approach adapts its

noise spectrum estimation and is therefore able to track the
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noise statistics even in non-stationary noisy environments.

Rangachari [17] derived a similar algorithm yielding faster

adaptation when the noise spectrum is rapidly changing. As

we will discuss in Sec. III-C we extended this approach to

use the output of a neural VAD to detect non-speech regions

which further improves the noise suppression.

This paper is organized as follows. Sec. II describes

the mobile robot HOROS on which the auditory system is

implemented, and potential applications to the new auditory

system are presented. Sec. III gives an overview of the

auditory system itself and describes the integrated methods

of source separation, voice activity detection, and adaptive

noise reduction. Finally, in Sec. IV, we present experiments

demonstrating the performance of the VAD and the adaptive

noise reduction.

II. ROBOTIC PLATTFORM AND APPLICATION

For our experiments we use the mobile interaction robot

HOROS (HOme RObot System)1. HOROS’ hardware platform

is an extended Pioneer robot from ActiveMedia. It integrates

an on-board PC (Pentium M, 1.6 GHz, 512MB) and is

equipped with a laser-range-finder (SICK) and sonar sensors.

For the purpose of Human Robot Interaction (HRI), this

platform was mounted with different interaction-oriented

modalities such as front and omnidirectional cameras, a

touchscreen, and a speaker.

Two low-cost microphones of type YOGA EMR-106 are

mounted at both sides of the robot’s head. The distance

between them is 27 cm. Since we are only using two

microphones, we are able to use the on-board sound card

of the Pioneer’s PC for audio recording, avoiding the need

for additional multi-channel audio capture hardware.

Our proposed auditory system used on HOROS is designed

for the following applications:

• ASR: By pre-processing the input sound signal of an

ASR system, we expect lower word error rates.

• Localization of speakers: By combining sound source

localization and VAD we will differentiate between lo-

calized speakers from other sounds, which is especially

important for HRI.

• Recording of voice messages of users: The voice recor-

der feature is used as a sort of answering machine. The

user can provide voice messages which will be stored

by the robot for later use. By using VAD, the beginning

and the end of the user’s speech can be detected to

automatically start and stop the recording. Thus, there

is no user interaction required, e.g. by pressing start/stop

buttons on the robot’s touch screen.

III. INTEGRATED METHODS

The auditory system consists of several technical and

methodical aspects, whereby the steps of audio signal pro-

cessing are depicted in Fig. 1. The input for the auditory

system is provided by the raw stereo signal of the two

1http://wcms1.rz.tu-ilmenau.de/fakia/

HOROS-Homepage.horos_project.0.html?&L=1

microphones, sampled at 44.1 kHz. Additionally, the sound

localization and the people tracker [18] provide information

on the direction of possible interaction partners currently

speaking. This information is used to initialize delay-and-

sum beamformers in the respective directions [6]. The beam

patterns of these beamformers are used by the Geometric

Source Separation algorithm (see Sec. III-A).

The adaptive noise reduction uses a minimum statistics

approach [19] to estimate the noise spectrum and to improve

signal quality by applying a Wiener-type gain filter (see

Sec. III-C). The enhanced signal is used to detect speech

using a neural voice activity detector (see Sec. III-B). The

results of the VAD are used to further enhance the noise

spectrum estimate, especially if no speech is present.

The respective parts of the auditory system will be de-

scribed in the following sections, mainly focussing on the

aspects of the VAD and adaptive noise reduction.

A. Source Separation

For many processing tasks, it is often desired to only

process one of the captured sound sources, e.g. the desired

speaker’s voice as input to the ASR system. Sound source

separation techniques can be used to gather the sound source

of interest out of an audio signal mixture recorded by

spatially separated microphones.

We use the
”
Geometric Source Separation“ (GSS) techni-

que described in [5] and [6] for separation of the speaker’s

voice and one interfering sound source from a different

direction. The sound source localization (see Fig. 1) is

used to detect new sound sources and to initialize the

beam patterns of the GSS algorithm accordingly with delay-

and-sum beamformers [6]. Additionally, our people tracker

provides direction information on where speakers are to be

expected, e. g. by detecting legs and skin color using other

sensory cues. This information is used to select the desired

GSS output channel containing the speech of the user for

further processing. Although the attenuation using the two

microphones is only 1-2 dB for typical noisy real-world

recordings, the preprocessing provides a better signal than

using only one microphone.

B. Voice Activity Detection

Distinguishing speech from other sound sources gives

the robot a powerful new opportunity to detect potential

interaction partners. We use a neural network approach for

detecting speech in the surrounding of the robot. An MLP

network is trained to classify short periods of the audio signal

into speech or non-speech segments.

Mel Frequency Cepstral Coefficients (MFCC) [9] are used

for dimensionality reduction of the network’s input data and

because of their ability to represent audio signals according

to human perception. We use 12 MFCC as features for

speech/non-speech classification, excluding the first coef-

ficient mostly representing the overall signal energy. To

include information from previous frames, the differences

between the last and the current coefficients are calculated

along with the change of these delta values. Additionally, we
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Fig. 1. Overview of the proposed Auditory System. The methods discussed here are displayed in the dashed box in the middle.

added spectral entropy as a classification feature, which is

calculated according to [10]

H = −

N
∑

k=1

pk log pk (1)

where pk is the probability density function (PDF) of the

current frame’s input spectrum S(k), which can be calculated

using:

pk =
S(k)

∑N

i=1 S(i)
. (2)

1) Network Architecture: The MLP gets its input from the

MFCC with their delta values and the entropy of the signal.

Thus, the input of the net consists of 37 values. The hidden

layer of the network provides 15 hidden neurons with tanh
activation function. We also tested networks with two hidden

layers, which however did not show improved classification

performance. The output of the network consists of one

neuron with tanh activation function. Its value is trained to

be in the range of -1. . . +1 where -1 means non-speech and

+1 means speech frame.

2) Training data: The training data recordings for the

neural net were divided into frames of 1,024 samples (23 ms

at 44.1 kHz samplerate) with 50 % overlap. The frames need

to be short enough to contain a stationary audio signal. Voice

recordings of 9 speakers (5 female, 4 male) were used, which

were recorded in a silent environment without significant

noise and reverberation. Therefore, we could label the frames

as speech or non-speech just by using an energy threshold

that we empirically set to −24 dB below the maximum

amplitude of the recorded signal. Afterwards, the resulting

speech frames were included in the data set for training

and testing. We used a total set of 13,521 frames consisting

of 6,316 speech frames and 7,205 non-speech frames. The

non-speech samples were gathered from three different kinds

of sounds: noises (eg. PC fans), music, and environmental

sounds such as shutting doors, clicks, coughs, etc.. The target

vector used to calculate the training and test error contained

binary teacher values (-1 for non-speech frames and +1 for

speech frames). The entire data set was divided into training

data (50 %), validation data (25 %), and test data (25 %).

3) Training: The network was trained using classic back-

propagation [15]. An increase of the validation error indicates

overlearning of the network so the training was stopped in

that case. The test data was used to measure the classification

performance on data which was not included during training.

The output of the network for each test input pattern was

assigned to contain speech/non-speech using a threshold

parameter set to 0.

4) Smoothing: Although the classification result of the

neural network can be used to segment a recording into

speech and non-speech by using the threshold value of 0,

the output of that VAD is still very noisy. This is because

of outliers in the classification output. Their amount can be

reduced by postprocessing the output of the neural network

(see Fig. 2, top row). In a first step, the fixed threshold of 0

is replaced by a state model using hysteresis-like thresholds

to switch between the states “speech” and “non-speech”.

This state model forbids transitions between the classes

speech and non-speech if the network output is between -

0.5 and +0.5. Therefore, weak classification results close

to 0 cause the state model to remain in its current state.

As can be seen in the middle row of Fig. 2, this state

model can eliminate many outliers of the final classification

result. Further improvement can be obtained if the network

outputs are averaged prior to applying the state model. The

lower row of Fig. 2 shows the network output after using

a mean of 5 adjacent frames. To avoid the loss of weak

speech components at the beginning and the end of a speech

segment, we propose to use 5 future frames for smoothing

if the current state is non-speech and 5 frames of the past

otherwise. To have access to the needed future frames, a

delay of the classification result by 4 frames (∼46 ms) has

been introduced.

C. Adaptive Noise Reduction

The recordings made with the microphones of the mobile

robot are disturbed significantly by additive noise. Parts

of that noise are produced by the robot itself, mainly by

the fans of the PCs and noise produced by the sonar

controllers. Additionally, non-stationary background noises

might appear dependent on the environment of the robot. The

noise markedly degrades the performance of typical speech
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Fig. 2. Classification of a sound input consisting of three speech utterances
(first 4 sec.) and one non-speech noise signal (between 6

th and 8
th sec.)

using different post-processing. Top: Speech segmentation using a fixed
threshold of 0.5. Middle: Speech segmentation using a state model ignoring
weak classification results close to zero. Bottom: Speech segmentation by
averaging over 5 frames of the neural network output and using the state
model.

processing methods such as VAD and ASR. To improve

the performance, we use a modified version of the adaptive

noise reduction proposed by Rangachari et al. [17]. It enables

the robot to operate in different noisy environments without

manually collecting noise segments. The method is based on

minimum statistics of the noisy input signal introduced by

Martin [19].

A microphone signal containing additive noise can be

expressed as

y(t) = s(t) + n(t) (3)

where s(t) is the clean input signal and n(t) denotes the

additive noise component. To apply noise reduction to the re-

corded noisy signal y(t), it is necessary to obtain an estimate

of the noise spectrum. Subsequently, spectral subtraction can

be used to retrieve an estimate of the clean speech signal.

Therefore, the noise reduction is applied in the frequency

domain using a Wiener-type gain function G(k) resulting in

an estimate of the clean input signal S̃(k) = G(k)Y (k). The

gain function is described by [17]

G(k) =
φs(k)

φs(k) + µφn(k)
(4)

where φs(k) is an estimate of the clean signal PDF and

φn(k) is the PDF of the current noise spectrum estimate.

The oversubtraction factor µ ≥ 1 can be used for stronger

attenuation if the segmental signal-to-noise ratio is very low,

assuming there is currently only noise present [20]. The gain

function is used to attenuate the input signal by the amount

of the estimated noise component. Therefore, its values are

close to 0 if there seems to be only noise currently present.

If speech without noise is assumed, the values of G(k) are

close to 1, leaving the input signal nearly unprocessed.

The noise reduction method by Rangachari et al. [17] uses

a signal-detection to determine which frequency bins are

likely to contain speech components. The presence of speech

at a specific frequency is assumed if there appears a sudden

increase of the energy level in the respective frequency

bin. In the consequence, the adaptation of the noise power

spectrum estimate is inhibited not to contain the detected

speech components.

Since the given approach does not differentiate between

speech and other non-stationary sound sources, an extension

with a VAD can reduce the error of the adapted noise

power spectrum estimate. We propose to use the neural VAD

presented in Sec. III-B for this purpose. The method by

Rangachari provides a frequency dependent “speech presence

probability” I(λ, k) at time frame λ. We use the output

y(λ) ∈ [−1 . . . + 1] of the VAD to scale down the speech

presence probability if a non-speech sound has been detected

at the respective time frame.

I∗(λ, k) =

{

y(λ)+1
2 · I(λ, k) if y(λ) < −0, 5

I(λ, k) otherwise
(5)

Since the use of the noisy microphone signal as input data

lead to weak classification results of the VAD, we propose

a two-pass noise reduction to enhance the classification

performance. In a first step, the method of Rangachari is

applied using its original signal decision value I(λ, k). The

resulting enhanced audio signal is used as the input of the

VAD. A second noise reduction with the same input data as

the first one is applied using the modified speech presence

probability I∗(λ, k) and providing the final noise reduced

audio signal.

IV. EXPERIMENTAL RESULTS

Our proposed auditory system will be used for the appli-

cations described in section II. Fig. 3 shows an example for

the output of the auditory system integrating the aspects dis-

cussed. The adaptive noise reduction reduces the underlying

noise automatically providing better input signals to the VAD

and ASR systems. Originally, the sound source localization

responded to any sound source present. By using the VAD,

the non-speech detections can be ignored providing the robot

with a speaker localization.

The adaptive noise reduction decreases the influence of

the noise automatically within the first few seconds (see

Fig. 3). It is even capable of adapting to sudden changes

in the underlying noise spectrum, as can be seen in Fig. 4.

Therefore, the VAD receives a signal containing much less
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noise which improves the speech/non-speech classification

performance.

Fig. 3. Top: The noisy input signal containing two speech utterances
and one non-speech sound (hand-clap). Middle: The output of the auditory
system. The noise is reduced and the speech and non-speech segments have
been classified. Bottom: The detected angle of the sound source localization,
which can be combined with the classification results to ignore non-speech
sounds.

Fig. 4. The wave form of one microphone signal (top) and the output of the
proposed auditory system (bottom). The noise reduction reduces the amount
of noise over time, even after a sudden change in the noise characteristics
(dotted line).

The classification performance of the neural VAD was

evaluated using the voice of 30 different speakers recorded

in an office environment at distances of 75 cm and 150

cm to the robot. These voice recordings were manually

labeled as speech and non-speech segments. Additionally,

non-speech sound sources were recorded such as hand claps,

clicks, noises produced by computer-fans, etc.. In total, there

were 369,377 frames processed by the VAD (∼70 min.

at a window length of 1024 samples and 50 % overlap).

Tab. I shows the resulting classification rates: 83,68 % of the

overall time frames were correctly classified as speech/non-

speech. Additionally, the voice recordings were grouped into

recordings containing keywords of the ASR system and

recordings of a read out text passage. As can be seen in

Fig. 5, the classification rates of the keywords are slightly

higher because these were articulated better, whereas the

read out text contained more weak speech components. As

can also be seen, the classification performance is degrading

with larger distances. This is because the signal-to-noise ratio

gets lower and the influence of reverberation is increasing in

that case. The best classification performance (87,23 %) is

achieved with ASR keywords at a distance of 75 cm. Since

the robot HOROS is a service robot aiming at dialog-based

interaction, this is a typical use case. Most of the time the

speaking user will be located right in front of the robot at

interaction distance.

frames correct

speech 184,136 152,699 (82,93 %)

non-speech 185,241 156,382 (84,42 %)

overall 369,377 309,081 (83,68 %)

TABLE I

THE TOTAL NUMBER OF FRAMES TESTED AND THE NUMBER OF

CORRECTLY CLASSIFIED FRAMES USING THE PROPOSED NEURAL VAD.

Fig. 5. The speech/non-speech classification rates of the VAD at speaker
distances of 75 cm and 150 cm for keywords of the used ASR system and
a read out text paragraph.

By extending the adaptive noise reduction method by

Rangachari et al. [17] with the proposed neural VAD, the

detection of non-speech regions in the recorded audio signal

can be improved significantly. Fig. 6 shows the mean square

errors of the noise power spectrum estimates using Rang-

achari’s method and our proposed method. The recordings

contained highly non-stationary signals of noise sources so

the noise reduction algorithms needed to adapt their noise

power spectrum over time. The proposed method is able to

adapt faster to the original spectrum leading to significantly

lower noise estimation errors. This is achieved by improving

the detection of non-speech regions with the neural VAD.

Finally, we show the improvement of the word recogni-

tion rate using the commercial, speaker-independent, and

keyword-based ASR system “Novotech GPMSC” [16]. For

this purpose the recognition rates were evaluated using a total

of 120 clean utterances provided by four speakers (2 male, 2

female) out of a vocabulary containing 93 utterances. These

were mixed with noise recordings to provide different signal-

to-noise ratios in the range from -5 to 30 dB in steps of 5

dB. The recognition rates of the ASR system were evaluated

using the enhanced speech signal of the auditory system and

compared to the results where the unprocessed microphone
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Fig. 6. Mean square error of the noise-power spectrum estimation of highly
non-stationary noise sources using the method by Rangachari et al. [17] and
the proposed extension with the neural VAD.

signals were used. The results are shown in Fig. 7. As

can be seen, the recognition performance can be increased

significantly in the presence of strong background noise. On

recordings with an SNR of 0 dB, the ASR performance could

be improved by 37.5%. As expected, for high signal-to-noise

ratios the improvement in terms of recognition rates gets

smaller. The SNR of typical voice recordings presented to the

robot in real-world scenarios is app. 5-20 dB. It depends on

the sound level of the speaker and the respective environment

noise. The increase of the recognition rate for this range of

SNR was 1-28%.

Fig. 7. Recognition rates of the ASR system at different signal-to-noise
ratios.

V. CONCLUSIONS

We presented a new adaptive auditory preprocessing for

a mobile interaction robot. The system was designed to im-

prove automatic speech recognition by using adaptive noise

reduction. Experimental results showed a noticeable increase

in word recognition performance of up to 37.5% if the

proposed auditory system was used. A voice activity detector

has been implemented using a neural classifier approach.

This allows the robot to detect speakers by combining its

result with a sound source localization. A voice recorder

has been enhanced with an automatic start/stop controller

reacting on the user’s speech. The system proved its ability to

detect the user’s speech even under noisy conditions making

it suitable for the use in real-world environments.

Further improvement of the system might be the imple-

mentation of an improved sound source localization algo-

rithm for detecting multiple sound sources simultaneously.
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