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Abstract— This paper presents a novel approach to large
view visual servoing in the context of object manipulation. In
many scenarios the features extracted in the reference pose
are only perceivable across a limited region of the work space.
The limited visibility of features necessitates the introduction
of additional intermediate reference views of the object and
requires path planning in view space. In our scheme the visual
control is based on decoupled moments of SIFT-features, which
are generic in the sense that the control operates with a dynamic
set of feature correspondences rather than a static set of
individual features. The additional freedom of dynamic feature
sets enables flexible path planning in the image space and online
selection of optimal reference views during servoing to the goal
view. The time to convergence to the goal view is estimated by
a neural network based on the residual feature error and the
quality of the SIFT feature distribution. The transition among
reference views occurs on the basis of this estimated cost which
is evaluated online based on the current set of visible features.
The dynamic switching scheme achieves robust and nearly time-
optimal convergence of the visual control across the entire
task space. The effectiveness and robustness of the scheme is
confirmed in an evaluation in a virtual reality simulation and
on a real robot arm with a eye-in-hand configuration.

I. INTRODUCTION

Vision is expected to play a progressively more important
role in service robotic applications in particular in the context
of manipulation of daily life objects. Image based visual
servoing solely relies on 2D image information for the
alignment of the end-effector with an object of unknown
pose [1]. The desired pose for grasping is demonstrated to
the robot and a set of reference features is extracted from
the image. Subsequent approaches of the robot and camera to
the goal pose are accomplished by regulating the image error
between the current and reference features without explicit
geometric reconstruction of the object pose.

Optimal motion control for visual servoing to a static
reference view has been discussed in [2], [3] and is based on
the decoupling of the translational and rotational degrees of
freedom achieved by a partial pose estimate using either the
homography or the fundamental constraint. Both approaches
require the online estimation of the homography or funda-
mental matrix in the servo loop, with at least four or eight
feature point correspondences. The method in [2], [3] focuses
on the optimal control with respect to a fixed set of features,
whereas our approach addresses the issue of large view
visual servoing with extraction and matching of dynamic
sets of SIFT features. The view space is partitioned by an
entire set of intermediate, partially overlapping reference
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views of the object. The authors in [4] integrate a path
planner in the image space with a visual controller based on
potential fields in order to obtain visual navigation for large
displacements. The work in [5] extends these concepts to
qualitative visual servoing based on objective functions that
capture the progression along the path, the feature visibility
and camera orientation. This paper provides a contribution
to optimal path planning in the image space considering
the residual feature error in conjunction with the quality
of the feature distributions in alternative reference views.
The additional flexibility of dynamic feature sets provides
the basis for opportunistic online switching among reference
views while navigating towards the goal view. [6] describes
a method for automatic selection of optimal image features
for visual servoing in terms of robustness, uniqueness and
completeness. Additional performance criteria concern the
systems observability, controllability and sensitivity. Our vi-
sual features are generic moments computed over a dynamic
set of point features. Maximum robustness and observability
of the statistical moments is achieved by aggregation over all
available and matched features. Our objective is to estimate
the quality of feature sets from alternative reference views
online based on similar criteria as [6]. Optimal reference
view selection relies on an estimate of the time to conver-
gence of residual errors. This estimate is provided by a neural
network that is trained with feature errors and distributions
as input to predict the time to convergence. The proposed
scheme is model-free in so far as it does not depend on a
geometric object model or reconstruction of the object or
camera pose, which means that navigation and control is
entirely performed in the image space.

The paper is organized as follows: Section II provides the
definition of decoupled visual features based on weighted
moments of SIFT features used for visual servoing in 6 DOF.
Due to the limited visibility of SIFT features across different
views it is necessary to introduce intermediate reference
views. The time optimal reference selection to accomplish
large view visual servoing is introduced in III as well as
the navigation in the image space. Section IV demonstrates
the experimental results on a sphere and a semi cylinder
setup and analyzes the convergence behavior of alternative
switching strategies. The paper concludes with a summary
and outlook on future work in section V.

II. VISUAL SERVOING WITH SIFT FEATURES

Scale invariant feature transformations (SIFT) introduced
by Lowe [7] occur frequently in textured objects and are
invariant to changes in scale, orientation, illumination and
affine transformations. They are uniquely identifiable and
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robustly matched across different views of the same object.
These properties render them particularly suitable for model
free image based visual servoing. Our scheme is motivated
by the work of [8], which relies on image moments rather
than points features to overcome the shortcomings of visual
servoing schemes. SIFT features for visual servoing applica-
tions were first introduced by [9], in which the authors focus
on the robust feature selection and explicitly reconstruct the
object pose based on the epipolar geometry. A novel image-
based controller that augments conventional point features
by the additional attributes scale and keypoint orientation
of SIFT features is presented in [10]. This work is impro-
ved by establishing a one-to-one correspondence between
feature and camera motion based on weighted moments that
eliminates or at least minimizes the undesired couplings [11].
A set of reference SIFT features is automatically extracted
from an image of the object captured in the demonstrated
reference pose. The automatic feature selection detailed in
[10] identifies a subset of robust and non-ambiguous features
for the ultimate visual servoing of the robot to the reference
pose. The visual servoing in 6 DOF relies on six associated
statistical moments computed over the location, scale and
orientation of the SIFT features. Notice, that the term feature
has a dual meaning as it refers to the point like SIFT
features as well as the visual features aggregated over a
set of matched SIFT features subject to control. A single
SIFT-feature Fi contains four attributes, namely its pixel
coordinates ui and vi, its canonical orientation φi and its scale
σi. The scale changes inversely proportional to the distance
between the camera and the object. The orientation φi is
consistent with the camera rotation about its optical axis.
Scale and orientation are ideal for the control of the distance
to the object and the rotation around the optical axis as they
prove widely independent of translations and rotations along
the other axes. The rotation and translation along the cameras
optical axis are captured by the moments

fγ = ∑n
i=1 φi

n
, fz = ∑n

i=1 σi

n
(1)

which correspond to the mean orientation and scale of
detected SIFT-features. The translations along x- and y-
axis are regulated with respect to the geometric centroid of
the point features. The geometric centroid is susceptible to
translations along the z-axis causing an undesired coupling
with this motion. The decoupling of the centroid from the z-
motion is achieved by dynamically weighting the individual
point features. The moments

fx =
n

∑
i=1

wiui, fy =
n

∑
i=1

wivi (2)

correspond to the weighted mean of the matched SIFT
feature locations and capture translations along the x- and y-
axis respectively [11]. The 6 DOF visual control is completed
by the moments fα and fβ associated with rotations along
the x- and y- axis.

fα =
n−1

∑
i=1

n

∑
j=i+1

(−v̂i − v̂ j) ·
∥∥�p j −�pi

∥∥
∑n

k=1 ∑n
l=k+1 ‖�pk −�pl‖ (3)

The moments fα and fβ detect the perspective distortions of
lines connecting pairs of SIFT features caused by rotations.
The term

∥∥�p j −�pi
∥∥ denotes the length of the line connecting

the two pixels. This length is multiplied by the weight factor
(−v̂i − v̂ j). Its sign indicates whether the line is above or
below the u-scan-line through the cameras principal point.
The absolute magnitude of the weight increases with the
vertical distance from the image center. The moment fβ is
defined in an analog manner to fα , by interchanging the u
and v components.

III. TIME-OPTIMAL REFERENCE SELECTION

For large view visual servoing intermediate views are
defined to navigate across the entire view hemisphere. It
becomes desirable to switch between intermediate views in a
stable, robust and time-optimal manner. The cost in terms of
number of control cycles to converge from the current view
to the reference image is estimated in order to compute the
optimal path. Crucial for this purpose is the proper definition
of performance criteria for approximation of the cost function
and the analysis of their correlation with the cost. In our case,
an artificial neural network learns the relationship between
the control criteria and the costs in a supervised manner.
The training data is obtained from observations of the actual
number of control cycles required for transitions between
neighboring reference views.

A. Performance criteria

1) Feature error: The overall feature error

f (I)={∆ fx, ∆ fy, ∆ fz, ∆ fα , ∆ fβ , ∆ fγ}
constitutes the most significant performance criterion for the
estimation of the cost. A single feature error alone does not
provide a good estimate of cost, because the actual time until
convergence depends on the feature error with the slowest
task space motion, usually associated with the translational
degrees of freedom. The rotational errors are bounded by
the visibility constraint and are usually stabilized within a
few control steps. Each element of f (I) is normalized to
the interval [0,1] according to its maximum range. The total
feature error is the sum of normalized errors.

f̂ (I) =
6

∑
i=1

∣∣ f̂i(I)
∣∣ (4)

The feature error already attributes to a substantial amount
of variation in the cost, nevertheless the cost estimate is
improved by inclusion of additional criteria that capture the
quality and robustness of visual control.

2) Number of features: The robustness and the control
performance increase significantly if more than the minimal
number of correspondences is established. The redundancy
of multiple features reduces the noise level and contributes to
the beneficial widespread dispersion of features in the image
space. A small number of features might cause a compact
distribution of point features, which might cause poor or even
unstable control in the image space. The number of matched
features also provides an estimate of the geometric distance
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of the current view to the reference pose. Distant poses
only share a subset of mutually visible features, whereas
the number of correspondences naturally increases with the
proximity of both viewpoints. The criterion C(I) = n is
defined as the number of feature correspondences between
the current and the reference view. The number alone is not
a unique indicator of the expected cost as it also depends
on the distribution of these features defined in terms of their
entropy and variance around the centroid.

3) Entropy: Entropy measures the order or disorder in a
distribution. The image is partitioned into N = 10 vertical and
horizontal equally spaced columns and rows. The entropy
along the two axes is calculated as

Eu,v(I) = −
N

∑
i=1

Hu,v(i) · logN (Hu,v(i)) (5)

in which Hu,v(i) denotes the relative frequency of SIFT featu-
res in the ith column respectively row. Whereas high entropy
indicates a uniform distribution, a low entropy reveals an
inhomogeneous distribution, which harms the robustness and
speed of convergence of visual servoing.

4) Centroid location: The visual features fα and fβ
benefit from a distribution uniformly centered around the
principal point in order to capture the distortion of line
segments. The deviation of the feature centroid from the
origin is expressed by

|ū| =
n
∑

i=1
| ui−u0

n | |v̄| =
n
∑

i=1
| vi−v0

n | (6)

in which low values represent desirable feature distributions.
5) Variance of the feature distribution: The variance of

the feature positions provides an additional estimate of
the quality of the feature distribution. A low variance in
particular in conjunction with a dislocated centroid reflects a
feature distribution that is suboptimal for visual control and
delays the convergence to the reference image. The variances
are computed as

σu =
n

∑
i=1

(ui − ū)2

n
, σv =

n

∑
i=1

(vi − v̄)2

n
(7)

Notice, that entropy reflects the geometric homogeneity of
the feature set, whereas variance captures its width.

B. Correlation between criteria and time to convergence

Control experiments from 150 initial positions randomly
distributed over the task space are recorded in order to eva-
luate the correlation between the performance indicators and
the time to convergence. Each control step of an individual
run constitutes a training sample for supervised learning of
the neural network. A control run is considered as successful-
ly converged to the reference image if all feature errors are
reduced to within 10% of their average initial value. The
correlation between the performance criteria and the actual
time to convergence provides insight into the influence and
relevance of the individual indicators. The linear dependency

between two stochastic variables is computed according to
Pearson’s correlation coefficient:

rXY =

n
∑

i=1
(xi − x̄)·(yi − ȳ)

√
n
∑

i=1
(xi − x̄)2 ·

√
n
∑

i=1
(yi − ȳ)2

, (8)

which assumes values in the interval [−1,1]. Large absolute
values indicate strong correlation between the two quantities.
Table I specifies the correlations between the performance
indicators and the cost in terms of time to convergence.

TABLE I

PEARSON CORRELATION BETWEEN PERFORMANCE FEATURE ERROR

RESP. CRITERIA AND TIME TO CONVERGENCE

∆ fx ∆ fy ∆ fz ∆ fα ∆ fβ ∆ fγ f̂
rXY 0,30 0,14 0,17 0,14 0,13 0,13 0,63

C(I) Cn(I) Eu(I) Ev(I) |ū| |v̄| σu σv
rXY -0,66 -0,72 -0,66 -0,72 0,44 0,32 -0,64 -0,62

The individual feature errors are only slightly correlated
with the cost, whereas the normalized summed feature error
f̂ is indeed a proper indicator of the distance to the reference
pose. Notice, that the number of matched features Cn(I)
correlates even more with the cost than the summed absolute
errors f̂ . The scalar summed error contains less information
than the entire error vector f (I). This is explicable, as the
feature errors related to the translational degrees of freedom
converge at a slower rate.

In order to predict the time to convergence two neural
networks with different input features are trained with the
data acquired during the 150 experimental runs. The multi-
layer perceptrons are composed of 16 neurons in the hidden
layer and are trained with the standard back-propagation
algorithm. The first network only uses the six-dimensional
feature error f (I) as input, whereas the second network
in addition has considers the performance criteria c(I) =
{Cn(I),Eu(I),Ev(i), ū, v̄,σu,σv}. Figure 1 depicts the rela-
tionship between the estimated costs on the x-axis and
the true costs for the full input network. It also shows
the linear regression for the partially and fully informed
network. The neural network only trained with the feature
error f (I) achieves a correlation between estimated and true
cost of 0.75. This correlation is substantially improved by
incorporation of the additional performance criteria to a
degree of 0.96. The improvement in prediction accuracy of
the fully informed network error compared to the pure feature
error based network is confirmed by the reduced training and
test set error shown in table III-B. This demonstrates that a
distance metric in the image space to the goal view, has a
significantly lower correlation with the costs than f (I) in
conjunction with the image distribution indicators C(I). This
observation confirms that the distribution of the SIFT-feature
crucially effects the control performance.
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Fig. 1. Neural network estimate versus true cost (+) and regression line
for the neural network with f (I) as input and ( f (I),c(I)) as input.

TABLE II

TRAINING AND TEST SET ERROR FOR NEURAL NETWORK TRAINED WITH

f (I) ONLY AND WITH f (I),c(I)

RMSE train RMSE test correlation
f (I) 0.0149 0.0297 0.75
f (I),c(I) 0.0072 0.0092 0.96

C. Navigation in the image space

Our approach neither requires a geometric model of the
object nor is it aware of the spatial relationship between
the reference views. Instead the optimal path is planned
online in the image-space rather than in the task space. For
that purpose each reference-view (RV) represents a node in
an undirected graph, in which edges define neighborhood
relationships between overlapping views. The cost of an edge
connecting two views reflects the transition time between the
views expressed in terms of number of iterations to converge
from the initial view to the neighboring view. The graph
supports the global initial path planning from the start view
to the desired goal view, but it also forms the basis for the
decision when to switch to the next reference view. The cost
estimation within the path planning consists of two major
steps, an off-line computation of graph costs between the
reference view and and an online computation of the cost
from the current view to the overlapping reference views.
The planner switches between reference view based on a
comparison of the accumulated costs of currently feasible
reference views.

1) Initial path-planning and cost-estimation: The initial
cost estimation is based upon the graph constructed from the
complete set of reference-views which form its nodes. The
number of matching features is computed for every possible
pair of reference views. An edge is generated between
two overlapping views if they share five or more common
features. The cost of an edge is estimated by evaluating
the set of corresponding features with the neural network
described in the previous section. The optimal path from

Goal-View (GV)

RV 1
RV 2

RV 3

RV 4

Current View (CV)

Costs CV-RV3

Costs CV-RV4

Costs

RV1-GV
Costs

RV2-GV

Costs

RV4-RV3

Costs

RV3-RV2
Costs

RV1-RV3

No correspondig

Features

Fig. 2. Reference-, Goal- and Current View represented by a Graph

every reference-view to the goal-view is calculated with the
well-known Dijkstra-Algorithm [12] for finding the shortest
path in a weighted graph. This calculation is part of the teach-
in-process in which reference views are captured across the
work space and is performed off-line in advance.

2) Current cost estimation and selection of optimal
reference-view: The features extracted from the current view
(CV) are continuously compared to those of overlapping
reference views in order to identify the optimal current refe-
rence view online during control. The time to convergence
is estimated for the feasible reference views in the same way
as for the initial generation of the graph. The total costs for
reaching a specific reference view plus the already estimated
cost for the shortest path from that node to the goal view are
compared among all feasible views. The node with minimal
cost is selected as the next reference view to be included
into the shortest path to the goal. The view evaluation is
only performed every fifth control-cycle in order to reduce
the amount of online computations.

Fig. 2 depicts a section of a graph generated from a set of
images with four intermediate reference views RV1, . . . ,RV4,
a goal view GV and the current view CV . The images
associated with a view are diagrammed by rectangles, the
hatched areas represent the overlap between neighboring
images which contain common SIFT features. The cost of the
transition from the current view to the two feasible reference
views RV3 and RV4 depends on the number and quality of
common features in the gray areas. The current view has
no connection to the reference views RV1 and RV2 as the
subset of common features is empty, as indicated by the
dotted line. A hysteresis in the switching scheme avoids the
risk of the visual controller getting trapped in a limit cycle
around the optimal switching point due to uncertainties in
the cost estimate or fluctuations in the matched features. The
initially estimated costs of the optimal path from the current
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view to the goal are weighted by the number of intermediate
nodes from the candidate reference views to the goal node.
That way, switching to a reference view which node is
closer to the goal node becomes more attractive, whereas
the reverse switching to a more distant node is suppressed
even if its estimated cost seems more attractive. A transition
to a lower cost reference view is initiated if its superiority
is confirmed in two consecutive iterations, thereby gaining
additional robustness with respect to cyclic switching.

IV. EXPERIMENTAL RESULTS

This section presents an evaluation of the proposed sche-
me in visual servoing experiments within a virtual reality
environment and on a real 5 DOF robotic arm with an
eye-in-hand configuration. In both experimental setups the
performance of the cost estimation based switching scheme
is compared with two alternative methods. The first method,
in contrast to our scheme, assumes that the geometric di-
stance in task space between reference views is known. It
switches to the reference view closest to the goal pose, once
the minimal number of visual features is perceived. This
switching strategy ignores the perceptability and quality of
the set of matched feature and is from a control point of
view not sufficiently robust. Nevertheless for the purpose
of comparison it provides an upper performance limit. The
second method computes an optimal static path that connects
the start to the goal node based on the static costs. It is
not opportunistic as it does not reestimate the costs online,
or replans if other reference views not originally included
in the plan suddenly appear more attractive. It switches to
the next view outlined in the plan upon convergence of
the feature error to a current reference view. This method
although suboptimal is robust from a control point of view,
but is still improvable by relaxing the convergence criterion
without sacrificing robustness.

A. Navigation across a sphere

A virtual-reality simulation of a free moving camera
allows the verification of the large view visual servoing
scheme without being constrained by the robot kinematics
or workspace. The camera navigates in 6 DOF around a
sphere textured with a schematic map of the globe. The
reference views are equidistantly located along longitudes
and latitudes. The task is to guide the camera visually from
the north to the south pole. Fig. 3 depicts the distribution of
reference-views together with the path pursued by the three
methods under comparison. Even though the camera is initi-
ally located above the north pole, all schemes immediately
transit to an initial reference view that is already closer to
the goal. The distance based method picks a different great
circle route than the other two schemes as it ignores the
issue of feature quality. A better rationale is to select the
great circle route which guarantees visibility of a sufficient
number of features for a stable traverse to the south pole.
We term this effect the Pacific-problem, as for our globe
example, the equal-distant paths either moving over America
or Africa contains more features due to the texture and
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text on the continents than crossing the Pacific with sparse
features. The right part of fig. 3 compares the sequence
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and progression of reference views followed by the three
alternative methods. Fig. 4 shows the evolution of the task
space error in terms of iterations. The number of iterations
until convergence is approximately the same for the optimal
image-based and the distance based navigation method. For
the former the goal pose is reached within 300 iterations, for
the later in about 290 iterations, whereas the static scheme
with complete convergence takes about 560 iterations.

B. Navigation across a semi cylinder

The scheme is also evaluated in an experiment on a 5DOF
Katana robot with an eye-in-hand camera configuration.
As the workspace of the manipulator is rather limited, the
camera navigates across the inner surface of a semi cylinder
with a circumference of 1.8m and a height of 0.4m. The
inside of the semi cylinder is textured with a panoramic
photo of our campus. This cylindric configuration is optimal
with respect to the workspace of the robot as it allows a
maximal number of sufficiently distinct reference views. The
reference views form a 15× 6 grid, horizontally separated
by 10 °, vertically by 5cm. The kinematics of the specific
robot limit the camera motion to 5 DOF. At the start pose
the camera points at the upper left part of the image and
the goal is located in the lower right corner of the cylinder.
As shown in Fig. 5, all methods follow largely a similar
view-sequence. The only significant deviation occurs halfway
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through the path in a region which mostly contains sky and
ground and therefore few distinctive features. The optimal
switching scheme takes a small vertical detour in order to
exploit the higher concentration of features in the textured
band between sky and ground. The number of iterations
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until final convergence is about 300 for the optimal method,
400 for the distance-based approach and 600 for the fixed-
convergence-method. The difference in time to convergence
results from the fact, that the two other methods require a
much longer time to traverse the region of sparse features
as the visual control fluctuates to the poorer quality of
feature distributions. This observation is confirmed by an
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analysis of the evolution of the relative task space error
with respect to the intermediate reference views shown in
fig. 6. The upper graph depicts the progression of task
space error and switching sequence for the proposed scheme
the lower graph for the static scheme. The static scheme
wastes iterations in phases at which the feature error is
already low but not yet fully converged. The optimal cost
based scheme avoids delayed transition to the next reference
view, as it already switches for substantially larger residual
errors without compromising the stability of the control. The
sample rate of the visual control loop is approximately 4
Hz, limited by the computational effort for feature extraction
(160 ms), online path planning and matching (70 ms) and
computation of visual features and differential kinematics (30
ms). The time for feature extraction is proportional to the size
of the image and the average number of detected features.
The time for extraction of a single feature on a 1.8Ghz P4-
System for a resolution of 320∗240 pixels is approximately
1ms.

V. CONCLUSION

This paper presents a novel approach for optimal large
view visual servoing based on decoupled moments of SIFT-
features. The workspace is partitioned into a set of overlap-
ping reference views in order to navigate visually from start
to the goal pose. The switching between reference views
occurs on the basis of the estimated time to convergence
taken the quality of matched features into account. The cost
of reference views is evaluated online throughout progression
to the goal view, such that the scheme opportunistically
selects the reference view that is optimal in the current
context. The experimental results in virtual reality and on
the real robot demonstrate that the approach minimizes
the time to convergence without sacrificing the robustness
and thereby stability of the visual control. Future work is
concerned with the transfer of the large view visual servoing
with SIFT features from the domain of manipulation to
navigation of mobile robots in unstructured environments.
In this context our research focuses on the development of
an heuristic switching scheme for large visual servoing, that
is independent of the object and does not require an offline
exploration of the view space for prior cost estimation.
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