
ICTINEUAUV Wins the First SAUC-E Competition

D. Ribas, N. Palomeras, P. Ridao, M. Carreras and E. Hernàndez.

Abstract— A pioneer team of students of the University of
Girona decided to design and develop an Autonomous Under-
water Vehicle (AUV) called ICTINEUAUV to face the Student
Autonomous Underwater Challenge - Europe (SAUC-E). The
prototype has evolved from the initial Computer Aided Design
(CAD) model to become an operative AUV in the short period of
seven months. The open frame and modular design principles
together with the compatibility with other robots previously
developed at the lab have provided the main design philosophy.
Hence, at the robot’s core, two networked computers give access
to a wide set of sensors and actuators. The Gentoo/Linux
distribution was chosen as the onboard operating system. A
software architecture based on a set of distributed objects with
soft real time capabilities was developed and a hybrid control
architecture including mission control, a behavioural layer and
a robust map-based localization algorithm made ICTINEUAUV

the winning entry.

I. INTRODUCTION

From 1990, the Association for Unmanned Vehicle System
International (AUVSI) has promoted the design and develop-
ment skills of Autonomous Underwater Vehicles (AUV) by
means of an annual competition for the american students
[1]. Inspired by this competition, the Defence Science and
Technology Lab (DSTL), the Heriot Watt University and
the National Oceanographic Centre of Southampton have
organized the first Student Autonomous Underwater Chal-
lenge Europe (SAUC-E) [2]. SAUC-E is a competition for
european students to foster the research and development of
underwater technology. In January 2006, a team of students
collaborating with the Underwater Robotics Lab of the
University of Girona decided to form the VICOROB-UdG
Team to face the challenge [3]. Given the short period of time
to invest in the project, our team decided to overlap the hard-
ware and the software development (concurrent engineering)
taking advantage of a hardware in the loop (HIL) simulator
Neptune [4]. This paper describes the ICTINEUAUV as an
entry to the 2006 SAUC-E competition (additional references
to similar vehicles can be found in [5], [6]). The paper is
organized as follows. The mechanical, hardware and software
design are explained in sections II to IV. Section V explains
the map-based navigation system. Finally, sections VI and
VII present the mission and the results respectively before
concluding in section VIII.

Manuscript received September 15, 2006. This work was supported in part
by the Dirección General de Investigación of Spain under project DPI2005-
09001-C03-01.

The authors are with the Dept. Electrònica, Informàtica i Automàtica,
Universitat de Girona, 17071 Girona, Spain (dribas@eia.udg.es,
npalomer@eia.udg.es, pere@eia.udg.es,
marcc@eia.udg.es, emilihb@eia.udg.es)

II. MECHANICAL DESIGN

The SAUC-E mission takes place in a small confined area
in which a high manoeuvrability is required. In this situation
a hover-type vehicle propelled and steered by thrusters is
the most desirable configuration. The classical open frame
design, commonly adopted by commercial ROVs, together
with a modular design of the components conveniently
housed in pressure vessels, is probably the simplest and most
reliable approach. Although hydrodynamics of open frame
vehicles is known to be less reliable than the hydrodynamics
of close hull type vehicles, it is simpler and cheaper, as
it is very easy to upgrade and maintain. For all these
reasons ICTINEUAUV has adopted the open frame design
(see Figure 1). Our robot is propelled by four thrusters. It
can move in the heave and sway directions depending on
the composition of forces generated by the vertical thrusters.
On the other hand, horizontal thrusters are used to move
forward (surge DOF) as well as to change the heading (yaw
DOF). Hence, the prototype is a fully actuated vehicle in four
DOF (surge, sway, heave and yaw), while being passively
stable in Roll and Pitch as its meta-centre is above the centre
of gravity. The robot chassis is made of Delrin material.
Three pressure vessels are used for holding the electronics.
The two bigger cylinders are made of aluminium while the
smaller one is made of Delrin. They all have a cover with
all the connectors and use a conventional O-ring rubber
for water-tight sealing. One of the cylinders houses the
computers, another the thruster controllers and the batteries,
and the last encapsulates the Motion Reference Unit (MRU).

Fig. 1. ICTINEUAUV, the VICOROB-UdG Team’s entry for the SAUC-E
2006 competition.

2007 IEEE International Conference on
Robotics and Automation
Roma, Italy, 10-14 April 2007

WeA5.4

1-4244-0602-1/07/$20.00 ©2007 IEEE. 151

The thrusters were built using MAXON DC motors of
250 Watts, using planetary gears and contained in stainless
steel housings. Three blade brass propellers are linked to
the motor by a stainless steel mechanically sealed shaft,
providing around 14.7/14.2 Newtons of forward/backward
thrust. Buoyancy is provided by a cover of technical foam
with 10.5 litres volume and a weight of 0.6 Kg.

III. HARDWARE DESIGN

A. Computer Module

Two PCs, one for control and one for image and sonar
processing connected by a 100 MBs switch, form the core of
the robot’s hardware. The control PC is an AMD GEODE-
300MHz powered by a 50 W power supply module. The
PC104 stack also incorporates an A/D and digital I/O card
with 8 analogue input channels, 4 analogue output channels
and 24 digital I/O. The mini-ITX computer is a Via C3 1
GHz Pentium clone and is used to process the data from
the imaging sonar and the cameras. A cheap PCTV110 from
Pinnacle is used for image processing.

B. Power module

The power module contains the four power drivers for
the thrusters as well as a pack of 2 cheap, sealed lead-
acid batteries. A DC-DC converter is included to provide
a stabilized voltage to the rest of components. There is
also a simple relay circuit which commutes between the
internal and the external power. External power, supplied
through an optional umbilical, is very useful for running
long term experiments before the competition. It is worth
noting that the batteries have been dimensioned for the short
time experiments to be done during the competition days.
Moreover, when the robot works with external power it can
recharge the internal batteries.

C. Sensor Suite

The vehicle is equipped with a complete sensor suite
composed of a forward-looking color camera, a downward-
looking b&w camera, a MRU MTi from XSens Tech-
nologies, a Miniking imaging sonar from Tritech, an echo
sounder, a transducer for acoustic device detection and an
Argonaut Doppler Velocity Log (DVL) from Sontek which
also includes a compass/tilt sensor. Additional temperature
and pressure sensors and water leak detectors were installed
into the pressure vessels for safety purposes.

D. Actuators

In addition to the four thrusters previously mentioned,
the vehicle is also equipped with an actuator to release the
markers when the bottom target is detected (See mission
description in Section VI)

IV. SOFTWARE DESIGN

The software architecture has the task of guaranteeing the
AUV functionality. The real-time POSIX, together with the
ACE/TAO CORBA-RT ORB, have been extensively used
to develop the architecture as a set of distributed objects

Thruster5

Obstacle

detector

Internal

W ater, Tº &

Pº sensors

DVL
Imaging

sonar Thruster1 ...

4

MRU
Thruster4

Mission Level

Task Level Vehicle Level

Camera

Robot interface module

Control module

Echo

sounder
Hydrophone

Marker

thrower

Navigator

Perception module

Fig. 2. Schematic of the ICTINEUAUV software arquitecture.

with soft real time capabilities. These objects are distributed
among the two onboard PCs and the external PC. The
last one is only used during the experiments in the lab,
being connected to the robot through the umbilical cable
for monitoring purposes. The architecture is composed of
a base system and a set of objects customized for the
desired robot. There are classes providing soft real-time
capabilities, this guarantees the period of execution of the
periodic tasks such as the controllers or the sensors. Another
important part of the base systems are the loggers. A logger
system is used to log data from sensors, actuators or any
other object component. Loggers do not execute in real
time, they are background processes which receive the data
from real time objects. Their role consists of packing the
data and saving them into files. It is worth noting that,
although loggers do not run in real time, the data has a time-
stamp corresponding to the gather time. Moreover, all the
computers in the network are synchronized by means of the
NTP (Network Time Protocol) and hence, all the data coming
from different sensors can be time related. The software
architecture is divided between three modules (fig. 2): Robot
interface module, Perception module and Control module.

A. Robot interface module

This is the only module that containing software objects
that dialog with the hardware. There are basically two
types of objects: sensor objects responsible for reading data
from sensors and actuator objects responsible for sending
commands to the actuators. Sensor objects for ICTINEUAUV

include a DVL, an imaging sonar, an MRU, two cameras, a
depth sensor, and an echo sounder. There are also objects
for the safety sensors like water leakage detectors and
internal temperature and pressure sensors that allow for the
monitoring of the conditions within the pressure vessels.
Actuator objects for the ICTINEUAUV include the thrusters,
and the marker thrower.

B. Perception module

This module contains two basic components: the Naviga-
tor and the Obstacle Detector. The Navigator object has the
goal of estimating the position of the robot. To accomplish

WeA5.4

152

P
ercep

tio
n
M
o
d
u
le

R
o
b
o
t
In
terface

M
o
d
u
le
(S
en
so
rs)

Task Level (Behaviours

Library)

T
ask

L
ev
el

(C
o
o
rd
in
ato
r)

V
eh
icle

L
ev
el
(V
elo
city

C
o
n
tro
ller)

R
o
b
o
t
In
terface

M
o
d
u
le
(A
ctu
ato
rs)

Mission Level

Mission File

Control Module

Behaviour 1

Behaviour 2

Behaviour 3

Behaviour n

…

Direct

Stimuli

Processed

Stimuli

Uncoordinated

Motion

Commands

Uncoordinated Actuators Commands

Coordinated

Motion

Commands

Regulated

Motion

Commands

Fig. 3. Schematic of the ICTINEUAUV control architecture.

this task, there is an interface called NavigationSensor from
which all the localization sensors (DVL, MRU, depth sensor)
inherit. This interface provides all these sensors with a set
of methods to return the position, velocity and acceleration
in the six DOF together with an estimation of the quality
of these measurements. The Navigator can be dynamically
connected to any NavigationSensor and, using the quality
factor, fuses the data to obtain a more accurate position,
velocity and acceleration. Furthermore, the Navigator can
also access the imaging sonar to implement the navigation
method described in section V. The Control module uses
the navigation data provided by the Navigator keeping the
behaviours independent of the physical sensors being used
for the localization. The Obstacle detector uses the same
philosophy to provide obstacle position in the world fixed
frame. The Obstacle detector is also used to detect the
distance between the vehicle and the bottom of the pool.
Detecting frontal obstacles is possible using the echo sounder
or the imaging sonar, and the pool bottom obstacles can be
detected with the DVL sensor.

C. Control module

The control module receives sensor inputs from the per-
ception module and sends command outputs to the Actuators
residing in the Robot Interface Module (fig. 3). Since task
and behaviours are words that are interpreted in different
ways for different authors in the literature, hereafter, we
describe how they are interpreted within our project. A
behaviour is a function that maps the sensor input space
(stimuli) into a velocity setpoint (behaviour response) for the
robot’s low level controller. The behaviour response is chosen
in a way that drives the robot towards its corresponding
goal. In this way, the goal corresponding to the KeepDepth
behaviour is considered to be achieved when the robot is
within an interval around the desired depth. A task is a set
of behaviours that are enabled together to achieve a more
complex goal. For instance, KeepDepth and MoveTo2D can
work together to allow for planar navigation. The control
module follows the principles of the hybrid control architec-
ture organized in three layers: Vehicle Level, Task level and
Mission level.

Vehicle Level
The vehicle level is composed of a MIMO PID velocity

controller for each DOF. This object reads the vehicle veloc-
ity from the Navigator object and receives the velocities set
points from the Coordinator Object. This level also includes a
simple control allocator strategy based on the pseudo inverse
of the thruster configuration matrix [7].

Task level
The Task level is a conventional behavioural layer [8]

including a library of behaviours that can run alone or in
parallel. Each behaviour has a particular goal. The input of
a behaviour can be taken from any object of the software ar-
chitecture (sensors, perception module...). The output, called
behaviour response, contains:

• Velocity setpoints for every DOF normalized between
-1 and 1.

• Activation level for every DOF normalized between 0
and 1 indicating how important it is for the behaviour
to take control of the robot.

• Blocking term (Boolean) set stating if the behaviour
must block the execution thread of the mission level.

To initialize a behaviour, apart from setting its particular
parameters, it is necessary to specify the following attributes:

• Enable: Boolean variable that indicates if the behaviour
is activated or not and if its output will be considered
by the Coordinator.

• Priority: Priority stating the relative importance of each
behaviour.

• TimeOut: The time out indicates when the behaviour
will block the execution thread. If TimeOut< 0, the
behaviour blocks the execution thread until its goal is
fulfilled. If TimeOut= 0, the behaviour doesn’t block
the execution thread. If TimeOut> 0, the behaviour
blocks the execution thread until TimeOut seconds or
until its goal is fulfilled.

During the execution of a mission, more than one behaviour
can be enabled simultaneously. Hence, a coordinator module
is used to fuse all the responses corresponding to the enabled
behaviours into a single response to be sent to the velocity
controller (Vehicle Level).

Each degree of freedom is considered separately since not
all the behaviours act over all the DOF. To combine all the
behaviour responses, the Coordinator sorts all the responses
by their priority and combine the responses for every DOF,
two by two, from the highest priority to the least. To combine
the responses, the activation level and a k factor are used.
Equation 1 show this process. a1, a2 and s1, s2 correspond
to the activation level and the desired setpoints for the highest
priority and the least priority behaviour respectively, while s

corresponds to the final coordinator response.

s =
a1s1

a1 + a2(1− a1)k
+

a2s2(1− a1)
k

a1 + a2(1− a1)k
(1)

The Coordinator output, after combining all active behav-
iours, is a vector as large as the number of the robot’s DOFs.
Each value corresponds to a normalized velocity [9].

WeA5.4

153

Mission level

Finally, the upper layer (mission level) is responsible
for the sequencing of the mission tasks, selecting for each
mission phase the set of behaviours that must be enabled as
well as their parameters.

The mission controller was built with a Petri network in
which the sequence of tasks is defined. Since the vehicle
moves in an unstructured environment, unexpected situations
have to be taken into account by the mission designer.
According to the network, some nodes will become active.
Each node represents a behaviour that will be executed on
the task controller. There is a library of behaviours that are
used to define a mission. Each one has a simple goal such
as move to point, keep depth, search a target, etc. Therefore,
the mission controller has the work of defining the task that
the robot is accomplishing at each moment by activating
or deactivating behaviours with the final goal of fulfilling
the mission. The mission controller does not determine the
actions that guide the robot, it only determines the active
behaviours and its configuration which, through the task
controller, will be coordinated to guide the robot.

In our Petri net, every place corresponds to one behaviour
with a particular configuration. When a place has a token,
this behaviour is enabled. When all places that go towards a
transition are enabled, and their behaviours do not block the
execution thread, the transition is ready to be fired. When
a transition is fired, a token is removed from each of the
input places of the transition and a token is generated in
each output place of the same transition. The control mission
algorithm starts on the initial state, checks fired transitions,
applies the previously explained procedure, and repeats this
process until it reaches the final state [9].

V. NAVIGATION
An essential component of an AUV is a reliable navigation

system [10]–[12]. In applications in which a previous knowl-
edge of the scenario is available, the localization problem can
be addressed by using the information from the exteroceptive
sensors together with an a priori map [13].

The navigation system proposed hereafter makes use of
a mechanical scanning imaging sonar and a compass for
the navigation on the horizontal plane, while the depth of
the vehicle can be easily measured with a pressure sensor.
Mechanical scanning sonars perform scans in a 2D plane by
rotating a sonar beam through a series of small angle steps.
For each emitted beam, distance vs. echo-amplitude data
is returned forming an acoustic image of the surroundings
(Figure 4). The objects (walls) present in the environment
appear as high echo-amplitude returns. Hence, it is possible
to extract features from which it is posible to determine the
initial position of the vehicle inside the map [14]. In the
context of the SAUC-E competition, where the orientation,
dimensions and shape of the water tank are known, a very
simple but effective procedure based on the Hough transform
[15] can be used. In our particular case, we don’t search
for features but go directly for the vehicle position. The
Hough voting space is defined as a discretization along the

Fig. 4. (a) Schematic representation of the environment where the example
sonar data were gathered. The highlighted zones represent the expected
sonar returns. (b) Image generated from acoustic data

XY coordinates of all the possible vehicle positions inside
the water tank playground (Figure 5). Each time a single
beam is available, its highest intensity return is selected as
the most likely evidence of the presence of the boundary
walls (Figure 5b). Each measurement defines a particular
zone in which the vehicle can be (Figure 5c). By voting
on these zones and accumulating information in a complete
360◦ scan, the position of the vehicle can be determined. As
can be seen in Figure 5d, the zone with the highest number of
votes is easily identifiable and matches the vehicle’s position.
The imaging sonar takes about 6 seconds to complete a
scan. However, in order to increment the rate of position
estimates, the algorithm maintain a measurement pipeline so
the last complete scan data can be recovered at any moment.
In our final implementation, it was set to search for the
position every 0.5 seconds. Finally, in order to reduce the
computational cost of the system and make it more robust,
a resolution of 0.5 meters was set for the voting space.

VI. THE MISSION

The SAUC-E competition takes place in a water tank
environment of 20 meters by 10 meters and a depth of 6
meters. The mission consists of (see Figure 6):

1) Moving from a launch/release point and submerging.
2) Passing through a 3x4 meter validation gate.
3) Locating a cross situated on the bottom of the pool

and dropping a marker over it.
4) Locating a mid-water target (an orange buoy) and

contacting it with the AUV.

WeA5.4

154

Fig. 5. Determining the robot’s position. (a) Example of a challenging sonar scan with some spurious data and the boundaries of the water tank only
partially observable. (b) Resulting image after selecting the highest intensity return from each single beam. The boundaries of the water tank are also
represented. (c) Diagram of the zone of possible vehicle positions inferred from a single sonar return. (d) Resulting Hough voting space.

5) Surfacing at designated recovery zone marked by an
acoustic device.

The mission starts facing the validation gate. The position
and depth of this gate, the two targets and the recovery
zone are roughly known but not sufficiently to impact the
buoy, drop a marker over the cross or surface in the recovery
zone with any accuracy. For these reason it is necessary to
implement several behaviours to find the targets.

A. Behaviour library

To accomplish the mission, nine behaviours were imple-
mented. They are divided into two main groups: navigation
and perception behaviours.

Navigation Behaviours:

• KeepDepth: Keeps a constant depth.
• KeepOrientation: Maintains the vehicle on a deter-

mined heading.
• MoveTo2D: Moves the vehicle using a Line Of Sight

trajectory to a 2D point inside the water tank.
• CrossGate: Follows a straight trajectory at a specific

depth and heading until the end of the water tank.
• LawnmowerMove: Moves the robot following a lawn-

mower pattern. This behaviour is used together with the
FindCross to localize the cross.

• Search: Rotates around its own Z axis at different
depths and positions. This behaviour is used together
with the FindBuoy to locate the mid-water target.

The current depth and yaw are given by the DVL sensor. The
X and Y position used by the MoveTo2D are taken from the
algorithm described in section V and the end of the water
tank is detected using the echo sounder.

Perception Behaviours:

• FindCross: Uses the B&W bottom camera when the
robot is near the cross after approaching with the
lawnmowerMove behaviour, centers the cross and drops
a marker. The following steps are used to perceive the
center of the cross: First the image resolution is reduced,
the bottom background of the water tank is subtracted,

a binarization and an erode filter are applied and finally,
the mass center is calculated.

• FindBuoy: Uses the RGB forward looking camera
when the robot is facing the buoy to track and impact it.
The following steps are used to perceive the buoy: First
the image is converted into the HSV color space, then
a LUT is used to segment the image. Then, a region
with an area above a certain threshold conforming with
a certain shape is located. In the following frames the
operation is repeated with a tracking window around
the object to speed up the computation.

• FindPinger: Makes the robot surface when the onboard
hydrophone detects that the robot is over the acoustic
device.

B. Petri Net

To implement the mission controller it is necessary to
define several aspects:

• The Petri Net with the sequence of behaviours to be
executed.

• The parameters of every place/behaviour.
• The initial and final states in the Petri Net.
The Petri net can be displayed as a graph and implemented

as a matrix. Figure 7 shows the mission graph corresponding
to the mission file used in the SAUC-E final. For the sake of
simplicity, the parameters of every place/behaviour are not
included. The initial and final states correspond to the first
and last place/behavior in the graph respectively.

VII. RESULTS

In Figure 8 the trajectory made by ICTINEUAUV during
the final run of the competition is shown. This plot has
been obtained by the localization data logged in the vehicle
during the mission (see Section V). As can be seen, the
result is similar to what we can expect from the mission
planning (see Figure 6). First, the vehicle went through the
validation gate (until it detected the far end of the water
tank) with only minor perturbations in the heading. Next,
the vehicle moved to a waypoint and started the searching
procedure for the bottom target. At the first sight of the target,

WeA5.4

155

Launch

Recovery
Z on e

V al i dat i on
G at e

C ros s
T arget

B u oy
T arget

A cu s t i c
D evi ce

a

cb

ed
f

g

Fig. 6. SAUC-E final setup. Letters a, b, c ... correspond with the graph
in figure 7.

CrossGate

T1

M ov eT o2 D K eep D ep th
T2

L aw n M ow er F i n d Cross

T3

K eep D ep th M ov eT o2 D

T4

K eep O ri en tati on
T5

T5

S earc h F i n d B u oy
T6

K eep D ep th M ov eT o2 D

T7

F i n d P i n g er M ov eT o2 D

T8

K eep D ep th

a)

b)

c)

d)

e)

f)

g)

h)

Fig. 7. a) Crosses the validation gate and goes until 5m from the end
of the pool. b) Moves the robot closer to the cross at a constant depth. c)
Performs a lawnmower movement until it finds the cross. Then, the robot
tries to center it and drop a marker. d) Moves the robot closer to the buoy at
a constant depth and orients the robot. e) Performs a searching move until
it finds the buoy. When the buoy is perceived the robot tries to impact it. f)
Moves the robot near the surface zone. g) Moves the robot in a straight line
under the surfacing zone. When the acoustic device is perceived the robot
surfaces. h) If all the timeouts have expired, the robot surfaces.

ICTINEUAUV released one marker at 56 cm from the center.
Unfortunately, while the vehicle was trying to make a second
shot, it got stuck near a wall because of the peculiarities of
the competition environment. The zone boundary between
the black walls and the white bottom of the tank caused the
vision algorithm to get confused. After the timeout expired,
the vehicle proceeded with the mission going to the next
waypoint. When ICTINEUAUV found the buoy, it was too
close. This made it harder to aim the target. As a result,
the vehicle missed the target by a few millimeters. Finally,
the vehicle moved to the recovery zone to end the mission.
However, an error in the description file of the mission
caused the last set of behaviours not to activate and hence
the vehicle remained in the recovery zone without surfacing.

ICTINEUAUV probed its capability to undertake a prepro-
gramed mission. It did two tasks and almost completed the
other two, being the only entry of the competition able to
link all the tasks. This performance gave the final victory to
our team.

0 2 4 6 8 10 12 14 16 18 20
0

1

2

3

4

5

6

7

8

9

10

X (m)

Y
(m

) Launch

Validation
Gate

Cross
Target

Buoy
Target

Fig. 8. Trajectory of the ICTINEUAUV obtained with the navigation
algorithm during the final run of the SAUC-E 2006 competition.

VIII. CONCLUSIONS

This paper has presented the current state of development
of the ICTINEUAUV robot designed by the VICOROB-UdG
Team to face the SAUC-E challenge. The main principles of
design (open frame architecture, modularity and backward
compatibility) have been reported. The robot software is
built as a distributed object oriented application. The control
system is organized into three levels following the principles
of the hybrid control architectures. It includes a low level
velocity controller (vehicle level), a behavioural layer (task
level) and a Petri Net based mission controller (mission
level). The map-based navigation system based on the Hough
transform proved to be very robust, presenting a bounded
drift and being accurate enough for the mission at hand.

REFERENCES

[1] AUVSI, http://www.auvsi.org/competitions/water.cfm.
[2] SAUC-E, http://www.dstl.gov.uk/news events/competitions/sauce/.
[3] VICOROB-UdG Team, http://eia.udg.es/sauce.
[4] P. Ridao, E. Batlle, D. Ribas, and M. Carreras, “Neptune: A hil

simulator for multiple uuvs,” in Oceans0́4 MTS/IEEE, Kobe, Japan,
November 9-12 2004.

[5] AUVSI Journals, http://www.auvsi.org/competitions/06competitors.cfm.
[6] SAUC-E Journals, http://www.dstl.gov.uk/news events/competitions/

sauce/06/journals.php.
[7] T. I. Fossen, Marine control systems. Marine cybernetics, 2002.
[8] R. C. Arkin, Behavior-Based Robotics. MIT Press, 1998.
[9] N. Palomeras, M. Carreras, P. Riao, and E. Hernandez, “Mission

control system for dam inspection with an auv,” IROS, 2006.
[10] O. Bergem, “A multibeam sonar based positioning system for an

AUV,” in Eighth International Symposium on Unmanned Untethered
Submersible Technology (AUSI), September 1993.

[11] V. Rigaud and L. Marce, “Absolute location of underwater robotic
vehicles by acoustic data fusion,” in Autonomous Mobile Robots:
Perception, Mapping, and Navigation (Vol. 1), S. S. Iyengar and
A. Elfes, Eds. Los Alamitos, CA: IEEE Computer Society Press,
1991, pp. 185–190.

[12] M. Carreras, P. Ridao, R. Garcia, and T. Nicosevici, “Vision-based
localization of an underwater robot in a structured environment,” in
IEEE International Conference on Robotics and Automation ICRA0́3,
Taipei, Taiwan, 2003.

[13] S. Thrun, W. Burgard, and D. Fox, Probabilistic Robotics. The MIT
Press, 2005.

[14] D. Ribas, J. Neira, P. Ridao, and J. Tardós, “SLAM using an imag-
ing sonar for partially structured environments,” in Proceedings of
IEEE/RSJ International Conference on Intelligent Robots and Systems,
October 2006.

[15] R. Duda and P. Hart, “Use of the Hough transformation to detect lines
and curves in pictures,” Communications of the ACM, 1972.

WeA5.4

156

