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Abstract— In view of the successful application of planar par-
allelogram in the Delta robot and its variants, we are interested
to investigate mechanisms consisting of spatial parallelograms.
The spatial parallelogram, denoted by P

∗

a , is a 2-SS (S stands
for a spherical joint) parallel mechanism having identical
length for opposite links. We show that a 3-PP

∗

a mechanism
is generically undergoes 3-dimensional purely translational
motion. Based on the 3-PP

∗

a topology, an integrated optimal
design on both architecture and geometry design is carried out.
Using the formulation of maximizing effective cubic workspace,
the Orthopod, which has three orthogonally arranged linear
joint axes, is found to be the best in our settings. A prototype
machine of the Orthopod is thus designed and manufactured.

Index Terms— parallel mechanism, pure translation, optimal
design.

I. INTRODUCTION

Most existing parallel kinematic machines are based on the
6-DoF Gough-Stewart platform architecture [1][2]. However,
six degrees of freedom are often superfluous for machine
tools and other applications. In addition, 6-DoF parallel
manipulators suffer from the disadvantages of difficult for-
ward kinematics, coupled position and orientation, and small
workspace. To overcome the above shortcomings, parallel
manipulators with 3-DoF have been investigated for relevant
applications. Typical representatives for 3-DoF purely trans-
lational parallel mechanisms are (a) the Delta robot invented
by Clavel [3] and its variants, e.g., the Orthoglide proposed
by Chablat and Wenger [4], and (b) the 3-UPU parallel
manipulator first proposed by Tsai [5] and later generalized
by Di Gregorio and Parenti-Castelli [6].

In view of the successful application of planar parallelo-
gram in the Delta robot and its variants, we investigate its
spatial counterpart, the spatial parallelogram P ∗

a . Here, P ∗
a

is in fact a 2-SS parallel mechanism with identical opposite
links. In this paper, a subchain having PP ∗

a topology, i.e., a
serial connection of a prismatic joint and a P ∗

a , see Fig. 1, is
proposed to serve as a leg of a parallel mechanism. The sub-
chain consists of 4 passive joints. A computation in section
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Fig. 1. A schematic of PP ∗

a subchain

II shows that the PP ∗
a subchain undergoes 5-DoF motion.

Hence, the PP ∗
a subchain is non-overconstrained, while the

Delta robot has three identical over-constrained subchains.
For the Delta type robots, deviations in manufacturing will
make it difficult to assemble parts into a whole machine
since there are superfluous mobility constraints. We can show
that a parallel mechanism consisting of 3 PP ∗

a subchains
generically undergoes 3-DoF purely translational motion. For
the engraving machine application, it is essential to gain
rapid dynamic response. The base fixed prismatic joints are
therefore taken as actuated joints to make moving part of a
mechanism as light as possible. A prototype machine was
designed and manufactured accordingly.

The paper is organized as follows. In section II, mobility
analysis of a 3-PP ∗

a parallel mechanism is presented using
the theory of Lie algebra. Tangent spaces of a spatial paral-
lelogram, a PP ∗

a subchain, and a 3-PP ∗
a parallel mechanism

respective at their home configurations are computed. In
section III, an optimal design including both architecture
and geometry parameters is conducted. It is shown that the
Orthopod, which has mutually perpendicular fixed prismatic
joint axes, possesses the largest effective cubic workspace
given a constraint on overall size of the mechanism. A
prototype machine of the Orthopod is thus designed and
manufactured. Finally, a conclusion is drawn in section IV.

II. MOBILITY ANALYSIS

In this section, we analyze mobility of a 3-PP ∗
a parallel

mechanism. By computing tangent space of its configuration
space at some point, it is concluded that the 3-PP ∗

a parallel
mechanism undergoes 3-DoF purely translation generically.

A. Tangent Space of the Spatial Parallelogram

Let us first investigate mobility of the spatial parallelogram
P ∗

a as shown in Fig.2. As well known, a spherical joint is
equivalent to a serial connection of three revolute joints,
whose axes ωi, i = 1, · · · , 3 intersect at a common point
perpendicularly. We assume that ωi, i = 1, · · · , 3 observes
the right-hand rule for convenience.

Let us denote the configuration spaces of a P ∗
a and its

i-th subchain by CM and CMi
, respectively. From Fig.

2-(b), we have qi2 = qi1 + v. The home position of a PP ∗
a
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Fig. 2. (a) A CAD model of the spatial parallelogram; (b) A schematic of
the spatial parallelogram.

subchain is taken as the configuration where P ∗
a keeps

rectangular and the axis of P joint is parallel to v. At the
home configuration e, the spatial velocity spaces TeCMi

for
the two legs Mi, i = 1, 2, are given as follows.

TeCMi
= span{

[

qi1 × ω1

ω1

]

,

[

qi1 × ω2

ω2

]

,

[

qi1 × ω3

ω3

]

,

[

qi2 × ω1

ω1

]

,

[

qi2 × ω2

ω2

]

,

[

qi2 × ω3

ω3

]

}

Assume qi1 = αiω1 + βiω2 + γiω3, i = 1, 2, where αi,
βi, and γi are all constant scalars, by some manipulations,
we have

TeCMi
= span{

[

−βiω3

ω1

]

,

[

αiω3

ω2

]

,

[

0
ω3

]

,

[

ω1

0

]

,

[

ω2

0

]

}.

In order to obtain a concise expression, we move the coor-
dinate frame such that its origin coincides q11. This loses
no generality and leads to q11 = (α1, β1, γ1) = (0, 0, 0) and
q21 = (α2, β2, γ2) = (α2, 0, 0) with α2 6= 0 when q11 6= q21.
The intersection of the two velocity subspaces gives

TeCM1 ∩ TeCM2 = span{

[

0
ω1

]

,

[

0
ω3

]

,

[

ω1

0

]

,

[

ω2

0

]

}.

Therefore, the spatial parallelogram conducts a 4-DoF mo-
tion instantaneously at the home position, more precisely,
two DoF translation along ω1-ω2 plane, and two DoF rotation
about ω1-axis and ω3-axis, respectively. The expression (1)
is precisely the tangent space of CM at e.

B. Tangent Space of the 3-PP ∗
a Parallel Mechanism

Let us denote the axis of the P joint in Fig. 1 by e.
Therefore, there exist constant real numbers a, b, c such that
e := aω1 + bω2 + cω3. When c 6= 0, with notation C being
the configuration space of a PP ∗

a subchain, we have

TeC = TeCM

⋃

TeP

= span{

[

0
ω1

]

,

[

0
ω3

]

,

[

ω1

0

]

,

[

ω2

0

]

,

[

ω3

0

]

}.

Note, when c = 0, i.e., the P joint axis is in ω1-ω2 plane,
TeC reduces to the tangent space of the P ∗

a .
Let us consider a parallel mechanism consisting of three

PP ∗
a subchains whose axes are (ωi

1, ω
i
2, ω

i
3), i = 1, · · · , 3.

The tangent spaces of the three PP ∗
a subchains are given

by TeCi = Ri × Ti, i = 1, · · · , 3, where Ri and Ti are
respectively velocity spaces due to rotation and translation,

Ri = span{

[

0
ωi

1

]

,

[

0
ωi

3

]

};

Ti = span{

[

ωi
1

0

]

,

[

ωi
2

0

]

,

[

ωi
3

0

]

}.

The tangent space of the parallel mechanism TeCS is the
intersection of tangent spaces of the three PP ∗

a subchains as
follows.

TeCS = ∩3
i=1TeCi = ∩3

i=1Ri × ∩3
i=1Ti (1)

Clearly, each Ti is a velocity space of purely translational
motion at e and Ti = Tj , for i, j = 1, · · · , 3. Assume that
x, y, z are respectively directions of x-, y-, z-axis for an
arbitrary spatial frame, we have

∩3
i=1Ti = Ti = span{

[

x
0

]

,

[

y
0

]

,

[

z
0

]

}. (2)

Given a generic arrangement of axes that any two of ωi
3,

i = 1, · · · , 3 are not parallel, i.e., ωi
3 6= ωj

3, i 6= j and i, j =
1, · · · , 3, we have ∩3

i=1Ri = {I}. Therefore, the tangent
space of the parallel mechanism at the home position TeCS

is computed as following.

TeCS = ∩3
i=1TeCi = span{

[

x
0

]

,

[

y
0

]

,

[

z
0

]

} (3)

The expression (3) shows that the parallel mechanism
consisting of 3 PP ∗

a subchains generally conducts a 3-DoF
purely translational motion instantaneously at home position.

Remark 1: It can be easily verified that a parallel mecha-
nism consisting of more than 3 PP ∗

a subchains still undergoes
a 3-DoF purely translational motion instantaneously at home
position. Furthermore, for a spatial parallelogram having 3-
SS topology (denote by P #

a ), it undergoes 3-DoF motion
instantaneously at home position, two DoF translational
motion along ω1ω2 plane and one rotational DoF about ω3,
see [7]. Let us consider a subchain consisting of a prismatic
joint and a P#

a . We can show that a parallel mechanism
consisting of 2 or more such subchains results in 3-DoF
purely translational motion instantaneously at home position.

C. Motion Type of the 3-PP ∗
a Parallel Mechanism

Next we’ll show a 3-PP ∗
a parallel mechanism indeed

undergoes 3-DoF purely translational motion in a finite
neighborhood of the home configuration by introducing the
following proposition.

Proposition 1: Given a fully parallel manipulator M,
which is a parallel connection of k subchains, M1, · · · ,Mk.
We denotes the configuration space of each subchain by Ci,
i = 1, · · · , k. Suppose that each Ci contains a set Qu, which
is a connected open subset of Q around e. Here Q ⊂ SE(3)
is a submanifold.

Qu ⊆ Ci, i = 1, · · · , k (4)
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and consequently Qu ⊆ C, where C is the configuration
space of M. If the condition

TeQ = TeC1 ∩ · · · ∩ TeCk (5)

holds, C agrees with Q at Qu, the neighborhood of e. �

Readers are referred to [8][9] for detailed proof of the propo-
sition. The proposition provides us a tool to analyze parallel
mechanisms. When we encounter a parallel mechanism, we
first compute the tangent space of the mechanism at the home
position (or other typical configuration). If all subchains
contain a finite motion and the parallel mechanism has the
same tangent space as that of the finite motion at the home
position (or other typical configuration), then the parallel
mechanism undergoes the motion type corresponding to the
finite motion. In our case, we have computed tangent space
of the 3-PP ∗

a parallel mechanism at home position. Next we
need to investigate the motion of each subchain.

By observation, easy to find that the motion of a spatial
parallelogram contains the one generated by a U ∗ joint,
which is a parallel connection of three UU legs [10]. As we
know, a U∗ joint undergoes 2-DoF spherically translational
motion perpendicular to its axis [8]. A P ∗

a must contain finite
2-DoF translation motion since it has less restriction than
U∗. Therefore, each PP ∗

a subchain, a serial connection of a
prismatic joint and a spatial parallelogram, must contain a
finite 3-DoF translational motion. By the Proposition 1 and
the tangent space of the mechanism at home position (3),
we conclude that the 3-PP ∗

a parallel mechanism undergoes
finite 3-DoF purely translational motion.

III. OPTIMAL DESIGN OF THE 3-PP ∗
a PARALLEL

MECHANISM

In this section, we will determine architecture for a par-
allel mechanism having 3-PP ∗

a topology as discussed above.
Basically, there are three primary stages in design of a
parallel mechanism, say topology, architecture, and geometry
design. The topology design or type synthesis is to determine
number of subchains and joint types and connections in
each subchain such that the resulting mechanism is able to
undergo some given (finite) motion. Based on the chosen
topology, architecture design is to determine axes of fixed
joints and their relative arrangement. After topology design
and architecture design, geometry design is to determine
size issue of the decided architecture, e.g., the link lengths
and the size of the base/the end-effector. Note sometimes
people do not discriminate between concepts of architecture
and geometry design and term them together as geometry
(architecture, dimension) design. In this paper, the defined
concepts of architecture and geometry design are used.

In design of a parallel mechanism, most optimal designs
actually do the job of geometry design only [11][4][12][13].
People usually first come up an topology and architecture
by their experience and intuition and then do the geom-
etry design job by formulating the design problem as an
optimization problem and searching the optimal geometric
parameters for the architecture. As well known, performance
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Fig. 3. A schematic of the 3-PP ∗

a parallel mechanism

of a parallel mechanism depends not only on its geometry,
but also on its architecture and topology. In fact, the resulting
mechanism may be optimal for the chosen architecture only.
It is usually not the best among the mechanisms having a
common topology.

In the last section, we have shown that the parallel
mechanism having 3-PP ∗

a topology undergoes 3-DoF purely
translation. There are infinite number of architectures that
realize the topology. Usually we cannot determine which
architecture is the best in some performance by simply our
intuition and experience. Therefore, it is necessary to include
both architecture and geometry parameters when optimally
designing a parallel mechanism. Hence, Our problem is,
given the 3-PP ∗

a topology, to determine both its architecture
and geometry such that the resulting mechanism reaches best
performance.

A. Kinematic Analysis

Let us consider a general architecture for the 3-PP ∗
a

parallel mechanism as shown in Fig. 3. Here, Ai is the fixed
footprint where the i-th subchain connects, Bi represents po-
sition of the slider on the i-th linear actuator, Ci is the point
on the end-effector to which the i-th spatial parallelogram is
attached, and P is the reference point on the end-effector. By
setting up a fixed Cartesian coordinate frame, loop closure
equations can be readily derived. Let p =

−−→
OP , ai =

−−→
OAi,

ci =
−−→
CiP , ei =

−−−→
AiBi

‖
−−−→
AiBi‖

the direction of linear actuation,

wi =
−−−→
BiCi

‖
−−−→
BiCi‖

, the direction of the spatial parallelogram,

ρi = ‖
−−−→
AiBi‖ the length of i-th linear joint, and Li = ‖

−−−→
BiCi‖

the length of spatial parallelogram, we have

ai + ρiei + Liwi + ci = p, i = 1, · · · , 3.

Clearly, ai and ci are both constant and they have combined
effect on kinematics via their sum ai + ci. Therefore, we
need only to consider their sum and define di := ai + ci.
The loop closure equations become

di + ρiei + Liwi = p, i = 1, · · · , 3. (6)

Given Cartesian position p, taking norm of both sides of
(6) we can solve for the inverse kinematics as follows.

ρi = (p − di)
T ei −

√

[(p − di)T ei]2 − ‖p− di‖2 + L2
i

(7)
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This leads to
wi =

p− di − ρiei

Li

. (8)

Differentiating (6) with respect to time t leads to

ṗ = ρ̇iei + Liẇi, i = 1, · · · , 3.

Dot-multiplying wi on both sides of the above equations and
stacking them in matrix form, we obtain the instantaneous
velocity map relating the Cartesian velocity ṗ and the joint
velocity ρ̇ as follows.

Jρρ̇ = JxẊ, (9)

where Ẋ = ṗ = [ẋ, ẏ, ż]T , ρ̇ = [ρ̇1, ρ̇2, ρ̇3]
T and

Jρ =





wT
1 e1 0 0
0 wT

2 e2 0
0 0 wT

3 e3



 , Jx =





wT
1

wT
2

wT
3



 .

Therefore, when Jρ is nonsingular, we obtain ρ̇ = JẊ with
J = J−1

ρ Jx.
In order to fully decide architecture and geometry of a

3-PP ∗
a parallel mechanism, we need to determine values of

1) the position of footprints Ai, ai;
2) axes of base attached prismatic joints ei;
3) geometric parameters Li and ci.

According to above kinematic analysis, instead of consider-
ing ai and ci independently, we investigate kinematic effects
of their sum di. Therefore, we need to determine values of
di, ei, and Li, i = 1, · · · , 3. In practical implementation, we
use the same geometry for all three subchains, i.e., Li = L,
i =, 1, · · · , 3 for manufacturing reason.

B. Optimal Architecture and Geometry Design of the 3-PP ∗
a

Mechanism

Next we will optimally design the 3-PP ∗
a parallel mecha-

nism using the formulation discussed in [14]. The target is to
obtain the best mechanism that maximizes effective regular
workspace under size constraints. The world frame is set up
with its origin coinciding with the reference point P at home
position.

• Objective: A cube with side length 2l in R
3 is desig-

nated as its (translational) workspace W . The objective
function is chosen as Φ = l to characterize the volume
of W . The center of the maximal cubic workspace is
taken as [xc, yc, zc]

T , which is undetermined.
• Constraints on mechanism size: A constraint on the

manipulator size is imposed by normalizing length of
its subchain

ρmax + L = 1,

where ρmax is the stroke of each prismatic joint.
• Constraints on dexterity: Let us define dexterity measure

as κ(J) = σmin(J)/σmax(J), a dexterity constraint is
imposed with γ = 0.2,

κ(J) ≥ γ.

• Constraints due to actuated joint limits: As discussed
in [14], all inverse kinematic solutions should be in the

TABLE I
OPTIMAL FOOTPRINTS AND LINEAR JOINT AXES

d1 (−0.7893, −0.0358, −0.0334)T e1 (0.9998, 0.0185, 0.0042)T

d2 (0.0067, −0.7881, −0.0587)T e2 (−0.0830, 0.9938, 0.0736)T

d3 (−0.0574, −0.0047, −0.7884)T e3 (0.0706, −0.05814, 0.9958)T

given actuation range [0, ρmax], i.e., the actuation length
ρi is constrained by

0 ≤ ρi(X, α) ≤ ρmax, i = 1, · · · , 3.

• Constraints due to passive joint limits: Assume the ball
joint range is [0,B], the constraints due to ball joint
limits are given as follows.

0 ≤ Angle(wj ,w
0
j ) ≤ B, j = 1, · · · , 3.

where w0
j is the direction of spatial parallelogram at

home configuration. Angle(wj ,w
0
j ) measures the angle

between vectors wj and w0
j . We take B = 30o in the

simulation.
• The set of design parameters is determined, α =

(d1,d2,d3, e1, e2, e3, L, xc, yc, zc). However, there are
three constraint equations for home position require-
ment, di + ρ0ei + Lwi = 0, i = 1, · · · , 3, where ρ0

is the actuation length at home position. In practical
application, all three P joints are usually set to be half
actuated (ρ0 = ρmax

2
) when the mechanism is at home

position. Note that ei, i = 1, · · · , 3 are unit vectors
and they provide three equality constraints for design
parameters. Therefore, totally there are 16 independent
design parameters.

Assume di = [di1 di2 di3]
T and ei = [ei1 ei2 ei3]

T , for i =
1, · · · , 3. Combining the objective and constraints together,
the optimal design problem of a 3-PP ∗

a parallel mechanism
is formulated as follows.

Problem 1: Optimal design of a 3-PP ∗
a parallel mech-

anism
Find a set of optimal design parameters α such that

max
α

Φ = l

subject to κ(J(X, ρ, α)) ≥ 0.2;

0 ≤ ρi(X, α) ≤ ρmax;

0 ≤ Angle(wj ,w
0
j ) ≤ 30o;

L + ρmax = 1;

dkl, ekl ∈ [−1, 1],

xc, yc, zc ∈ [−0.5, 0.5], L ∈ [0, 1]

for all X ∈ W , i, j, k, l = 1, · · · , 3. �

By applying the controlled random search (CRS) algorithm
[14], optimal design parameters and the corresponding

maximal side length are obtained, as shown in Table I and
II. From Table I, e1 · e2 = −0.0643, e1 · e3 = 0.0737,
e2 · e3 = 0.0097. They all tend to zeroes, which implies
that ei, i = 1, · · · , 3 nearly perpendicular mutually. We may
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TABLE II
OPTIMAL CUBIC WORKSPACE CENTER AND GEOMETRIC PARAMETERS

xc yc zc L ρmax Φ∗ = l∗

-0.0279 -0.0279 -0.0279 0.5822 0.4178 0.1792

TABLE III
OPTIMAL FOOTPRINTS AND THE FIXED LINEAR JOINT AXES

d1 (−0.7884, −0.0278, −0.0278)T
e1 (1, 0, 0)T

d2 (−0.0279, −0.7884, −0.0279)T e2 (0, 1, 0)T

d3 (−0.0279, −0.0278, −0.7884)T e3 (0, 0, 1)T

conjecture that the true global optimum is obtained from
the mechanism that has mutually perpendicular axes of fixed
prismatic joints. Therefore, further optimizations are carried
out with fixed linear joint axes e1 = (1 0 0)T , e2 = (0 1 0)T ,
e3 = (0 0 1)T . Under this circumstance, optimization results
are obtained, as shown in Table III and IV. From Table IV,
the objective, the maximum half side length of the cubic
effective workspace is a little bit larger than that of the
previous optimization. We may then conclude that the best
mechanism is the one whose base-fixed prismatic joint axes
are mutually perpendicular. Furthermore, it can be verified
that the three axes of fixed prismatic joints intersect at a
common point.

The side length of the maximal effective regular
workspace is about 2 × 0.18 = 0.36. The stroke ρmax is
about 0.42. Using the optimal design parameters, we can
verify that dexterity performance reaches its best, κ = 1, at
the center (xc, yc, zc) = (−0.02785,−0.02785,−0.02785).
At this position, each spatial parallelogram is parallel to its
corresponding linear joint axis. As a result, all subchains
form straight lines and become perpendicular to each other.
Therefore, the resulting design is an isotropic mechanism
since its workspace contains an isotropic configuration. This
is a preferable property in mechanism design [15][16][17].
Fig. 4 shows a CAD model of the resulting mechanism.
It is architecturally similar to the Orthoglide, as shown in
Fig. 5-(a). They both consist of three orthogonally arranged,
identical subchains. But topologically they are quite different.
For the Orthoglide, each subchain is in a PRPaR topol-
ogy, while our resulting mechanism has subchains of PP ∗

a

topology. The Linapod, as shown in Fig. 5-(b), is a tripod
based parallel machine with the same 3-PP ∗

a topology as
the resulting mechanism. The resulting mechanism thus has
characteristics of both the Orthoglide and the tripod. The
resulting mechanism is therefore named the Orthopod.

Fig. 6-(a) shows a scaled schematic of the Orthopod

TABLE IV
OPTIMAL CUBIC WORKSPACE CENTER AND GEOMETRIC PARAMETERS

IN THE CASE OF FIXED LINEAR JOINT AXES

xc yc zc L ρmax Φ∗ = l∗

-0.0279 -0.0279 -0.0279 0.5795 0.4206 0.1803

Fig. 4. A CAD model of the resulting mechanism

(a) (b)

Fig. 5. (a)A CAD model of the Orthoglide; (b)The Linapod developed by
ISW.

at its home configuration. It is interesting to note that at
home configuration, the parallelogram is not parallel to its
corresponding linear joint axis. In other words, the home
configuration is not the isotropic configuration. Using the
subchain 1 for example, Fig. 6-(b) shows its pose at home
configuration. The parallelogram 1 makes an angle θ1 ≈ 3.9o

with x-axis (= e1). In the yz plane, the parallelogram 1
makes an angle θ2 = 45o with z-axis. It is also the case for
the other two subchains with their respectively corresponding
axes. This phenomenon is induced because, as shown in Fig.
7-(b), 8-(b), 9-(b), the dexterity performance is not centrally
symmetric about the isotropic point.

Fig. 7-(a), 8-(a), and 9-(a) show workspace cross sections
at z = zc + l∗, z = zc, and z = zc − l∗. The shadowed
squares represent cross sections of maximal effective cubic
workspace. In all three figures, the shadowed squares touch
the workspace boundary. It shows that the workspace con-
straints become active. In Fig. 7-(b), 8-(b), and 9-(b), contour
plots of dexterity index are given at cross sections z = zc+l∗,
z = zc, and z = zc − l∗ of the maximal effective cubic
workspace. Using resulting geometry for the Orthopod, we
can find the minimum value of the dexterity index is 0.2281,
which is obviously larger than the given threshold, γ = 0.2.
This shows that the dexterity constraint is inactive.

Using the optimal architecture, a prototype machine of the
Orthopod is manufactured as shown in Fig. 10. It exhibits
good positioning accuracy with acceleration from 0 to 4g.
Further investigations are conducting on the prototype.

IV. CONCLUSION

Inspired by the successful application of the parallelogram
in Delta robot and its variants, we investigated the spatial
parallelogram P ∗

a in detail. It was shown that a parallel
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Fig. 6. (a) A scaled schematic of the resulting mechanism at its home
configuration; and (b) A schematic of subchain 1 at its home configuration.
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Fig. 7. (a) Workspace cross section at z = zc + l∗; (b) Contour plot of
dexterity index at cross section z = zc + l∗.
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Fig. 8. (a) Workspace cross section at z = zc; (b) Contour plot of dexterity
index at cross section z = zc.
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Fig. 9. (a) Workspace cross section at z = zc − l∗; (b) Contour plot of
dexterity index at cross section z = zc − l∗.

Fig. 10. The Orthopod prototype

mechanism consisting of three or more PP ∗
a subchains

generically undergoes 3-DoF purely translational motion. In
order to find the architecture best suit our task, we optimally
design a 3-PP ∗

a parallel mechanism including its architecture
and geometry parameters. The Orthopod, whose axes of
prismatic joints are mutually perpendicular and intersect at
a common point, was thus obtained as the optimum. A
prototype machine of the Orthopod was manufactured and
constructed.
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