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Abstract— This paper presents a hybrid decoupled vision-
based control scheme valid for the entire class of central cata-
dioptric sensors (including conventional perspective cameras).
First, we consider the structure from motion problem using
imaged 3D points. Geometrical relationships are exploited to
enable a partial Euclidean reconstruction by decoupling the
interaction between translation and rotation components of
a homography matrix. The information extracted from the
homography are then used to design a control law which
allow us to fully decouple rotational motions from translational
motions. Real time experimental results using an eye-to-hand
robotic system with a paracatadioptric camera are presented
and confirm the validity of our approach.

I. INTRODUCTION

Vision-based servoing schemes are flexible and effective
methods to control robot motion from camera observations.
They are generally classified into three groups, namely
position-based, image-based and hybrid-based control [10],
[16], [20]. These three schemes make assumptions on the
link between the initial, current and desired images since
they require correspondences between the visual features
extracted from the initial image with those obtained from
the desired one. These features are then tracked during the
camera (and/or the object) motion. If these steps fail the
visually based robotic task can not be achieved [7]. Typical
cases of failure arise when matching joint image features is
impossible (for example when no joint feature belongs to
initial and desired images) or when some parts of the image
features get out of the field of view during the servoing.
Some methods were investigated to resolve this deficiency
based on path planning [21], switching control [8], zoom
adjustment [24], geometrical and topological considerations
[9], [26]. However, such strategies are sometimes delicate
to adapt to a generic setup. Conventional cameras suffer
thus from restricted field of view. There is thus significant
motivation for increasing the field of view of the cameras [4].
Many applications in vision-based robotics, such as mobile
robot localization [5] and navigation [29], can benefit from
the panoramic field of view provided by omnidirectional
cameras. In the literature, there have been several methods
proposed for increasing the field of view of cameras systems
[4]. One effective way is to combine mirrors with conven-
tional imaging system. The obtained sensors are referred
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to as catadioptric imaging systems. The resulting imaging
systems have been termed central catadioptric when a single
projection center describes the world to image mapping.
From a theoretical and practical view point, a single center
of projection is a desirable property for an imaging system
[1]. Baker and Nayar in [1] derive the entire class of
catadioptric systems with a single viewpoint. Clearly, visual
servoing applications can also benefit from such sensors
since the latter naturally overcome the visibility constraint.
Vision-based control of robotic arms, single mobile robot
or formation of mobile robots appear thus in the literature
with omnidirectional cameras (refer for example to [3], [6],
[23], [28],[22]). Image-based visual servoing with central
catadioptric cameras using points was studied in [3]. The
use of straight lines has also been investigated in [22]. As
it is well known, the catadioptric projection of a 3D line
in the image plane is a conic curve. In [22], the authors
propose to use directly the coordinates of the polar lines of
the image center with respect to the conic curves to define
the input of the vision-based control scheme. This paper
is concerned with homography-based visual servo control
techniques with central catadioptric cameras. This frame-
work, also called 2 1/2 D visual servoing [20] in the case
where the image features are points, exploits a combination
of reconstructed Euclidean information and image features in
the control design. The 3D information is extracted from an
homography matrix relating two views of a reference plane.
As a consequence, the 2 1/2 D visual servoing scheme does
not require any 3D model of the target. Unfortunately, in such
approach when conventional cameras are used, the image of
the target is not guaranteed to remain in the camera field of
view. To overcome this deficiency 2 1/2 D visual servoing has
been extented to an entire class of omnidirectional cameras
in [15]. The resulting interaction matrices are triangular with
partial decoupling properties (refer to [20], [15]).

In this paper a new approach for homography-based visual
servoing using points imaged with any type of central camera
is presented. The structure from motion problem using im-
aged 3D points is first studied. Geometrical relationships are
exploited to linearly estimate a generic homagraphy matrix
from which a partial Euclidean reconstruction is obtained.
The information extracted from the homography are then
used to design a control law which allow us to fully decouple
rotational motions from translational motions (i.e the result-
ing interaction matrix is square block-diagonal). Real time
experimental results using an eye-to-hand robotic system are
presented and confirm the validity of our approach.
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Fig. 1. Central catadioptric image formation

II. MODELISATION

The central catadioptric projection can be modeled by a
central projection onto a virtual unitary sphere, followed by
a perspective projection onto an image plane. This virtual
unitary sphere is centered in the principal effective view point
and the image plane is attached to the perspective camera. In
this model, called unified model and proposed by Geyer and
Daniilidis in [13], conventional perspective camera appears
as a particular case.

A. Projection of point

Let Fc and Fm be the frames attached to the conventional
camera and to the mirror respectively. respectively. In the
sequel, we suppose that Fc and Fm are related by a simple
translation along the Z-axis (Fc and Fm have the same
orientation as depicted in Figure 1). The origins C and M
of Fc and Fm will be termed optical center and principal
projection center respectively. The optical center C has
coordinates [0 0 − ξ]T with respect to Fm and the image
plane Z = f.(ψ − 2ξ) is orthogonal to the Z-axis where f
is the focal length of the conventional camera and ξ and ψ
describe the type of sensor and the shape of the mirror, and
are function of mirror shape parameters (refer to [2]).

Consider the virtual unitary sphere centered in M as
shown in Fig.1 and let X be a 3D point with coordinates
X = [X Y Z]T with respect to Fm. The world point X is
projected in the image plane into the point of homogeneous
coordinates xi = [xi yi 1]T . The image formation process
can be split in three steps as:

- First step: The 3D world point X is first projected on
the unit sphere surface into a point of coordinates in Fm:
Xm = 1

ρ

[
X Y Z

]�
, where

ρ = ‖X‖ =
√
X2 + Y 2 + Z2 (1)

The projective ray Xm passes through the principal
projection center M and the world point X .

- Second step: The point Xm lying on the unitary
sphere is then perspectively projected on the normalized
image plane Z = 1 − ξ. This projection is a point of
homogeneous coordinates x = [xT 1]T = f(X) (where

x = [x y]T ):

x = f(X) =
[

X

Z + ξρ

Y

Z + ξρ
1
]�

(2)

- Third step: Finally the point of homogeneous coor-
dinates xi in the image plane is obtained after a plane-to-
plane collineation K of the 2D projective point x: xi = Kx.
The matrix K can be written as K = KcM where the
upper triangular matrix Kc contains the conventional camera
intrinsic parameters, and the diagonal matrix M contains the
mirror intrinsic parameters:

M =

ψ − ξ 0 0
0 ψ − ξ 0
0 0 1

 , Kc =

fu αuv u0

0 fv v0
0 0 1


Note that, setting ξ = 0, the general projection model

becomes the well known perspective projection model.

In the sequel, we assume that Z �= 0. Let us denote η =
sρ/|Z| = s

√
1 +X2/Z2 + Y 2/Z2, where s is the sign of

Z. The coordinates of the image point can be rewritten as:

x =
X/Z

1 + ξη
; y =

Y/Z

1 + ξη

By combining the two previous equations, it is easy to show
that η is the solution of the following second order equation:

η2 − (x+ y)2(1 + ξη)2 − 1 = 0

with the following potential solutions:

η1,2 =
±γ − ξ(x2 + y2)
ξ2(x2 + y2) − 1

(3)

where γ =
√

1 + (1 − ξ2)(x2 + y2). Note that, the sign of
η is equal to the sign of Z and then it can be shown (refer
to Appendix) that the exact solution is:

η =
−γ − ξ(x2 + y2)
ξ2(x2 + y2) − 1

(4)

Equation (4) shows that η can be computed as a function of
image coordinates x and sensor parameter ξ. Noticing that:

Xm = (η−1 + ξ)x (5)

where x = [xT 1
1+ξη ]T , we deduce that Xm can also be

computed as a function of image coordinates x and sensor
parameter ξ.

III. SCALED EUCLIDEAN RECONSTRUCTION USING

HOMOGRAPHY MATRIX OF CATADIOPTRIC VISION

Several methods were proposed to obtain Euclidean recon-
struction from two views [11]. They are generally based on
the estimation of the fundamental matrix [18] in pixel space
or on the estimation of the essential matrix [17] in normal-
ized space. However, for control purposes, the methods based
on the essential matrix are not well suited since degenerate
configurations can occur (such as pure rotational motion).
Homography matrix and Essential matrix based approaches
do not share the same degenerate configurations, for example
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pure rotational motion is not a degenerate configuration when
using homography-based method. The epipolar geometry of
central catadioptric system has been more recently investi-
gated [14], [27]. The central catadioptric fundamental and
essential matrices share similar degenerate configurations
that those observed with conventional perspective cameras,
it is why we will focus on homographic relationship. In the
sequel, the collineation matrix K and the mirror parameter
ξ are supposed known. To estimate these parameters the
algorithm proposed in [2] can be used. In the next section,
we show how we can compute homographic relationships
between two central catadioptric views of points.

Let R and t be the rotation matrix and the translation
vector between two positions Fm and F∗

m of the central
catadioptric camera (see Figures 2). Consider a 3D reference
plane (π) given in F∗

m by the vector π∗� = [n∗ −d∗], where
n∗ is its unitary normal in F∗

m and d∗ is the distance from
(π) to the origin of F∗

m.

A. Homography matrix from points

Let X be a 3D point with coordinates X =
[X Y Z]� with respect to Fm and with coordinates X∗ =
[X∗ Y ∗ Z∗]� with respect to F∗

m. Its projection in the unit
sphere for the two camera positions are:

Xm = (η−1 + ξ)x = 1
ρ

[
X Y Z

]�
X∗

m = (η∗−1 + ξ)x∗ = 1
ρ

[
X∗ Y ∗ Z∗ ]�

Using the homogenous coordinates X = [X Y Z H]� and
X∗ = [X∗ Y ∗ Z∗ H∗]�, we can write:

ρ(η−1 + ξ)x =
[

I3 0
]
X =

[
R t

]
X∗ (6)

The distance d(X , π) from the world point X to the plane
(π) is given by the scalar product π∗� · X∗ and:

d(X∗, π∗) = ρ∗(η∗−1 + ξ)n∗�x∗ − d∗H∗

As a consequence, the unknown homogenous component H∗

is given by:

H∗ =
ρ∗(η∗−1 + ξ)

d∗
n∗�x∗ − d(X∗, π∗)

d∗
(7)

The homogeneous coordinates of X with respect to F∗
m can

be rewritten as:

X∗ = ρ∗(η∗−1 + ξ)
[

I3 0
]�

x∗ +
[

01×3 H∗ ]� (8)

By combining the Equations (7) and (8), we obtain:

X∗ = ρ∗(η∗−1 + ξ)A∗
πx∗ + b∗

π (9)

where

A∗
π =

[
I3 n∗

d∗

]�
and b∗

π =
[
01×3 − d(X ,π)

d∗

]
According to (9), the expression (6) can be rewritten as:

ρ(η−1 + ξ)x = ρ∗(η∗−1 + ξ)Hx∗ + αt (10)

with H = R + t
d∗ n∗T and α = −d(X ,π)

d∗ .

Fig. 2. Geometry of two views of points

H is the Euclidean homography matrix written as a
function of the camera displacement and of the plane co-
ordinates with respect to F∗

m. It has the same form as in
the conventional perspective case (it is decomposed into a
rotation matrix and a rank 1 matrix). If the world point X
belongs to the reference plane (π) (i.e α = 0) then Equation
(10) becomes:

x ∝ Hx∗ (11)

Note that the Equation (11) can be turned into a linear
homogeneous equation x⊗Hx∗ = 0 (where ⊗ denotes the
cross-product). As usual, the homography matrix related to
(π), can thus be estimated up to a scale factor, using four
couples of coordinates (xk;x∗

k), k = 1 · · · 4, corresponding
to the projection in the image space of world points Xk

belonging to (π). If only three points belonging to (π)
are available then at least five supplementary points are
necessary to estimate the homography matrix by using for
example the linear algorithm proposed in [19]. From the
estimated homography matrix, the camera motion parameters
(that is the rotation R and the scaled translation td∗ = t

d∗ )
and the structure of the observed scene (for example the
vector n∗) can thus be determined (refer to [11], [30]). It
can also be shown that the ratio σ = ρ

ρ∗ can be estimated as
follow:

σ =
ρ

ρ∗
= (1 + n∗T RT td∗)

(η∗−1 + ξ)n∗T x∗

(η−1 + ξ)n∗T RT x
(12)

This parameter is used in our 2 1/2 D visual servoing control
scheme.

IV. CONTROL SCHEME

As usual when designing a 2 1/2 D visual servoing, the
feature vector used as input of the control law combines 2-D
and 3-D informations [20]:

s = [s�i θu�]�

where si is a 3-dimensional vector containing the 2D features
and, u and θ are respectively the axis and the rotation angle
obtained from R (rotation matrix between the mirror frame
when the camera is in these current and desired positions).
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Noticing that the parameter ρ does not depend of the camera
orientation and in order to decouple rotational motions from
the translational ones, si can be chosen as follow :

si = [ log(ρ1) log(ρ2) log(ρ3) ]�

where ρk=1,2,3 are the distances from the 3D points Xk=1,2,3

to the camera center (refer to equation 1)
The task function e to regulate to 0 [25] is given by:

e = s − s∗ = [Γ1, Γ2, Γ3, θuT ]T (13)

where s∗ is the desired value of s and Γk = log
(

ρk

ρ∗
k

)
=

log(σk), {k = 1, 2, 3}. The three first components of e can
be estimated using Equation (12). The rotational part of e
is estimated using partial Euclidean reconstruction from the
homography matrix derived in Section III. The exponential
decay of e toward 0 can be obtained by imposing ė = −λe
(λ being a proportional gain), the corresponding control law
is:

τ = −λL−1(s − s∗) (14)

where τ is a 6-dimensional vector denoting the velocity
screw of the central catadioptric camera. It contains the
instantaneous angular velocity ω and the instantaneous linear
velocity v. L is the interaction matrix related to s. It links
the variation of s to the camera velocity: ṡ = Lτ . It is
thus necessary to compute the interaction matrix in order
to derive the control law given by the Equation (14). The
time derivative of the rotation vector uθ can be expressed as
a function of the catadioptric camera velocity vector τ as:

d(uθ)
dt

= [03 Lω] τ (15)

where Lω is given by [20]:

Lω(u, θ) = I3 − θ

2
[u]× +

(
1 − sinc(θ)

sinc2( θ
2 )

)
[u]2× (16)

with sinc(θ) = sin(θ)
θ and [u]× being the antisymmetric

matrix associated to vector u.
To control the 3 translational degrees of freedom, the

visual observations and the ratio σ expressed in (12) are
used. Consider a 3-D point Xi, the time derivative of its
coordinates, with respect to the current catadioptric frame
Fm, is given by:

Ẋk = [−I3 [Xk]×] τ (17)

[Xk]× being the antisymmetric matrix associated to the
vector Xk. The time derivative of Γk can be written as:

Γ̇k =
∂Γk

∂Xk
Ẋk (18)

with:
∂Γk

∂Xk
=

1
ρ2

[ Xk Yk Zk ]

By combining the equations (17), (18) and (12), it can be
shown that:

ṡi = [A 03] τ (19)

with

A=


Φ1

σ1ρ∗
1

0 0
0 Φ2

σ2ρ∗
2

0
0 0 Φ3

σ3ρ∗
3




−x1 −y1 ξ2(x2
1+y2

1)−1
1+γ1ξ

−x2 −y2 ξ2(x2
2+y2

2)−1
1+γ2ξ

−x3 −y3 ξ2(x2
3+y2

3)−1
1+γ3ξ


(20)

where Φk = 1+γkξ
γk+ξ(x2

k+y2
k)

. The task function e (see Equation
(13)) can thus be regulated to 0 using the control law (14)
with the following interaction matrix L:

L =
[

A 03

03 Lω

]
(21)

In practice, an approximated interaction matrix L̂ is used.
The parameter ρ∗ can be estimated only once during a off-
line learning stage.

V. EXPERIMENTAL RESULTS

END−EFFECTOR

TARGET

OMNIDIRECTIONAL
CAMERA

Fig. 3. Experimental setup : eye-to-hand configuration

The proposed control law has been tested on a six d-o-f
eye-to-hand system (refer to Figure 3). In this configuration,
the interaction matrix has to take into account the mapping
from the camera frame onto the robot control frame [12]. If
we denote [Re, te] this mapping, the eye-to-hand interaction
matrix Le is related to the eye-in-hand one L by :

Le = L
[

Re [te]×Re

03 Re

]
(22)

where [te]× is the skew symmetric matrix associated with
translation vector te. The interation matrix Le is used in
the control law (14). The omnidirectional camera used is a
parabolic mirror combined with an orthographic lens. Since
we were not interested in image processing in this paper,
the target is composed of white marks (see Figure 3). The
extracted visual features are the image coordinates of the
center of gravity of each mark. From an initial position the
robot has to reach a desired position known as a desired 2
1/2 D observation vector s∗. Three experiments are presented
:

• First experiment (Figures 4 and 5): rotational motion
only (θux = 18dg, θuy = 20dg, θuz = 25dg),
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• second experiment (Figures 6 and 7): translational mo-
tion only (tx = 0.3 m, ty = −0.4 m, tz = 0.1 m),

• third experiment (Figures 8 and 9): generic motion
((tx = 0.5 m, ty = −0.35 m, tz = 0.1 m, θux = 2dg,
θuy = 35dg, θuz = 31dg).

For each experiment, the images corresponding to the initial
and desired configuration, the trajectories of four image
points, the error si − s∗i , the rotational error uθ, the trans-
lational and the rotational velocities are presented. The
convergence of the error s − s∗ demonstrates the correct
realization of the task. The computed control laws are
given in Figures 5(c)-(d),7(c)-(d),9(c)-(d). We can note its
satisfactory variations due to the full decoupling between
rotational and translational motions.

(a) (b)

Fig. 4. First experiment: (a) Initial, (b) desired images of the target and
trajectories of four image points
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Fig. 5. First experiment: (a) error si − s∗i , (b) rotational error uθ (rad),
(c)translational velocities (m/s)(d) rotational velocities (rad/s)

(a) (b)

Fig. 6. Second experiment: (a) Initial, (b) desired images of the target and
trajectories of four image points
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Fig. 7. Second experiment:(a) error si − s∗i , (b) rotational error uθ (rad),
(c)translational velocities (m/s)(d) rotational velocities (rad/s)

(a) (b)

Fig. 8. Third experiment: (a) Initial, (b) desired images of the target and
trajectories of four image points
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Fig. 9. Third experiment:(a) error si − s∗i , (b) rotational error uθ (rad),
(c)translational velocities (m/s)(d) rotational velocities (rad/s)

VI. CONCLUSION

In this paper a hybrid decoupled vision-based control
scheme valid for the entire class of central cameras was
presented. Geometrical relationship between two views of
imaged points was exploited to estimate a generic homogra-
phy matrix from which partial Euclidean reconstruction can
be obtained. The information extracted from the homography
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matrix were then used to design a hybrid control law
which allowed us to fully decouple rotational motion from
translational motions. Experimental results show the validity
of the proposed approach.
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