
Pre-positioning Assets to Increase Execution Efficiency

Laura M. Hiatt
Computer Science Department

Carnegie Mellon University
5000 Forbes Ave.

Pittsburgh, PA 15213
lahiatt@cs.cmu.edu

Reid Simmons
Robotics Institute

Carnegie Mellon University
5000 Forbes Ave.

Pittsburgh, PA 15213
reids@cs.cmu.edu

Abstract— In many robotic domains, efficiency is an im-
portant component of task execution. One way to improve
task efficiency is to lessen the overhead of beginning a task
by making sure the necessary agents are near the task site
when execution begins, minimizing travel time delays – in
other words, pre-positioning agents for their future tasks. In
static, certain domains, this can easily be done in advance and
incorporated into the initial plan. In dynamic domains such as
search and rescue, however, there is not enough certainty about
task execution to plan for this ahead of time. To address this,
we present here a planner that adds pre-positioning to a plan
during execution. The planner strategically positions groups
of idle robots whose future task assignments are uncertain in
order to minimize travel time by the group as a whole once
its members are allocated tasks. Because this planner must
run in real time, we present five versions of the planning
algorithm, addressing the trade-off of computation time and
solution quality that results. We then show that by adding in
this type of planning, the overhead of beginning a task can be
reduced by up to 90%.

I. INTRODUCTION

In robotic domains such as search and rescue, efficiency is
a critical component of task execution. Because of the nature
of the situation, every second counts, and any team, whether
robot, human or both, that works in search and rescue has
to meet this demand.

Imagine that there are two groups of robots responsible
for survivor rescue. One is made of search robots, which
perform initial sweeps for survivors. The second is of medic
robots, which trail behind and, when a survivor is found,
treat him.

In static, certain domains, in which all task assignments
and start times are known at plan time, an initial plan would
include pre-positioning agents for their future tasks by mov-
ing them as close as possible to the task site before execution
begins. Due to the uncertainty of the above domain, however,
such advance knowledge is not possible. It is not known
which medic robots will be idle, as that depends on the
earliness, lateness and assignment of previous tasks, which
building will need a medic robot, since it is hard to predict
where a survivor will be found, nor when a medic robot will
be needed, due to the difficulty of predicting how long a
search will take.

Planning pre-positioning for idle robots at run time, how-
ever, when task execution and start times are known with
higher probability, can be done and is an effective way of

increasing task execution efficiency. To do this we introduce
a second, run time planner into the architecture. This planner
takes in the current, uncertain plan and pre-positions groups
of idle robots with uncertain future tasks without affecting
with the overall plan structure. It intelligently chooses pre-
positioning locations, optimizing placement of the group as a
whole, by minimizing the total expected travel time overhead
of beginning the robots’ next tasks. Because solving this
problem exactly requires exponential search, we have also
developed four approximations of the exact result, each with
their own balance of the trade-off of computation time versus
solution quality.

In the following section, we discuss work related to ours.
We next give an overview of each of the algorithms. Then, in
Sections IV and V, we present experiments ran in simulation
and discuss the results. Finally, we conclude and discuss
future work in Section VI.

II. RELATED WORK

A. Run Time Task Allocation and Plan Optimization

In a highly dynamic domain such as search and rescue,
it can be useful to integrate planning and execution so that
the plan is developed as execution progresses [1]. Jin, et al
use a market-like approach, where UAVs use a cost value
to ‘bid’ to a central controller for new tasks, to solve a
stochastic version of the dynamic vehicle routing problem
[2]. Other work uses a distributed algorithm to dynamically
assign UAVs tasks in their respective Voronoi regions [3].
Our pre-positioning is similar in spirit to these approaches,
but focuses on taking advantage of known possible future,
not current, task assignments.

There is also an increasing body of work being done
on optimizing plan efficiency during run time. Distributed
approaches such as the market-based approach achieve this
by constantly tasking and retasking robots as execution
progresses so the plan ideally consists of the current most
efficient task allocation [4]. Centralized approaches also
address this problem. Estlin, et al optimize during run time
by initially construct a full plan and then replanning during
execution when necessary [5]. Other work optimizes during
task execution by updating parameters of task allocation,
such as robot suitability, to improve the quality of allocation
as execution progresses [6].

2007 IEEE International Conference on
Robotics and Automation
Roma, Italy, 10-14 April 2007

WeA11.2

1-4244-0602-1/07/$20.00 ©2007 IEEE. 324

B. Path Planning Approximations

A common downside to run time planning is that the time
it takes to plan can often grow to outweigh the benefits
provided by the extra planning. Recent work has addressed
this by exploring the use of Generalized Voronoi Diagrams
(GVDs) on discretized grids of an environment to reduce
the complexity of path planning and other related search
algorithms [7], [8]. A GVD of an environment represents
the set of points that are equidistant from the two (or more)
nearest obstacles, essentially reducing the search space to
well-placed paths through the environment [9]. By constrain-
ing the search space of an environment to its GVD, planning
for a 2-dimensional grid can be reduced to a 1-dimensional,
linear problem. Further, the GVD can be generated in time
linear to the size of the grid. This is useful for a run time
planner such as ours.

III. PROBLEM DESCRIPTION

Our run time pre-positioner is useful in conjunction with
plans that have too much uncertainty to allow planning pre-
positioning at plan time. For our purposes, plans have two
types of uncertainty: when a task will begin, and whether
or not a task will require a robot for execution. In this
paper, we separate these two types of uncertainty into two
different problems, called Task Start Uncertainty (TSU) and
Task Allocation Uncertainty (TAU). We do not yet consider
the case where there is uncertainty of both types.

We present below different approximations of two algo-
rithms to solve these problems and minimize the expected
distance to travel after task assignment. We assume that all
tasks are single-agent and that when a task begins and needs
allocation the closest idle robot is assigned to it. We also
assume that the robots’ workspace is discretized into a grid;
thus, all statements of optimality with respect to task travel
time are optimal modulo this approximation.

A. Task Start Uncertainty Problem

For the Task Start Uncertainty problem, there is uncer-
tainty about which task will start next. A demonstrating
scenario is several search robots waiting for fire-fighters to
put out fires in many adjacent buildings before being able to
enter and look for survivors. We want to minimize the time
that passes between when a task is allocated (a fire is put
out) and the assigned robot arrives at the task site (the search
robot begins its search). This is a hard problem because we
are optimizing placement for a group of idle robots as a
whole, and so the robots’ positions are dependent on one
another. An example is shown in Figure 1. The solution is
a single position for each robot to wait for a task to be
allocated.

At a high level, given an occupancy grid and task infor-
mation, the algorithm considers each grid cell for each robot,
and returns the configuration that minimizes expected travel.
The expected distance to travel that we are minimizing,
shown in (1), is the sum of the Euclidean distances of the
shortest path between each task and the nearest robot, where
each distance is weighted by the probability that task will

task location

pre-positioned
robot location

obstacle

original robot location

Fig. 1. A sample problem and solution to the TSU problem, with 2 robots,
and 3 tasks with equal probability of starting first.

start first. The probability a task will be the first to start can
be calculated from the probability distributions of each task’s
start times. The expected distance can be solved in O (rt)
time, where r is the number of robots and t is the number
of tasks. The psuedocode for this straight-forward algorithm
is shown in Algorithm 1. Since it considers all valid plans,
it is guaranteed to find the optimal solution. The algorithm
runs in O (rt (mn)r) time, where mn is the size of the grid,
r is the number of robots to consider and t is the number of
tasks.

ExpDist (robots pos, tasks) =
numTasks∑

i

p (tasks [i])

∗ distance (closest (robots pos, tasks [i]) , tasks [i]) (1)

Algorithm 1: The TSU Algorithm

CalcExactTSU(tasks)1
cell [] solution = new cell []2
bestDist ← TSUHelper(1, tasks, solution)3

return solution4
TSUHelper(curRobot, tasks, cells [])5

bestDist ← INT MAX6
curCells [1...curRobot− 1] = cells [1...curRobot− 1]7
foreach free cell c in grid do8

curCells [curRobot]← c9
if curRobot == numRobots then10

curBestDist ← ExpDist(curCells, tasks)11

else12
curBestDist = TSUHelper(curRobot + 1,13
tasks, curCells)

if curBestDist < bestDist then14
cells [curRobot...numRobots]←15
curCells [curRobot...numRobots]
bestDist← curBestDist16

return bestDist17

1) Generalized Voronoi Diagram Approach: As the grid
size or the number of robots increases, the TSU algorithm
can take a prohibitively long time to run. One way to reduce

WeA11.2

325

task location
hub location

GVD
obstacle

Fig. 2. A sample workspace, with the GVD and hub points shown.

the run time of the algorithm is to reduce the number
of points it considers while searching for the best set of
locations for the robots. The Generalized Voronoi Diagram
Approach (GVDA) does this by considering only cells that
are on the Generalized Voronoi Diagram of the grid. This
reduces the search space to well-placed paths through the
grid which intersect at ‘hub points’. Calculating the GVD
can be done in a trivial O (mn) time by using a Euclidean
Distance Transform algorithm [10]. A workspace with the
corresponding GVD is shown in Figure 2. By using the GVD,
which has O (

√
mn) cells, we reduce the asymptotic run time

to O
(
rt (mn)r/2

)
.

2) Generalized Voronoi Diagram Gradient Approach:
Even with the reduction of run time that the above approach
gives us, if the grid size or number of robots increases further
a faster algorithm is desired. Thus, we developed a third
approximation, the Generalized Voronoi Diagram Gradient
Approach (GVDGA).

In this approach, we begin by solving for the GVD as
above. We then turn our attention to the hubs of the Voronoi
diagram, which correspond to the set of points that are on the
border of 3 or more Voronoi regions. Because the GVD in
general is well-placed throughout the grid, the hub points are,
as well. Figure 2 shows an example workspace displaying the
hubs of its GVD. Identifying the hubs can be done in time
linear to the size of the GVD, or in O (

√
mn) time.

The algorithm begins by finding the best hub point for
each robot. Starting from there, it searches along the Voronoi
to find a local minimum approximation of the exact GVD
solution. It considers the neighbors on the GVD of the
current cell, moves in the direction of the cell that decreases
the expected distance the most, and repeats until it reaches
a local minimum. This is similar to a gradient descent
algorithm. An example is shown in Figure 3. In this example,
the algorithm first returned the best hub after considering all
hubs, and then searched along the GVD as marked by the
small black dots until it found a local minimum, shown as the

task location
robot location

obstacle

best hub pt
GVD

Fig. 3. A sample workspace, with the GVDGA solution and gradient search
space shown.

marked robot pre-position. It considered far fewer points than
the GVDA would have, despite having the same asymptotic
complexity.

3) Randomized Gradient Approach: We also comple-
mented the GVDGA with a Randomized Gradient Approach
(RGA). This algorithm, instead of using the hubs of the
GVD, chooses a comparable number of random cells of the
grid. Like the above approach, it follows the gradient starting
from the best hub until it reaches a local minimum; however,
it considers all 8 neighboring grid cells of the current point
instead of just the neighbors along the GVD. The asymptotic
run time of this algorithm is the same as that of the GVDGA.

B. Task Allocation Uncertainty Problem

For the Task Allocation Uncertainty problem, although the
task start times are known, there is uncertainty about whether
or not tasks will need a robot for execution. An example
search and rescue scenario is one in which search robots
may, or may not, find survivors at any given search location,
and so the closest medic robot to that location may, or may
not, be assigned the task of treating a survivor. Here we want
to minimize the total time that passes between when each
task is allocated (a survivor is found) and when the assigned
robot arrives (a medic robot arrives to treat the survivor). To
do this, each robot begins with an initial pre-position. Then,
when a task’s start time passes, the remaining idle robots
reposition in order to be closer to the next tasks to start. An
example is shown in Figure 4. The solution space for this
problem is a series of points for each robot to follow, one
per task.

Because the start times of each task are known, we
constrain the search space to account for travel time and
consider only points that are reachable by the robot before
the next possible task begins, given some a priori speed for
the robot. This means that the optimal position for a robot
to go to at any time is not necessarily directly towards the
location of the next task to start: this could lead to the robot

WeA11.2

326

1

2

3

task location
robot location

obstacle

1

23

1, 2, 3

Fig. 4. A sample problem and solution to the TAU problem, with 2 robots,
and 3 tasks.

being much farther away from a second, later task and a
higher overall expected distance. This problem is thus even
harder than the TSU problem because the robots’ positions
are coupled in two ways - between positions of robots for
the same task, and between sequential positions of the same
robot. It is also more complicated because, although for the
first task we know which robots are idle and therefore which
robot will be closest to it when it begins, for later tasks this
is only probabilistic since the set of robots that are still idle
is uncertain.

To solve this problem, given an occupancy grid and task
information, the algorithm considers each reachable grid
cell for each robot each time a task could possibly start,
calculates the expected total distance to be traveled during
the task assignment process, and returns the solution with
the lowest expected distance. The expected distance equation
that we are minimizing is shown in (2), where p is the
probability that the task will need a robot for execution. The
base case of this equation is when either i > size(tasks) or
robots pos = { }, making ExpDist (robots pos, i) = 0. It is
solved in O (r2t) time, where r is the number of robots,and
t is the number of tasks. The psuedocode of the algorithm
is shown in Algorithm 2. It is guaranteed to find the optimal
solution since it considers all possible valid plans.

ExpDist (robots pos, i, tasks) = p (tasks [i])
∗ (distance (closest (robots pos, tasks [i]) , tasks [i])

+ ExpDist(robots pos− {closest (robots pos, tasks [i])},
i + 1, tasks)) + (1− p (tasks [i]))

∗ ExpDist (robots pos, i + 1, tasks) (2)

Solving this algorithm exactly runs in O
(
r2t (mn)rt

)
,

where mn is the size of the grid, r is the number of robots,
and t is the number of tasks. For a small occupancy grid and
only a few robots, using this approach is feasible; beyond
that, however, its use becomes impractical as its additional

Algorithm 2: The TAU Algorithm

CalcExactTAU(tasks)1
cell [] [] solution = new cell [] []2
bestDist← TAUHelper(1, 1, solution)3

return bestDist4
TAUHelper(curRobot, curTask, cells [] [])5

bestDist = INT MAX6
curCells← cells7
foreach reachable, free cell c do8

curCells [curTask] [curRobot] = c9
if curRobot == numRobots&&curTask ==10
numTasks then

curDist← ExpDist(curCells, 1, tasks)11

else if curRobot == numRobots then12
curDist←13
TAUHelper(1, curTask + 1, curCells)

else14
curDist←15
TAUHelper(curRobot + 1, curTask, curCells)

if curDist < bestDist then16
bestDist← curDist17
cells [curTask] [curRobot] = c18

return bestDist19

exponential complexity makes the run time prohibitively
large.

1) Generalized Voronoi Diagram Approach: To make the
problem more tractable, we first reduce the search space to
be restricted to the cells of the Generalized Voronoi Diagram
(GVD), as we did with the above TSU problem. This makes
the asymptotic run time O

(
r2t (mn)rt/2

)
.

2) Generalized Voronoi Diagram Gradient Approach and
Randomized Gradient Approach: We adjusted the GVDA
algorithm in the same manner as before to create the Gener-
alized Voronoi Diagram Gradient Approach and Randomized
Gradient Approach. Their complexity is again the same as
that of the GVDA.

3) Greedy Approach: Because of the higher complexity
of this problem, we developed a greedy approach. This
algorithm solves each task location independently of future
locations, ignoring the coupling between sequential positions
of a robot. In other words, it does not consider future
implications of moving to a point; instead, it solves for the
best points it can get to at each task start time, given previous
positions and how far it can travel.

This algorithm thus uses the same basic structure as the
exact solution, but does not recurse for each task. The
asymptotic run time of this algorithm is O (rt2t (mn)r).

IV. EXPERIMENTS AND RESULTS

In order to compare these algorithms, we ran them in
simulation using scenarios with different sizes of randomly
generated occupancy grids and different numbers of robots
and tasks.

A. Method

In our simulated scenarios, grids had a random number of
obstacles, each in a random location and of a random size.

WeA11.2

327

TABLE I
TASK START UNCERTAINTY RESULTS

average average average
algorithm expected distance difference run time (s)

1 robot, 4 tasks, 100X100 grid, 100 trials

Exact 57.9 – 0.024
GVDA 59.3 1.35 0.022

GVDGA 59.9 1.91 0.021
RGA 58.1 0.13 0.022

2 robots, 4 tasks, 100X100 grid, 100 trials

Exact 20.3 – 19.9
GVDA 24.1 3.83 0.506

GVDGA 25.2 4.92 0.037
RGA 21.0 0.68 0.040

3 robots, 4 tasks, 30X30 grid, 100 trials

Exact 1.95 – 153.6
GVDA 4.06 2.12 10.0

GVDGA 4.34 2.40 0.165
RGA 3.54 1.60 0.100

The robots’ initial locations, the tasks’ locations and the task
probabilities were also randomly generated.

For each algorithm and each problem, we recorded the
expected distance to travel without pre-positioning, the run
time, and the expected distance after pre-positioning.

B. Results

The results for the TSU problem are shown in Table I1. For
a simple scenario with a single robot, all of the algorithms
run equally fast. For scenarios with two robots, the exact
algorithm slows down significantly, but the others remain
relatively fast. Once three robots are considered, the exact
algorithm takes prohibitively long and an approximation is
needed. For all scenarios, the random algorithm performs the
best of all the approximation algorithms.

Table II shows the results for the TAU problem. This
problem introduced the notion of ‘failures’. A failure occurs
when no solution can be found that a robot can reach
before the next task starts. Thus, failures are possible in
the GVDA, GVDGA and RGA since they have constrained
search spaces.

When there is only one robot, the exact algorithm finds
the optimal solution in a reasonable amount of time. The
greedy algorithm finds a reasonable solution in very fast time.
For situations with more than one robot, however, the exact
algorithm is not a viable option for run time use, and the
greedy algorithm’s solution deteriorates. The RGA also does
not scale here as well as it does for the TSU problem. The
GVDA, on the other hand, has a reasonable run time, fewer
failures than the GVDGA for 1 robot, and fewer failures than
the GVDGA and RGA for 2 robot scenarios.

1The distances reported in all tables are in terms of the number of grid
cells; i.e., we treat grid cells as having a dimension of 1x1. Also, the
average expected distance here denotes the average of the differences of each
approximation with the exact algorithm, not the difference of the averages.

TABLE II
TASK ALLOCATION UNCERTAINTY RESULTS

average average average success
algorithm expected distance difference run time (s) rate (%)

1 robot, 3 tasks, 100X100 grid, 100 trials

Exact 27.2 – 58.6 100
GVDA 30.0 2.87 4.6 92

GVDGA 31.4 4.26 1.32 85
RGA 27.6 0.469 4.96 92

Greedy 29.1 1.94 0.018 100

2 robots, 3 tasks, 30X30 grid, 30 trials

Exact 8.08 – 24718 100
GVDA 9.57 1.48 2319.1 93.3

GVDGA 10.41 2.33 70.4 83.3
RGA 8.72 0.64 2355.6 76.7

Greedy 11.23 3.15 0.013 100

TABLE III
OBSTACLE RESULTS FOR TSU

algorithm normal obstacles fewer obstacles more obstacles

2 robots, 4 tasks, 100X100 grid, 100 trials

average expected distance
Exact 20.3 21.9 21.1

GVDA 24.1 26.8 24.1
GVDGA 25.2 27.9 24.7

RGA 21.0 22.5 21.8

average run time
Exact 19.9 20.1 19.4

GVDA 0.506 0.318 0.903
GVDGA 0.037 0.030 0.042

RGA 0.040 0.036 0.034

To ensure that the mean of the randomly generated number
of obstacles did not bias the results, we ran further tests
varying the number of obstacles. The results are shown in
Table III and compare the expected distance and run time of
grids with the mean number of obstacles used in previous
experiments with those of grids with both fewer and more
obstacles. No algorithm is much affected by these variations.

Table IV compares the expected distance with no pre-
positioning with the expected distance when pre-positioning
is used. The ‘average % decrease’ column indicates the
average of what percentage of the travel time without pre-
positioning can be avoided by using pre-positioning. For each
of the algorithms, a large savings in distance traveled is
achieved.

V. DISCUSSION

For both problems, the exact algorithm, GVDA and
GVDGA provide a nice demonstration of the trade-off of
run time and optimality, with expected distance increasing
and run time decreasing as we consider them in order. Thus
although the GVDA and GVDGA are not guaranteed to find

WeA11.2

328

TABLE IV
TSU AND TAU IMPROVEMENTS

average expected average expected
distance without distance with average

algorithm pre-positioning pre-positioning % decrease

TSU, 3 robots, 4 tasks, 30X30 grid, 100 trials

Exact

19.4

1.95 89.9
GVDA 4.06 77.0

GVDGA 4.34 75.6
RGA 3.54 80.5

TAU, 2 robots, 3 tasks, 30X30 grid, 45 trials

GVDA

18.0

8.11 55.1
GVDGA 9.19 50.0

RGA 6.86 62.1
Greedy 9.94 46.0

a solution in the TAU case, they compensate for their less
optimal solutions by running in less time and being tractable
in larger spaces than the more optimal algorithms.

Although the RGA’s solutions are generally better than the
other approximations’, for the TAU problem its reliability
decreases as the number of robots increases. This is because
the RGA’s chosen hubs are not guaranteed to be as well-
spaced throughout the environment as the GVDGA’s, making
it less likely that a hub is within the necessary range of a
robot and a solution is found.

Despite their similarity, its run time also increases relative
to the GVDGA for the TAU problem. We explain this by
remembering that for this problem the RGA has a high
overhead because it checks all 8 neighboring points for
reachability, instead of the two that the GVDGA does. This
leads to an overall higher run time.

The greedy algorithm is the fastest of the algorithms, and
does well in domains with only one robot. In scenarios with
multiple robots, however, its results degrade as it fails to
take into consideration interactions between different robots
at different times. Still, its low run time warrants its use
in problems which are too large for the other algorithms to
realistically solve during runtime.

Based on these results, we can make recommendations
about approximation algorithms in this domain. For the TSU
problem, the RGA outperforms both the GVDA and GVDGA
algorithms and is a good alternative to the exact algorithm.
For the TAU problem, the GVDGA has the best overall
balance of run time, solution quality and success rate. If
the grid, number of robots and number of tasks is too high
even for the RGA or GVDGA, however, one can either
use the greedy approach to ensure a solution is found in
a short amount of time, or use a grosser discretization of the
environment to lessen the number of grid cells the algorithms
must consider.

The results shown in Table IV make a compelling argu-
ment for using run time pre-positioning in a robotic system.
The use of pre-positioning in each of these scenarios is

clearly warranted by comparing the planner’s run time with
the expected savings in travel time once a task is started.

VI. CONCLUSIONS AND FUTURE WORK

In conclusion, we have shown that run time pre-
positioning can be a useful tool to increase task execution
efficiency in uncertain plans. In particular, we have developed
a planner that takes advantage of run time task execution
probabilities to determine a strategic location for idle robots
to wait for their next task assignment. By doing so, the
overhead of beginning a task can be reduced by up to 90%.

In the future, we hope to extend this work to include more
complicated scenarios. One example is situations in which
there are both task start time and task allocation uncertainty.
This would further increase the complexity of the TAU case
because at any given future time, in addition to uncertainty
about what agents are available, there is also uncertainty
about which tasks have already started. Another extension
is looking at how this would work with multi-agent tasks.

VII. ACKNOWLEDGEMENTS

This research was sponsored in part by NASA grant
NNA04CK90A and by National Science Foundation Fel-
lowship No. DGE-0234630. The views and conclusions
contained in this document are those of the author and should
not be interpreted as representing the official policies, either
expressed or implied, of any sponsoring institution, the U.S.
government or any other entity.

REFERENCES

[1] K. Golden, O. Etzioni, and D. Weld, “Planning with execution
and incomplete information,” Department of Computer Science and
Engineering, University of Washington, Tech. Rep. UW-CSE-96-01-
09, 1996.

[2] Y. Jin, A. A. Minai, and M. M. Polycarpou, “Cooperative real-time
search and task allocation in uav teams,” in Proc. IEEE International
Conference on Decision and Control, 2003.

[3] E. Frazzoli and F. Bullo, “Decentralized algorithms for vehicle routing
in a stochastic time-varying environment,” in Proc. IEEE International
Conference on Decision and Control, Paradise Island, Bahamas, De-
cember 2004.

[4] B. P. Gerkey and M. J. Matarić, “Sold!: Auction methods for multi-
robot coordination,” IEEE Transactions on Robotics and Automation,
vol. 18, no. 5, October 2002.

[5] T. Estlin, F. Fisher, D. Gaines, C. Chouinard, S. Schaffer, and
I. Nesnas, “Continuous planning and execution for an autonomous
rover,” in Proceedings of the Third International NASA Workshop on
Planning and Scheduling for Space, Houston, TX, October 2002.

[6] C.-H. Fua and S. S. Ge, “COBOS: Cooperative backoff adap-
tive scheme for multirobot task allocation,” IEEE Transactions on
Robotics, vol. 21, no. 6, pp. 1168–1178, 2005.

[7] M. Foskey, M. Garger, M. Lin, and D. Manocha, “A voronoi-based
hybrid motion planner,” in Proceedings of the IEEE/RSJ International
Conference on Intelligent Robots and Systems (IROS), 2001.

[8] N. Kalra, D. Ferguson, and A. Stentz, “Constrained exploration for
studies in multirobot coordination,” in Proceedings of the IEEE
International Conference on Robotics and Automation (ICRA), May
2006.

[9] H. Choset, “Incremental construction of the generalized voronoi dia-
gram, the generalized voronoi graph, and the hierarchical generalized
voronoi graph,” in Proceedings of the First CGC Workshop on Com-
putational Geometry, Baltimore, MD, October 1997.

[10] H. Breu, J. Fil, D. Kirkpatrick, and M. Werman, “Linear time euclidean
distance transform algorithms,” IEEE Transactions on Pattern Analysis
and Machine Inteliigence, vol. 17, pp. 529–533, May 1995.

WeA11.2

329

