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Abstract— Conventionally, joint angles are used as parame-
ters for a spatial chain with spherical joints, where they serve
very well for the study of forward kinematics (FK). However,
the inverse kinematics (IK) problem is very difficult to solve
directly using these angular parameters, on which complex non-
linear loop closure constraints are imposed by required end
effector configurations. In a recent paper, our newly developed
anchored triangle parameters were presented and shown to be
well suited for the study of IK problems in many broad classes
of linkages. The focus of that paper was the parameterization
of non-singular solutions; among many specific types of IK
problems, only one, that of a spatial chain with spherical joints
imposing 5 dimensional constraints, was developed in detail.

Here we present a unified approach to the solutions of that
and two other types of IK problems. The critical concepts in
our approach—the geometric formulation in anchored triangle
parameters, and the application of loop deformation spaces—
are general for all IK problems, and especially useful for
redundant systems. For the three IK problems addressed in
this paper, we demonstrate convexity properties of the set
of IK solutions. We also give detailed descriptions of the
parameterization of singular deformations. Similar ideas apply
readily to linkages involving multiple loops.

I. OVERVIEW

Kinematics is fundamental in the study of linkage systems.
This has long been known in robotics, where kinematics
analysis, robot design, motion planning and trajectory control
all involve kinematical issues. More recently, kinematics
has been generalized and applied to the study of protein
conformations. A key, yet somewhat un-emphasized, issue
in the study of kinematics is the choice of parameters.
By far the most commonly used kinematic parameters are
joint parameters [1], including angles for rotational joints,
translational displacements for prismatic joints, and related
twists [2]. For linkages, such joint parameters are a natural
default since they correspond directly to the actuation of
the joints and are well suited for forward kinematics (FK)
computation (e.g., by taking the product of link transfor-
mation matrices). In contrast with FK, inverse kinematics
(IK) problems are usually very difficult to solve in joint
parameters: typically the dependence of the end effector
configurations on joint parameters (particularly for rotational
joints) is highly nonlinear. Yet past research has led to a large
body of impressive results; a small set of representative work
appears in [1], [2], [3], [4], [5], [6], [7], [8], [9], including
recent formulations of IK problems using distance constraints
and vector equations.
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We recently introduced a new set of linkage parameters
tailored to the study of inverse kinematics. These anchored
triangle parameters consist of certain inter-joint distances
(called diagonal lengths) and certain triangle orientation
parameters (signs or dihedral angles); they were described
in some detail for serial chains with spherical joints in space
or revolute joints in the plane in [10], and for closed planar
chains with revolute joints in [11]. It was shown that for
the linkages under study the addressed IK problem can be
formulated exactly, not approximately, as a set of linear
inequalities in the anchored triangle parameters. In addition,
for a spatial chain with ñ spherical joints and generic
link lengths, the solution set for the addressed IK problem
under this new parameterization is the product of an ñ − 3
dimensional convex polyhedron and an ñ − 2 dimensional
torus; insofar as a torus becomes convex (a cube) when
it is cut open, this product can be considered “practically
convex”. (Extra care is needed for singular configurations.)

The inverse kinematics problem addressed in [10] is
formulated with respect to the required positions of the two
end points of the last link. Such a formulation is equivalent
to the required end effector transformation in the planar case,
but slightly different in the spatial case. More specifically, in
space the two-endpoint-position constraint is 5-dimensional:
it constrains the last joint’s position in space (3-dimensional
constraint) and the penultimate joint’s position on the sphere
centered at the last joint with radius the last link length
(2-dimensional constraint). On the other hand, the common
end-effector constraint in space imposes a 6-dimensional
constraint, and the encoding of the sixth constraint in the new
parameters is not addressed in [10]; nor do [10], [11] give
many details on how to deal with singular configurations,
especially super-singular configurations (to be explained
later). Yet singular configurations play an important role in
reconstructing the global topological structure of the solution
set, especially for planar chains with revolute joints [11].

In this paper, we address these issues and study three
types of IK problems for a serial spatial chain consisting of
ñ rigid links connected by spherical joints. IK Problem 1
is commonly called the “reaching” problem and poses a
constraint on the position of the tip of the chain; IK Prob-
lem 2 is that studied in [10]; and IK Problem 3 imposes a 6
dimensional constraint on the chain similar to the constraints
imposed by a required configuration of the last link frame.
We present a unified geometric approach based on a critical
concept of the deformation space of a loop. This new geo-
metric formulation as well as the concept of the deformation
space of a loop are general for all IK problems and are
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especially useful for redundant systems. In addition, for the
three IK problems addressed in this paper, the anchored
triangle parameterization is shown to make the set of inverse
kinematics solutions piecewise convex. We also describe in
detail the parameterization of singular deformations. Similar
ideas apply readily to linkages involving multiple loops.

We would like to emphasize that a linkage with spherical
joints can be used to model points in space under distance
constraints, where the points could be mathematical points,
chemical atoms, environmental landmarks for robot local-
ization and/or mapping, or even (mini-)robots in a swarm
collaborating on a task like area surveillance and coverage.
See [12] for a coarse-grain protein model as a chain of
alpha-carbons connected by spherical joints. While a robot
linkage generally does not have many joints and is not
overly redundant, the numbers of points in those point
systems could be quite large; thus explicit parameterization
of the deformation spaces and configuration spaces may be
particularly useful in the study of those systems.

II. ADDRESSED PROBLEMS

For a spatial chain with ñ spherical joints, denote by P̃ (j),
j = 0, . . . , ñ, the end points of its links, including the joints
and the tip of the last link. With a slight abuse of notation,
we also write P̃ (j) for the coordinate of the point P̃ (j) with
respect to some fixed frame. Let l̃(j) > 0 denote the length
of the link from P̃ (j) to P̃ (j +1), j = 0, . . . , ñ−1. Similar
to [10], we make the simplifying assumption that a chain
configuration is completely specified by its joint positions,
i.e., a link has no structure other than its length and the loca-
tions of its endpoints. Following common approaches taken
in the study of IK, we do not consider system constraints
such as joint limits and interference between links.

In this paper, we study three types of inverse kinematics
problems, specified by increasingly stringent requirements
on the end link configurations. In each problem, we assume
that the base joint P̃ (0) is fixed.

• IK Problem 1 requires just the chain tip P̃ (ñ) to be in
a specified position.

• IK Problem 2 requires the last link, with endpoints
P̃ (ñ − 1) and P̃ (ñ), to be in a specified position.

• IK Problem 3 requires the last link to be in a specified
position and the second to last link, with endpoints
P̃ (ñ − 2) and P̃ (ñ − 1), to form a specific angle θreq

with a given vector vreq.

Problem 1, commonly called the “reaching problem”,
imposes a 3-dimensional constraint, making the expected
dimension of its solution space 2ñ − 3. The problem ad-
dressed in [10] is Problem 2; it imposes a 5-dimensional
constraint, so its solution space should generally be (2ñ−5)-
dimensional. Problem 3 imposes a 6-dimensional constraint,
and thus is similar to IK problems specified by required
configurations of the local frame of the last link, which has
6 degrees of freedom: indeed, the constraints imposed on
P̃ (ñ − 2), P̃ (ñ − 1) and P̃ (ñ) in Problem 3 can be used to
define a local frame for the last link.
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P( n~ −2)

P( j+2)

P( n~ )~

~

~

~

~~
~

~

~

Fig. 1. Physical links (in black) and virtual links (in gray) in IK problem 3.

It follows from [13], [14] that, for each of IK Problems 1–
3, the solution space is an algebraic variety contained in
the joint angle space (which can be identified with a 2ñ-
dimensional torus (S1)2ñ), and that for generic link lengths
this algebraic variety is a manifold of the appropriate di-
mension embedded in (S1)2ñ. Manifolds are a conceptually
simple class of spaces, characterized by the existence at each
point of a local coordinate system of real parameters that
biuniquely describe all nearby points; algebraic varieties, by
contrast, may contain points near which there is no biunique
parametrization by any number of real parameters. Although
manifolds are characterized by local Euclidean coordinate
systems, a manifold per se has no obvious coordinates.

III. OUR RESULTS AND SOLVING STRATEGIES

To solve IK Problems 1–3, let us draw the virtual links
from the base joint to the joints with constrained positions:
P̃ (ñ) in IK Problem 1, P̃ (ñ) and P̃ (ñ−1) in IK Problem 2,
and P̃ (ñ), P̃ (ñ − 1), P̃ (ñ − 2) in IK Problem 3. (The
virtual link P̃ (0)P̃ (ñ − 2) will be explained later.) Fig. 1
illustrates IK Problem 3, with irrelevant features suppressed.
Deferring the details a little bit, we see that these virtual
links complement the physical links and lead to virtual loops.
Our key idea in solving all these IK problems is to generate
configurations of loops with appropriate link lengths, without
any regard for the positions and orientations of the loop, and
then to use the rigid transformations to put the constrained
joints (such as P̃ (0) and P̃ (ñ) in IK Problem 1) at the
required positions.

In this section, we first formalize the notation of system
deformations (which can be said to describe “configurations
without regard to the position and location of the system as
a whole”) and then derive the solutions of IK Problems 1–
3 using this concept. We then describe the parameters for
the loop deformations and the geometry of the deformation
space in the next two sections. In contrast to paper [10], we
will explicitly consider the singular cases and solve multiple
IK problems in the unified approach using the concept of
deformation space.

A. Deformation Space

The configuration of a multi-object system can be de-
scribed by the configuration of the objects with respect
to a local frame, together with a transformation from the
local frame to a fixed reference frame. Unlike a rigid body
which has fixed local coordinates for all points, a multi-body
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Fig. 2. Examples of IK problem 1 solutions. (Different solutions are drawn
in different gray shades.) (a) General case: 6 solutions generated by rotating
one deformation of a virtual loop about the virtual link (shown in a dashed
line) defined by the IK problem. (b) Special case: two solutions generated
by rotating one deformation of a loop about the base point.

system has different local configurations. Thus a configura-
tion of a multi-body system is described by a rigid body
transformation together with a deformation of the system
that describes the relative configurations of the objects in
the system. More specifically, two configurations have the
same deformation if there exists a rigid transformation that
moves the system from one configuration to the other.
Mathematically, we can define an equivalence relation in
the configuration space by the group of all rigid motions
in the appropriate Euclidean space and define the the set of
all deformations (or deformation space, DSpace for short) of
a system to be the quotient space of its configuration space
over the group of rigid motions.1

DSpace = CSpace/RM (1)

As an example, a closed chain with 3 links of fixed lengths
(i .e., a triangle) has a trivial deformation space consisting of
only one deformation. So does a system consisting of only
one rigid body. But the deformation space of a kinematic
chain could be complicated with deformations facilitated by
the joint degrees of freedom, and restricted by constraints—
e.g., fixed link lengths and, for closed chains, the loop closure
constraint—independent of rigid motions and so effectively
defined on DSpace of the chain.

B. Solutions for IK Problems 1 and 2

To simplify our notation, we will call a chain (loop) with
ñ spherical joints an ñS chain (loop). We will also denote
the set of solutions for IK Problem k by IKk for k = 1, 2, 3.
Note that the set of IK solutions for a redundant manipulator
is called a “self-motion manifold” [2], a concept related to
but different from deformation space. For the linkages under
study, the relationship between self-motion manifolds and
deformation spaces will become clear in this section.

For IK Problem 1, the virtual link P̃ (0)P̃ (ñ) and physical
links link(0), . . . , link(ñ − 1) form an (ñ + 1)S loop, to be
called Loop1. Denote its deformation space by DSpace1.
Since deformations are “free flying” configurations in the
Euclidean space, we can begin to pin the loop deformations

1The term deformation space (DSpace) is coined in the spirit of config-
uration space (CSpace) and stems from our impression that deformation is a
commonly used word for relative configurations and motions of components
within a system.

down by fixing the positions of P̃ (0) and P̃ (ñ). In case
these required positions are distinct, after a deformation
is pinned down, its remaining degree of freedom is ro-
tation about the axis passing through P̃ (0), P̃ (ñ). It is
straightforward to prove that in this case the set of all IK
solutions is {g(P̃ (0), P̃ (0)P̃ (ñ), τ1)D | D ∈ DSpace1},
where g(P̃ (0), P̃ (0)P̃ (ñ), τ1) represents a rigid transfor-
mation needed to move a deformation D to the required
P̃ (0), P̃ (ñ), and τ1 is a rotational angle. Since there is no
constraint on τ1, IK1 can be identified with S1 × DSpace1
in this case. In the remaining case, when P̃ (ñ) == P̃ (0),
we need to deal with an ñS loop having link lengths
l̃(0), . . . , l̃(ñ − 1). Denote the deformation space of this
loop by DSpace1S. Here the set of IK solution is the set
of all chain configurations in which the loop can rotate
freely about the point P̃ (0), and IK1 can be identified with
SO(3)×DSpace1S in this case. We summarize the solution
for IK Problem 1 in (2) and show some examples in Fig. 2.

IK1 =
{

S1 × DSpace1 if P̃ (ñ) �= P̃ (0),
SO(3) × DSpace1S otherwise

(2)

Note that the product notation “×” in (2) is not entirely
rigorous. For example, in case P̃ (ñ) �= P̃ (0) it is possible
for the link lengths to be such that the loop can degenerate
into a single line segment, and then all rotations about the
axis P̃ (0)P̃ (ñ) generate one single configuration. To restore
rigor, we might take the symmetry of loop deformations
into account, in a way similar to the symmetry subgroups
of rigid motions determined by object shapes as in [15];
mathematically, this is tantamount to describing IK1 as a
union of fiber bundles (cf. [16]). However, we will use the
product “×” notation in this paper for the sake of simplicity.

The solution for IK Problem 2 can be similarly derived.
It is given in (3), where DSpace2 denotes the deformation
space of an ñS loop with link lengths l̃(0), . . . , l̃(ñ−2), and
|P̃ (0)P̃ (ñ−1)| when |P̃ (0)P̃ (ñ−1)| �= 0, while DSpace2S
denotes the deformation space of the (ñ − 1)S loop with
link lengths l̃(0), . . . , l̃(ñ − 2). (The solution given in [10]
corresponds to the case of P̃ (ñ − 1) �= P̃ (0).)

IK2 =
{

S1×DSpace2 if P̃ (ñ − 1) �= P̃ (0),
SO(3)×DSpace2S otherwise

(3)

C. Solution for IK Problem 3

The third IK problem needs more work than the other two
problems. Here the link P̃ (ñ− 1)P̃ (ñ− 2) needs to form a
specified angle θreq with a specified vector vreq. To satisfy
this constraint alone, given a segment of length l̃(ñ − 2)
making angle θreq with the linear axis A(P̃ (ñ − 1), vreq)
defined by point P̃ (ñ − 1) and the direction vreq, for each
angle φ we can produce a link P̃ (ñ−1)P̃ (ñ−2) by rotating
the segment by φ about A(P̃ (ñ − 1), vreq). Thus the union
of all possible configurations of this link is a right circular
cone in the Euclidean workspace, on which the set of all
possible positions of P̃ (ñ − 2) is a cross-sectional circle,
as illustrated in Fig. 3(a). So this constraint alone imposes
some restrictions on possible P̃ (ñ − 2) positions as well as
the length vl(ñ − 2) of the virtual link P̃ (0)P̃ (ñ − 2).
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Fig. 3. Any IK problem 3 specification determines a circle for possible positions of P̃ (ñ − 2). (a) General case. (b) Special case: the virtual link
P̃ (0)P̃ (ñ − 1) is coaxial with vreq and the virtual link length vl(ñ − 2) is constant. (c), (d): cis and trans forms of the general case, determining the
minimum and maximum values of the virtual link length vl(ñ − 2).

We now describe this in more detail, again considering
two cases. In the special case, illustrated in Fig. 3(b), P̃ (0)
is on A(P̃ (ñ−1), vreq), so that the length vl(ñ−2) is fixed.
Here, denote the deformation space of an (ñ − 1)S loop
with link lengths l̃(0), . . . , l̃(ñ−3), vl(ñ−2) by DSpace3S.
For each loop deformation, we must put P̃ (0) at the fixed
location and P̃ (ñ − 2) on the circle dictated by the IK3
problem specification as just described. Since P̃ (ñ−2) could
be any point on the circle, we can use one angular parameter
to parameterize its position on the circle. Furthermore, a
loop with its virtual link P̃ (0)P̃ (ñ − 2) attached to the
required location can still freely rotate about the virtual link.
So we can use another angular parameter for this rotational
freedom. Thus the set of IK solutions in this case can be
described as follows.

IK3 = (S1)2×DSpace3S, if P̃ (0)∈A(P̃ (ñ − 1), vreq) (4)

In the general case, P̃ (0) /∈ A(P̃ (ñ − 1), vreq) and so a
unique plane passes through P̃ (0) and A(P̃ (ñ − 1), vreq).
This plane intersects the circle of the possible positions
of P̃ (ñ − 2) (just considering the IK requirements) at
two points, corresponding to the minimal value vll(ñ − 2)
and maximal value vlu(ñ − 2) of |P̃ (0)P̃ (ñ − 2)| (see
Figs. 3(c) and 3(d)). For each vl(ñ− 2) in the open interval
(vll(ñ−2), vlu(ñ−2)), there correspond exactly two feasible
positions for P̃ (ñ − 2), one on each side of the plane,
that are also consistent with the known positions of P̃ (0)
and P̃ (ñ − 1) and the required angle θreq between vreq and
P̃ (ñ − 1)P̃ (ñ − 2); we can label one side of the plane +
and the other −, and then represent the side information
specifying the position of P̃ (ñ − 2) by ε ∈ S0 = {+,−}.
For the two extreme distance values {vll(ñ−2), vlu(ñ−2)},
P̃ (ñ−2) has only one feasible position, which we represent
by {+} or {−} indifferently (although it can be argued that
an entirely distinct label, e.g. 0, might be more appropriate).

Consider a virtual loop with link lengths
l̃(0), . . . , l̃(ñ − 3), vl(ñ − 2), allowing vl(ñ − 2) to
change between vll(ñ − 2) and vlu(ñ − 2), and denote
its deformation space by DSpace3. Based on the above
description, a value of vl(ñ − 2) in its range together
with a sign label ε determines one position of P̃ (ñ − 2),
whence the constraints in IK Problem 3 reduce to the same
constraints as in IK Problems 1 and 2, and the solution
can be generally written as S1 × DSpace3Slice, where
DSpace3Slice is the slice of DSpace3 in which vl(ñ−2) is
assigned some particular value. Taking the side information

into account, and with a slight abuse of notation, we can
say that, so long as point P̃ (0) is not on A(P̃ (ñ − 1), vreq),
the space IK3 can be written as follows.

IK3=S1×S0×DSpace3, if P̃ (0) /∈A(P̃ (ñ − 1), vreq) (5)

IV. LOOP DEFORMATION PARAMETERS

We now determine the deformation space of a general
loop with n spherical joints, i .e. an nS loop for short. We
will refer to the loop joints and link lengths by P (j) and
l(j), j = 0, . . . , n − 1. Once the deformation space of a
general nS loop is determined, we can apply the results to
the appropriate virtual loops arising from IK Problems 1–3.
We will also allow the last link length l(n − 1) to have a
range with known lower bound ll(n − 1) and upper bound
lu(n − 1), to accommodate IK Problem 3.

For our parameters, we will frequently refer to some jth

entity (such as joint, link, etc.) counted from joint i, which
should have index (i+j) mod n to model the cyclic nature
of the loop joint and link indices. To simplify the description,
we write (i; j) for (i + j) mod n.

A. Anchored triangle parameters for nonsingular deforma-
tions

Following the ideas in [10], we use a joint P (a) as
an anchor (for defining the parameters, not for restricting
the positions of the loop). In general we call an object
“anchored” if it includes P (a). For j = 1, . . . , n − 1,
we call the vector P (a)P (a; j) an anchored diagonal of
the loop and denote it

−−→
diag(a, j). Note that the anchored

diagonals P (a)P (a; 1) and P (a)P (a;n − 1) are also links
of the loop. For j = 1, . . . , n − 2, we denote by Tri(a, j)
the anchored triangle with vertices at joints P (a), P (a; j),
and P (a; j + 1); one edge of Tri(a, j) is link(a; j) and the
others are anchored diagonals

−−→
diag(a, j) and

−−→
diag(a, j +1).

(See Fig. 4(a).)
For a given deformation, Tri(a, j) is degenerate (i.e.,

reduces to an anchored line segment) if and only if its
vertices are collinear, which can happen in two distinct ways:
either Tri(a, j) has three distinct but collinear vertices, or
Tri(a, j) has exactly two distinct vertices, in which case
we call it doubly degenerate. (Since all link lengths are
positive, no anchored triangle can reduce to a point.) Note
that Tri(a, j) is doubly degenerate in a given deformation if
and only if one of P (a; j), P (a; j +1) coincides with P (a),
so that Tri(a, j − 1) or Tri(a, j + 1), respectively, is also
doubly degenerate. We call a loop deformation singular for
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Fig. 4. Loop deformations. (a) Anchored triangle parameters: diagonal
lengths and dihedral angles. (b) Two deformations of a 7-bar loop: neither
is singular for P (2), but both are singular for P (0) and the one in gray is
also supersingular for P (0) (and P (3)).

the given anchor a if it has at least one degenerate anchored
triangle, and super-singular, again for that anchor, if it has
at least one doubly-degenerate anchored triangle. Fig. 4(b)
shows two deformations of a certain 7-bar loop: both singular
for the anchor P (0), that drawn in gray is supersingular,
while that drawn in black is singular but not super-singular,
with the collinearity of two adjacent joints with P (0) shown
in a dashed line. Note that neither deformation is singular
for, e.g., the anchor P (2). We will get back to the role of
anchor choice in the next subsection. Here just note that for
our new parameterization and a given deformation, whether
the deformation is singular or not depends on the choice of
anchor. In this subsection, we focus on the set of non-singular
deformations with respect to a given choice of anchor P (a)
and denote this set by DNS (a).

In a sense, the new parameters for DSpace are the trian-
gles Tri(a, j) themselves, as embedded in space modulo a
single rigid motion (applied to all at once). We define more
conventional parameters from them as follows (see Fig. 4(a)).

Definitions 1: Anchored Triangle Parameters

• diagonal lengths: r(a) = (r(a, 1), . . . , r(a, n − 3)) ∈
Rn−3, where r(a, j) = ‖P (a)P (a; j + 1)‖ for j =
1, . . . , n − 3.

• dihedral angles: τ(a) = (τ(a, 1), . . . , τ(a, n − 3)),
where the dihedral angle τ(a, j) is the signed angle for
rotating the normal of Tri(a, j) to that of Tri(a, j +1).

• changeable link length: only l(n− 1) for now to model
the changeable length of the virtual link P̃ (0)P̃ (ñ− 2)
in IK Problem 3. For IK Problems 1 and 2, just make
the lower and upper bounds of this link length equal to
the fixed link length ll(n− 1) = lu(n− 1) = l(n− 1).

Clearly for any deformation in DNS (a), all these para-
meters are well defined. To see that these parameters can
indeed be used to determine the loop deformations, note
that for a given set of valid diagonal lengths and dihedral
angles, the lengths of the links and anchored diagonals
completely determine the shapes of the anchored triangles,
and the dihedral angles determine the relative orientations of
each pair of adjacent anchored triangles. Then we can use
an anchored triangle (more generally, any set of three non-
collinear points) as a reference triangle and put it anywhere
in space. Next, we place its neighboring triangle(s) using
their shape(s) and relative orientation(s). We continue this
iterative process until all triangles have been placed in

completely uniquely defined locations, leading to a well
defined loop deformation. (The detailed formula given in
[10] to carry out this computation assumes that the anchor
is P (0), but it is easily modified to use any other anchor.)
This process just described essentially proves the following
theorem, which means that the anchored triangle parameters
are the local coordinates of the set of all non-singular
loop deformations (again with parameters and deformation
singularity defined with respect to the same anchor).

Theorem 1: The mapping between the set of non-singular
deformations in DNS (a) and their corresponding anchored
triangle parameters (r(a), τ(a), l(n)) is one-to-one.

B. Anchored triangle parameters for singular deformations

In terms of a specified anchor, the diagonal lengths are
well defined for all deformations; but the dihedral angles are
only well defined for non-singular deformations, since the
degenerate anchored triangles in a singular deformation do
not have well-defined normals. So our deformation parame-
ters must be modified to handle singular deformations. We
have two approaches to address this issue.

In the first approach, we continue to use the same anchor
and the anchored triangles. In this approach, the modification
is simple for a deformation that is singular but not super-
singular. Assume Tri(a, j) is such a triangle. We can choose
any unit vector in the well-defined plane perpendicular to the
line segment of the degenerate triangle as n(a, j). In practice,
we can make some convenient choice such as by setting
n(a, j) to the normal of one of its neighboring triangles
Tri(a, j − 1) and Tri(a, j + 1) when applicable. However,
notice that for a given singular deformation, different choices
of n(a, j) will lead to different values of the dihedral angles
involving this triangle. Another way of dealing with the
situation is to define one dihedral angle for every two
adjacent non-singular anchored triangles, instead of for every
two adjacent triangles. With this alternative definition, there
will be fewer parameters for singular deformations than for
non-singular deformations. The reduced set of parameters,
however, better reflects the intrinsic “instantaneous” defor-
mational degrees of freedom (the dimension of the tangent
space at the deformation) at singular deformations. Note that
for two adjacent non-singular triangles, rotating one about
their shared diagonal will lead to new deformations of the
pair. But when at least one of the two adjacent anchored
triangles is singular, the relative torsional rotation between
the pair does not lead to any new deformations of the pair. So
each singular anchored triangle loses one torsional degree of
freedom, which will be captured by the alternative definition
of dihedral angles. However, we would like to emphasize that
for the convenience of computation as afforded by a constant
number of parameters, it is okay to use the original defin-
itions of dihedral angles for singular but not super-singular
deformations, with the proper understanding of the dihedral
angles involving singular anchored triangles. Moreover, if
we assign the normal n(a, j) of a singular anchored triangle
Tri(a, j) to that of its predecessor n(a, j − 1), the dihedral
angle τ(a, j − 1), as well as other dihedral angles leading
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to singular anchored triangles, will be 0; non-zero dihedral
angle values will effectively correspond to dihedral angles
between adjacent non-singular anchored triangles.

If a configuration is super-singular, all the length-0 di-
agonals correspond to joints that are coincident with the
anchor. Assume that a loop deformation has m length-0
diagonals r(a, ji) = 0, j1 < j2 < · · · < jm, which means
that joints P (a; ji + 1) and the anchor joint P (a) overlap
each other. Now define a sequence PS = (P (a), P (a; j1 +
1), . . . , P (a; jm + 1), P (a)). Clearly the links between the
successive point pairs in PS define a sub-loop, and the origi-
nal loop consists of these m+1 subloops, none of them being
super-singular but all sharing the anchor joint. (Compare
Fig. 4(b), in which the super-singular deformation drawn in
gray gives an example of a loop with m = 1.) Clearly each
loop can freely rotate about the anchor, without violating
the closure constraints of the loop. So we can model such
mobility of each sub-loop, on top of the loop deformation,
by 3D rotation SO(3). To describe the deformation of the
original loop, we can use the anchored parameters for each
of the m + 1 non-super-singular subloops along with m sets
of SO(3) parameters for the relative orientations between
the subloops.

The second approach is to change anchor to a different
joint. Recall that in the new parameters, whether a loop
deformation is singular or not depends on the choice of
anchor. As mentioned above, neither deformation shown in
Fig. 4(b) is singular with respect to joint P (2). This means
that when P (2) is used as the anchor, the anchored triangle
parameters, in particular the original definition of dihedral
angles, are well defined for both deformations. Of course
it is possible that for a loop with given link lengths, every
choice of anchor may have some loop deformations classified
as (super) singular with respect to it. In that case, no choice
of anchor will make it possible to use the anchored triangle
parameters to parameterize the whole deformation space of
the loop. But based on Theorem 1, we can consider one
choice of anchor along with the corresponding anchored
triangle parameters as a local coordinate chart for DSpace
that covers the set of all non-singular deformations with
respect to that anchor. The union of these coordinate charts

DNS =
n−1⋃
a=0

DNS (a)

covers the set of loop deformations that are non-singular with
respect to at least one joint. In other words, a deformation
is not covered by the charts of this atlas if and only if it is
singular with respect to every joint. Clearly these very special
deformations, if they exist, form a set with much lower
dimension than DSpace (except for trivial cases). For these
special deformations, we can use the ideas described earlier
such as the alternative definitions of the dihedral angles and
the sub-loop concepts to derive their parameters. Another
interesting idea to explore is to use a non-joint point in space
as an anchor.

These two approaches complement each other and have
different traits. If we know a priori some deformations

in some addressed problems, such as in the case of path
planning where two query deformations are given a priori,
it would be generally more convenient to find a chart that
covers these deformations. In this case, the second approach
will probably be more helpful. On the other hand, if we need
to work on deformations of required singularity with respect
to a particular joint P (i), it would be better to use that joint
as the anchor and explicitly model the required singularity
as opposed to using another anchor P (j) with respect to
which the required singularity does not induce singularity
in the new set of anchored triangles and the constraints for
maintaining the required singularity with respect to P (i) are
difficult to model in terms of anchored triangle parameters
(r(j), τ(j)).

V. GEOMETRY OF THE DEFORMATION SPACE

Here we give a brief description of the deformation space
of an nS loop, generalizing the results given in [10]. In
particular, we consider DNS (a), the set of non-singular
deformations with respect to anchor P (a), and briefly explain
that it is the product of two factor spaces, DFlip and the
interior of DStretch(a), as follows.

DNS (a) = {(r(a), τ(a), l(n − 1)) for non-sing dfms}
= DFlip × Int(DStretch(a)) (6)

DFlip = {τ | τ(a, j) ∈ [−π, π], j = 1, . . . , n − 3}
= (S1)n−3

DStretch(a) = {(r(a), l(n − 1)) | Tr(a) ≤ b(a), . . . ,
ll(n − 1) ≤ l(n − 1) ≤ lu(n − 1)} (7)

DFlip is the set of all feasible dihedral angle values and
is equivalent to an n− 3 dimensional torus because the loop
closure constraints impose no restrictions on feasible dihedral
angle values. Consider the case that we have a valid loop
deformation and then change the value of one dihedral angle.
Such a change corresponds to flipping a subchain about
an anchored diagonal such as shown in Fig. 5(a). Clearly
this flipping process does not break the loop and does not
change any link lengths or anchored diagonal lengths. Such
an observation also shows that the anchored diagonal lengths
and the anchored dihedral angles are uncoupled and that
DNS (a) is the product of two subspaces.

Furthermore, the loop closure constraints are linear in-
equality constraints on feasible anchored diagonal lengths
and link lengths, since (i) any set of diagonal lengths and
link lengths is feasible for forming a loop if and only if these
lengths allow successful formation of all n− 2 anchored tri-
angles, and (ii) the side lengths of each (possibly) degenerate
triangle need to satisfy the triangle inequalities. Recall that
the triangle inequalities for a triangle with lengths l1, l2, l3
are l1 ≤ l2+ l3, l2 ≤ l3+ l1, l3 ≤ l1+ l2. Furthermore, the
triangle is non-degenerate if and only if all three inequalities
are strict. In our case, taking together these inequalities for
Tri(a, 1), . . . ,Tri(a, n − 2) give an explicit description of
DStretch(a) in terms of the link lengths l(0), . . . , l(n − 1):
it is the set of solutions (r(a, 1), . . . , r(a, n − 3)) of the
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Fig. 5. Loop deformations. (a) Flipping a subchain of a loop maintains loop closure and generates more deformations. (b) and (c): Two examples of
DStretch(a) for a 5-bar loop with one link l(4) having variable link lengths.

following system of linear inequalities.

r(a, 1)
−r(a, 1)

r(a, j) − r(a, j − 1)
−r(a, j) + r(a, j − 1)
−r(a, j) − r(a, j − 1)

r(a, n − 3)
−r(a, n − 3)

≤
≤
≤
≤
≤
≤
≤

l(a) + l(a; 1)
−|l(a) − l(a; 1)|

l(a; j)
l(a; j)


 2 ≤ j ≤ n − 3

− l(a; j)
l(a;n − 2) + l(a;n − 1)

−|l(a;n − 2) − l(a;n − 1)|
Rewritten in matrix format, this system becomes Tr(a) ≤

b(a), where b(a) is the vector of terms on the right hand
side of the inequalities, and the (3n − 8) × (n − 3) matrix
T has one row for each inequality in the system. The
definition of DStretch(a), the set of all feasible lengths of
the diagonals and link(n − 1), as given in equation (7)
includes this triangle inequality constraint along with the
range constraints on l(n− 1). Clearly, as the intersection of
half-spaces, DStretch(a) is a convex polytope. Also the link
lengths are bounded in our study. So all the diagonal lengths
are bounded due to the triangle inequality constraints, which
means that DStretch(a) is a convex polyhedron. Figs. 5(b)
and 5(c) show the DStretch(a) of a 5-bar loop with the
first 4 links having lengths 10, 12, 13, and 27, and the last
link having a length range of [0, 62]; the anchor joint a is
P (0) in Fig. 5(b) and P (4) in Fig. 5(c). Note that for each
feasible value of l(n − 1), the interior of the restriction of
DStretch(a) to its subset with the chosen l(n−1) value (like
a slice of DStretch(a)) corresponds to the set of non-singular
deformations. The union of the interiors of these restricted
slices of DStretch(a), denoted by Int(DStretch(a)) (with
a slight abuse of notation) in (6), consists of all valid
(r(a), l(n − 1)) for non-singular deformations.

VI. DISCUSSION

From the previous section, we can see that the deformation
space of a spatial nS loop in general has dimension 2n− 6
when all link lengths are fixed, or 2n − 5 when the length
of one link has a non-trivial range; the anchored triangle
parameters describe all deformations that are non-singular
for the given anchor. Referring back to equation 2 for the
solution for IK Problem 1, we see that in both cases it is easy
to check that the anchored triangle parameters together with
the parameters for S1 or SO(3), totaling 2ñ−3, can serve as

local coordinates for the set of non-singular IK1 solutions.
Similar results also hold for IK2 and IK3 solutions.

In the same spirit in which we consider a torus (S1)k

(k ≥ 1) to be practically convex, we can also consider
parameters for SO(3) (e.g.., Euler angles) as practically
convex. Then we can say that all these local coordinates for
the three IK solutions sets have piecewise practically convex
domains: clearly the solution sets for the first two IK
problems may have only one (possibly empty) piece each;
but the third solution set may have two pieces. Recall that the
reachable positions for P̃ (ñ − 2) are restricted to the circle
dictated by the IK problem specification as described earlier.
P̃ (ñ − 2) is also the tip of the open sub-chain from P̃ (0)
to P̃ (ñ − 2) via P̃ (1). So its reachable positions are also
restricted by this subchain and generally lying in a spherical
shell bounded by two concentric spheres, with their radii
determined by the link lengths l̃(0), . . . , l̃(ñ − 3). Note that
for a particular chain, the shell workspace of the tip P̃ (ñ−2)
could degenerate into a sphere when the (minimal) feasible
end-to-end distance of this subchain is 0. In general, the
reachable workspace of P̃ (ñ − 2) for a given IK problem 3
is the possibly empty intersection of the circle and the shell,
as shown in Fig. 6. If the intersection is indeed empty, the IK
problem is not feasible. If the intersection is one arc, the IK3
solution set is not empty and has one connected component.
And if the intersection has two separated arcs, the IK3
solution set has two connected components. As for the first
two IK problems, they have empty solutions when the virtual
“loops” have empty deformation space meaning that the
virtual link lengths determined by the IK specifications are
impossible to form “virtual” loop with the given link lengths.
In other words, the solution sets are empty when the required
positions of the end joints are out of the reach of the chain.

Note that our approach can be readily applied to the
parameterization of multiple-loop systems. In particular, for
a system that can be viewed as consisting of uncoupled
subsystems, its deformation space is the product of the
deformation spaces of the subsystems along with the relative
motions between the subsystems. So for a system consisting
of two chains (loops) sharing no entity, one joint or one
link, its deformation space is the product of the deformation
spaces of its two subsystems along with SE(3), SO(3), or
S1 respectively. Note that even for two loops sharing one
link, they can be viewed as two uncoupled loops for the
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Fig. 6. The reachable workspace of P̃ (ñ− 2) for a specific IK problem
3 is the intersection of a circle (as in Fig. 3) and a possibly-degenerate
spherical shell, which could be empty, two disjoint arcs or one arc.

study of their individual deformation spaces but are required
to have the shared link coincident for the study of the
deformations (and configurations) of the system as a whole.
For two loops sharing a chain with more than one link, we
can introduce a virtual link between the two ends of the
shared chain and then consider three loops sharing this one
virtual link.

VII. SUMMARY

Inverse kinematics is a fundamental topic in the study of
linkage systems and is considered to be very hard when
formulated with respect to joint parameters especially for
a chain with many joints. Our recently developed anchored
triangle parameters [10], [11], consisting of anchored diago-
nal lengths, anchored triangle orientations (such as dihedral
angles for the linkages studied here), and variable link
lengths if any, are particularly well suited for many broad
classes of planar and spatial linkages, including planar chains
and loops with revolute joints, spatial chains and loops with
spherical joints, chains with variable link lengths (which can
model some prismatic joints), and some kinematic structures
more complicated than a chain or single loop. What is
striking is that the loop closure constraints, arising from the
physical loops as well as virtual loops for IK problems, are
linear inequalities in this set of geometric parameters. This
new formulation renders nice geometry to the set of solutions
satisfying the closure constraints and facilitate efficiently
solving methods for the constraints even for chains with
arbitrary numbers of joints. The parameters for a spatial
chain with spherical joints were presented in the paper [10],
from the perspective of solving a particular formulation of
the IK problem, and focused on non-singular configurations.

In this paper, we showed a unified approach for solving
three types of inverse kinematic problems, with different IK
problems imposing different constraints. The IK problem
addressed in [10] is also included here, but is solved in
a more general and unified framework, which works for
all three IK problems here and can be generalizable to
general IK problems of chains with any type of joints. It

is particularly useful for redundant systems and is based on
the critical concept of the deformation space for a virtual
loop, in order to focus on the loop closure constraints
which are independent of rigid motions. We also included
detailed discussions on singular deformations and explained
that our approach can also be used for parameterization of
deformations of linkages with multiple loops. Furthermore,
we introduced the new concept of treating one choice of the
anchor and the corresponding anchored triangle parameters
as one local coordinate chart covering the set of deformations
non-singular for that anchor, which leads to a more rigorous
treatment of using the atlas of the local coordinate charts
over possible choices of anchor joints to cover the set of all
deformations. Part of our ongoing research is to generalize
the parameterization and IK solving approaches to other
(physical and virtual) linkages such as those with other (than
spherical joints in space and revolute joints in the plane)
and even mixed joint types as well as those with more
complicated loop structures.
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