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Abstract— Dynamic stability reflects the vehicle’s ability to
traverse uneven terrain at high speeds. It is determined from
the set of admissible speeds and tangential accelerations of the
center of mass along the path, subject to the ground force and
geometric path constraints. This paper presents an analytical
method for computing the stability margins of a planar all-
wheel drive vehicle that accounts for soil parameters. It consists
of mapping the ground force constraints to constraints on
the vehicle’s speeds and accelerations along the path. The
boundaries of the set of admissible speeds and accelerations
determines the static and dynamic stability margins, used to
gage the traversability of the vehicle along the path. The first
is the maximum feasible acceleration at zero speed, whereas the
second is the maximum feasible speed. Both stability margins
are demonstrated for a planar vehicle moving on a sinusoidal
path.

I. INTRODUCTION

Stability during motion on rough terrain is essential for
autonomous vehicles in space as well as in terrestrial military
applications. It is commonly measured by stability margins
that take into account various geometric and physical at-
tributes of the vehicle and terrain.

Several vehicle stability margins were previously proposed
[6], [10], [14], [15]. These stability margins, however, either
do not consider vehicle dynamics or do not consider friction
constraints, and none consider terrain surface characteristics.
These stability margins are hence not suitable to evaluate
vehicle stability during high speed motion on rough ter-
rain. Terrain characteristics were recently considered in the
context of planetary exploration [7], however this body of
work focuses on simulating the motion of the rover on rough
terrain and not on motion planning.

A different approach [17] that accounts for vehicle dy-
namics offers a dynamic stability margin that consists of the
maximum allowable speed under which the vehicle remains
stable along its path. It was first derived for a suspended
point mass model, and then extended to a planar rigid body
[18] and to a Rocker Bogie vehicle [13]. Because of the
indeterminate nature of the vehicle system with respect to
the ground forces (3 equations and 4 unknowns), these
stability margins were computed numerically, which is time
consuming. The pseudoinverse method proposed in [9], [18],
[13], is deterministic and therefore more efficient, but was
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Fig. 1. A planar vehicle model

shown to provide a too conservative stability margin [18]
[13].

In this paper, we propose an efficient method to compute
the dynamic stability margins of a planar rigid body vehicle.
To this end, we wish to determine the feasible range of speed
and acceleration along the path that does not violate the
vehicle’s contact and ground force constraints. This is similar
to the classical problem in grasping, where given a rigid body
with multiple contact points, one determines the range of net
forces that may act upon the object and its accelerations
without violating its contact and friction constraints. The
two are similar since the net force acting on the object is
related to the tangential speed and acceleration of the object’s
center of mass. The force constraints are computed using a
simple terramechanics model that accounts for terrain surface
properties. The method is developed for a longitudinal planar
vehicle with two wheels.

II. KINEMATICS

The vehicle is modeled as the planar two-wheel all-wheel
drive vehicle shown in Figure 1. For simplicity, we assume
that ground forces are applied on the massless wheels of
radius r at the tangency points between the wheels and the
terrain surface. The position vectors from the c.g. to the
back and front contact points, r1 and r2, respectively, are
expressed in the vehicle’s x− y frame shown in Figure 1.
The vehicle’s orientation θ is measured relative to the inertial
frame X −Y .

The orientation of the vehicle at any point is computed
by modeling the vehicle and its contact points as a closed
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kinematic chain. The terrain profile is assumed known, so
for a given back wheel contact point x1, we can compute
the contact point x2 of the front wheel. Denoting d as the
distance between the two wheel axles and r as the wheel
radius, x2 is found numerically by solving:

‖− rn1 +x2 −x1 + rn2‖ = d (1)

where ‖−‖ denotes the Euclidean norm. Once x2 is known,
the vehicle’s center of mass x, and orientation θ are easily
found. The path constraint leaves the vehicle only one degree
of freedom in the plane, which can be represented by the arc
length, s, along the path followed by the center of mass. The
vehicle’s linear and angular acceleration are thus expressed
in terms of the speed ṡ and acceleration s̈ along the path.

The vehicle acceleration ẍ is decomposed into its tangent
and normal components to the path, s̈t and ṡ2/ρn, as shown
in Figure 2, where n points toward the instantaneous center of
curvature, and ρ is the radius of curvature. Substituting κ for
(1/ρ)n, this transformation to path coordinates is expressed
in matrix form:

ẍ =
[

tx κx

ty κy

][
s̈
ṡ2

]
= K(s)

[
s̈
ṡ2

]
(2)

The angular acceleration may be similarly expressed as:

θ̈ = θss̈+θssṡ
2 (3)

where θs and θss are the 1st and 2nd derivatives of θ with
respect to s.

III. THE GROUND FORCES

The forces developed between the wheel and ground when
moving on a horizontal surface are shown in Figure 3. The
vehicle applies the normal load W (static and dynamic),
the driving torque T , and the reaction force F . The ground
in turn applies the normal force Fn and the tangent force
Ft that are the resultants of the normal stress σ and shear
stress τ (not shown), respectively, developed along the wheel
circumference that is in contact with ground [3]. The normal
force Fn is normal to the wheel, and its line of action passes
through the wheel center. The tangent force Ft is tangent to
the wheel and normal to Fn.

Since the surface shown in Figure 3 is horizontal, it is
convenient to project the ground forces on the horizontal and
vertical axes. The horizontal component of the tangent force

is GT (Gross Traction), whereas the horizontal component
of the normal force is MR (Motion Resistance). Clearly, GT
acts in the direction of motion (forward), whereas MR acts
in the opposite direction, and thus impedes forward motion.
The net traction, NT , is the difference between the two:

NT = GT −MR. (4)

During braking, Ft points in the opposite direction, whereas
Fn remains the same. Thus, MR decreases the traction force
but increases the net braking force, NB.

It would be possible to compute the wheel-ground forces
if the normal stress σ and shear τ distributions were known.
However, σ and τ are difficult to measure, and hence
the ground forces can be approximated using any of the
existing wheel/ground interaction models. These models can
be divided into three main groups: analytical, empirical,
and semi-empirical. The analytical models are based on
constitutive laws that describe the soil and wheel properties.
They employ numerical methods, such as the finite difference
methods (FDM) [8], the finite element method (FEM) [11],
and the discrete element method (DEM) [2].

The empirical methods [4] are based on a single soil
parameter, the cone index (CI), which is simple to measure
in situ. The semi-empirical methods, such as Bekker’s pre-
diction approach [3], are based on assumptions regarding the
interface between the soil and the wheel. The soil parameters
are determined by ”bevameter” tests [19], which are much
harder to obtain than the CI parameter.

Despite the simplicity of the empirical models, they are
quite effective in predicting mobility. For this reason, ASAE
(the American Society of Agricultural Engineering) has
adopted Brixius’ empirical model [4] for predicting mobility
performance [1]. Recently, predictions obtained by Brixius’
model were shown to agree with experimental results and
discrete element simulations in the relevant slip rates [2].
There is therefore no practical reason to use other than the
simple empirical models.

The Brixius empirical model accounts for soil character-
istics using the cone index CI. It is determined by pushing a
cone into the ground. The depth of penetration of this cone
determines the cone index. An average of several cone index
values obtained at a test site often yields a representative
measure of soil strength [16]. The soil and wheel parameters
are combined into the non-dimensional mobility number, Bn,
which for a rigid wheel (zero tire deflection) is given by:

Bn =
(CI)bd

W (1+3 b
d )

(5)

where b is the wheel width, and d the wheel diameter.
During motion, the wheel slips relative to the ground

surface. The slip is measured by the slip ratio sr, defined
as:

sr = 1− Vx

rω
,Vx < rω (6)

sr = 1− rω
Vx

,Vx > rω (7)
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where Vx is the velocity of the wheel in the direction of
travel, ω is the angular velocity of the wheel, and r is the
wheel radius.

The ground forces parallel to the ground surface are
predicted using the Brixius empirical model for a given
mobility number Bn and slip ratio sr:

GT = W0.88(1− e−0.1Bn)(1− e−7.5sr)+0.04, sr > 0(8)

GT = −W0.88(1− e−0.1Bn)(1− e7.5sr)+0.04, sr < 0(9)

MR = W (
1

Bn
+0.04+

0.5sr√
Bn

), sr > 0 (10)

MR = W (
1

Bn
+0.04− 0.5sr√

Bn
), sr < 0. (11)

The net traction force NT is thus:

NT = W0.88(1−e−0.1Bn)(1−e−7.5sr)−(
1

Bn
+

0.5sr√
Bn

). (12)

and the net braking force NB:

NB =−W0.88(1−e−0.1Bn)(1−e7.5sr)−(
1

Bn
− 0.5sr√

Bn
). (13)

It is convenient to consider the non-dimensional coefficient
of the net traction and net braking forces, µNT and µNB,
respectively:

µNT = 0.88(1− e−0.1Bn)(1− e−7.5sr)− (
1

Bn
+

0.5sr√
Bn

)(14)

µNB = −0.88(1− e−0.1Bn)(1− e7.5sr)− (
1

Bn
− 0.5sr√

Bn
).(15)

These coefficients can be viewed as slip dependent coeffi-
cients of friction. Figures 5 and 6 show plots of traction and
braking ratios for Bn = 55, corresponding to a firm ground,
and Bn = 20, corresponding to sandy soil [1]. The traction
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Fig. 5. Coefficient of net traction µNT as a function of slip ratio sr.
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Fig. 6. Coefficient of net braking µNB as a function of slip ratio sr.

ratio declines beyond some peak value, whereas the braking
ratio keeps increasing with slip. Practically, it is desirable to
stay at slip ratios below 0.3 to prevent soil failure that may
cause loss of vehicle control.

The ground forces were presented for a horizontal surface.
Their modification for an inclined plane is trivial and will
be omitted in this paper. During forward motion, the ground
forces act at some point ahead of the wheel center. For
simplicity, we will move this point back to the tangency
point between the wheel and the ground surface.

Limiting the slip ratio to 0.3 imposes constraints on the
ground forces:

NT1 ≤ µNT (sr = 0.3)N1 (16)

NT1 ≥−µNB(sr = 0.3)N1 (17)

NT2 ≤ µNT (sr = 0.3)N2 (18)

NT2 ≥−µNB(sr = 0.3)N2 (19)

where N is the reaction force normal to the ground surface.

IV. VEHICLE DYNAMICS

The equations of motion for the vehicle are:

f1 + f2 +mg = mẍ (20)

r1 × f1 + r2 × f2 = Iθ̈ (21)
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where fi represents the ground force acting on each wheel:

fi = NTini +Niti, i = 1,2 (22)

Substituting (2) into (20) and (3) into (21) yields the
equations of motion in terms of the speed and acceleration
along the path:

f1 + f2 +mg = mK(s)
[

s̈
ṡ2

]
(23)

r1 × f1 + r2 × f2 = I(θss̈+θssṡ
2) (24)

Equations (23) and (24) relate any applied forces f1 and f2 to
the corresponding ṡ and s̈. The constraints on f1 and f2 thus
map to constraints on ṡ and s̈, which determine the static and
dynamic stability margins derived next.

Note that (20) and (21) are coupled since the vehicle
is traversing a given terrain profile and thus the angular
acceleration is determined from its linear acceleration. The
moment equation (21) hence imposes a constraint on the
ground forces. This constraint can be derived as an equality
constraint by substituting (2) into (3) to express θ̈ in terms
of ẍ, then replacing ẍ with the left hand side of (20) to yield:

r1 × f1 + r2 × f2 = I
[

θs θss
]

K−1
(

fw

m
+g

)
(25)

= [v1 v2] ·
(

fw

m
+g

)

where v1 and v2 are the two scalar components of the vector
{I

[
θs θss

]
K−1}, and the sum of the ground forces is

fw = f1 + f2 (26)

Rearranging (25) yields:

f1 + f2 +mg = mẍ (27)

r̄1 × f1 + r̄2 × f2 + r̄3 ×mg = 0 (28)

where

r̄1 = r1 + r̄3 (29)

r̄2 = r2 + r̄3 (30)

r̄3 = [−v2 v1] (31)

Equation (28), in comparison to (21), represents the moment
equation of an equivalent system that has a zero moment of
inertia, and a virtual point that we call ZMP (zero moment
point) where the moments of all external forces applied on
the system, including the gravity force, are zero. Note that
the moments is, generally, not zero around the center of mass
because of the angular acceleration of the rigid body along
the path. Thus, satisfying a zero moment around the ZMP
is a necessary condition on the ground forces so that the
vehicle tracks the desired path.

The ZMP is located at −r̄3 from the center of mass, as is
shown in Figure 7. Note that r̄3 reflects the body’s inertial
parameters as well as the path curvature. The forces acting
upon the equivalent system, however, have not changed,
and so (20) still holds. Our goal now is to find the set of
admissible accelerations that are produced by the ground

forces that satisfy the friction constraints and the equality
constraint (28). The set of admissible accelerations would
yield the desired dynamic stability margins.

c.g.
ZMP

r2

r3

r1

Fig. 7. The Zero Moment Point.

V. COMPUTING THE SET OF ADMISSIBLE

ACCELERATIONS

The set of admissible accelerations is a convex polygon in
the plane of f1 and f2 since both are constrained by a set of
linear inequality and equality constraints [5]. This polygon
is the intersection of half planes, each satisfying two of the
four inequality constraints ((16)- (19)) and the equations of
motion ((27)) ((28)). The boundary of each half plane is
determined by considering the equality part of the respective
inequality constraints.

There are four independent ground forces acting on the
vehicle: the net traction and normal forces on both wheels.
Applying the moment constraint (28) reduces the set of
feasible forces to a three dimensional manifold in R

4. Adding
two frictional constraints reduces this further to a line in R

4.
We derive the equation of this line by first writing the

force equation (23) in matrix form:

A




NT1

N1

NT2

N2


 = mK(s)

[
s̈
ṡ2

]
(32)

where
A =

[
t1 n1 t2 n2

]
We then combine the moment equation (28) with two of

the four traction constraints (16 19) in matrix form to obtain

Bf = z (33)

where

B =


 1 −µ 0 0

0 0 1 −µ
r1 × t1 r1 ×n1 r2 × t2 r2 ×n2




f =




NT1

N1

NT2

N2




and

z =


 0

0
−r̄3 ×mg



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The set of forces satisfying (33) forms a line in R
4

as stated earlier. To calculate the parametric equation of
this line, we partition f into its dependent components,
NT1,N1,NT2, and its independent parameter N2. We must
likewise partition B into the first three columns that multiply
the dependent variables and the fourth column that multiplies
N2, such that

B = [ B1 |b2] (34)

The matrix B1 is square and generally invertible (depend-
ing on the choice of constraints), which enables us to solve
for the first three forces:


NT1

N1

NT2

N2


 =


 B−1

1 (z−b2N2)

N2


 (35)

Substituting (35) into (32) yields:

A


 B−1

1 (z−b2N2)

N2


 = mK(s)

[
s̈
ṡ2

]
(36)

Equation (36) represents two equations in N2. Eliminating
N2 produces one equation in s̈ and ṡ2 of the form

as̈+bṡ2 + c = 0. (37)

Equation (37) represents a line in the s̈− ṡ2 plane due to
one pair of the four traction constraints (16 - 19). This
line represents the equality part of the two constraints.
Considering the inequality constraints would produce a half
plain in the s̈− ṡ2 space. Repeating this procedure for the
six different pairs of constraints produces at most four half
planes [12], the intersection of which forms the set of feasible
speeds and accelerations, FSA shown in Figure 8.

VI. STABILITY MARGINS

The set FSA shown in Figure 8 consists of all speeds and
accelerations that are attainable by the feasible ground forces.
Any given pair of speed (squared) and acceleration that lies
outside of the FSA region is obviously unattainable.

The dynamic stability margin, DSM, was defined in [18]
as the maximum feasible speed, whereas the static stability
margin, SSM, as the minimum feasible acceleration range at
zero speed. The stability margins are indicated in Figure 8
on the boundaries of FSA:

DSM(s) =
{

max(ṡ), ṡ2 ∈ FSA if max(ṡ) ≥ 0
0 otherwise

(38)

SSM(s) =
{

min(|s̈min|, |s̈max|)ṡ=0 if s̈max > 0, s̈min < 0
= 0 otherwise

(39)
The SSM and DSM are important indicators of the stability

of a vehicle traversing a preset trajectory. For example, a
vehicle on a steep incline will have a low SSM, indicating
that slippage is likely to occur if the vehicle accelerates
too rapidly. A vehicle on a convex surface will have a low
DSM, which indicates that a sufficiently high velocity will
result in the vehicle losing contact with the surface. Both
stability margins reflect the vehicle parameters, and terrain
topography and traction. The asymmetric soil properties for
acceleration and braking affect the stability margins through
the parameters of the lines produced in (37) for every pair
of traction constraints (16 - 19).

VII. EXAMPLES

The stability margins developed in this paper are demon-
strated for a planar vehicle traversing the sinusoidal track
shown in Figure 9. The static and dynamic stability margins
for the entire path are shown in Figure 10. Generally, the
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Fig. 9. A vehicle on a sinusoidal track.
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Fig. 10. The SSM and DSM for a vehicle traversing a sinusoidal track.

DSM is higher at the bottom of the hill, due to the concavity
of the surface, where higher speeds elicit greater traction. On
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Fig. 11. The SSM for a vehicle traversing a sinusoidal path on hard surface,
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the other hand, the DSM is lower at the top of the hill, where
the ground forces are reduced due to the radial acceleration.
The SSM is low along the inclines of the hill, where the
acceleration is reduced to the gravity force. It is higher at
the top and bottom of the hills where the vehicle is horizontal
and its acceleration not affected by the gravity force.

Computing the stability margins for the same vehicle on
hard and sandy soil resulted in almost no change for the
DSM, implying that the soft soil does not explicitly limit the
vehicle speeds. This result makes sense since the traction and
braking coefficients are not affected by speed. The vehicle
speed is limited by its tendencies to tipover, fly into the
air, or slide, which are dictated by the terrain profile and
vehicle parameters. An interesting difference between hard
and soft soil was demonstrated for the SSM. Figure 11
shows the SSM for three different grounds: paved, hard
soil (Bn = 55), and sandy soil (Bn = 20). The traction and
braking coefficients were computed at slip ratio sr = 0.3.
At sr = 0.3, µNT (Bn = 55) = 0.74, µNT (Bn = 20) = 0.60,
µNB(Bn = 55) = 0.90, µNB(Bn = 20) = 0.84.

The SSM for the hard surface is symmetric due to the
symmetric coefficient of friction, whereas in the case of
unpaved surface, the SSM is lower on the uphill and higher
on the downhill, due to the asymmetric contribution of the
motion resistance force (impeding traction and enhancing
braking). The softer the soil the greater the difference. This
suggests that soil characteristics affect static stability and
acceleration, and thus would result in slower motion on uphill
segments than on paved surfaces.

VIII. CONCLUSIONS

This paper presented a simple procedure to determine the
dynamic stability of a planar vehicle traveling on rough
terrain. The ground forces are computed using a simple ter-
ramechanics model. This model determines the traction and
braking force constraints, which together with the vehicle’s
equations of motion are mapped into the range of admissible
speeds and tangential accelerations. The boundaries of this

range determine the static and dynamic stability margins. The
first is the maximum acceleration at zero speed, whereas the
latter is the maximum feasible speed that does not violate
ground force constraints. The dynamic stability margins have
been shown to be an effective metric for computing optimal
trajectories over general terrain [17]. Soil characteristics
was shown to affect the static stability margin, but not the
dynamic stability margin. The proposed rapid computation
enables autonomous vehicles to quickly and safely traverse
rough terrain, an essential feature for future robotic missions
in urban and off-road environments.
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