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Abstract— Suturing simulations, of which real-time knotting
and unknotting are the most challenge parts, are essential to
today’s surgical training systems. In this paper, we present a
physics-based approach to real-time simulation of deformable
linear objects (DLOs) with visual and force feedback. In our
suture model, which can represent the mechanical properties
of a real thread such as stretching, compressing, bending,
and twisting, we simulate not only external forces, but also
internal forces including the friction force during knotting and
unknotting. We also present how forces propagate along the
suture when the user pulls it with one or two hands. We
developed a simulator to allow users to grasp and smoothly
manipulate a virtual thread, and to tie an arbitrary knot.

I. INTRODUCTION

COMPUTER-BASED surgical simulations, using com-
puters and electromechanical user interface devices,

open new possibilities in surgical training, offering many
benefits compared to traditional training methods. Real-time
knotting and unknotting simulations, which are the key com-
ponents of suturing in surgical training systems raise unique
and difficult issues because of the suture’s deformability,
difficulty of collision detection and management, and the
demanding requirements of force feedback output. In this
paper, we developed a simulator in our surgical training
environment to allow users to tie and untie any kind of knot.

Section II of this paper covers previous works. Section
III describes the model we are using and illustrates how
to calculate internal and external forces. Section IV covers
how forces propagate along the suture during knotting and
unknotting. Section V describes case studies and results,
and section VI gives the conclusion and discusses about the
future work.

II. PREVIOUS WORK

There are a number of works which have made some
contributions to the development of deformable linear objects
(DLOs) simulation. Most of these previous models can
be categorized as geometry-based models or physics-based
models. In surgical training systems, because the purpose
is to enable users to feel the force feedback, especially
for knotting and unknotting in suturing, to make it more
realistic, we need to consider both external and internal
forces to determine the force output. Thus geometric models
are obviously inappropriate.
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Some researchers have been focusing on knotting ma-
nipulation by robots. In [1], Wakamatsu, Arai and Hirai
established a model of DLOs based on an extension of
differential geometry, and proposed a planning method for
knotting/unknotting of DLOs based on the knot theory. If
the initial and the objective states of the linear object are
given, all possible knotting/unknotting plans can be derived
and be executed by their system. However, their proposed
models can not simulate the DLOs dynamically in 3D
space. In addition, their system does not allow any user
interaction, and can not simulate the knotting/unknotting
procedure in real-time. [2] describes a 2D DLOs dynamic
model based on the differential geometry coordinates. In [3],
a knot planning from observation(KPO) system is described.
First, this system observes the procedure of tying a knot
by a human as a sequence of movement primitives. Then,
by repeating the sequence, it can tie a similar knot. The
topological information of a knot is represented in a P-
data representation. In [4], a topological motion planner
for manipulating DLOs and tying knots using cooperating
robot arms was introduced based on Probabilistic RoadMaps
(PRMs).

In [5] [6] [7], a Cosserat approach of modeling DLOs
based on the Cosserat theory of elastic rods has been
introduced. Cosserat model is well suited for real-time
applications because it needs less computation compared
to finite elements models and provides a clear delineation
between basic physical principles, material properties and
mathematical approximations. However, in return, it yields
a set of ordinary differential equations to be solved. If two
end points or multiple points along the length of a suture are
specified (as in the procedure of knotting or unknotting with
two hands), it is significantly more difficult to solve these
equations. In addition, the ”shooting” technique which is
mentioned in [5] makes it very difficult to integrate external
forces [8].

A particle-based model of a rope is represented in [9]
by overlapping spheres representing mass-points, which are
connected by simple springs. Each mass-point can collide
with other mass points as in the instantaneous elastic colli-
sion model, but the author only considers the linear spring
forces and does not allow any user interaction. In [10], inner
bending force and the gravity are taken into consideration.
In [11], the author mentioned gravity, stretch/compression
force, forces from bending and twisting, dissipative friction,
and contact forces with environment or to self-collsion, but
there is no detail about how to compute those forces.

A mass-spring model for suturing in surgical training
system has been built in [12]. Torsional spring, torsional
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damper, and viscous damper are mentioned in this paper,
but, the author did not use them in the simulation due to the
complex computation. Further more, there is no discussion
about collision detection and force propagation for haptic
interaction between the user and the suture model.

Our suture model is built based on all the forces mentioned
in [12], and we provide a user-interface to allow users tie an
arbitrary knot. Also we analyze how the forces propagate
along the suture during knotting and unknotting. With the
virtual coupling technique[13], we can provide very smooth
force feedback to the user.

III. MODEL DESCRIPTION

For 1D element, we model our suture as a mass-spring
system which consists of a sequence of mass points laying
on the centreline of the suture. (see (a) of Fig. 1).
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Fig. 1. Suture Model and Virtual Coupling of Haptic Device

During graphic rendering, we use cylinders as suture
segments connecting two successive points. We use Euler
method to calculate the shape of our suture. We first compute
the total force acting at each point, Pi, and then update its
position based on the computed force. Once the total force at
each of the nodes has been calculated, with the interval time
dt, we can obtain the velocity and position of each point.

The following part of this section explains the forces we
simulate in our simulator. We can use various combinations
of these forces to build different models. The springs and
dampers both contribute some force to the net force f at each
point. Different springs and dampers all behave differently
and we calculate their force contributions using their own
particular equations.

A. External Forces

The external forces include the gravitational force, the user
input forces through haptic devices, the friction forces during
knotting or unknotting, as well as the contact force with
obstacles:

1) Gravity: fg = Gm. where G = 9.8N/kg, and m is the
mass of the mass point.

2) User Input Force: Allowing the user to provide both
input and output to the simulation in the form of forces,
positions, and velocity etc, a haptic device becomes a natural
interface for a dynamic simulation, which needs to calculate
all the forces applied to the objects. However, a position con-
trolled impedance style haptic device, such as PHANTOM
Omni and PHANTOM Desktop from Sensable Tchenology,

forces are not directly available as input variables into the
model. Furthermore, the mechanical characterization and
digital nature of the haptic device make the operation of
directly incorporating the device as part of the simulation
more challenging. To overcome these difficulties, we use
virtual coupling technique which introduces a indirect layer
of interaction between the mechanical device and the sim-
ulation by employing a spring-damper between a simulated
body and the device end-effector (see (b) of Fig. 1). Another
advantage of this technique is that we can use different
constants for computing the output force for the device
versus the input force for the simulated body, which makes
the forces appropriate for both the haptic device and the
dynamic simulation.

3) Friction Force: In this paper, we only consider
coulomb and viscous friction forces during the procedure of
knotting and unknotting, and we do not consider the rolling
friction. We will study the static friction and focus on how to
tie a knot tightly and unknot a tight knot in the future. During
the simulation, we use Coulomb’s model and consider each
suture segment as rigid body, hence we can not bend to any
angle for any instant time. From Coulomb’s observations we
know that: kinetic frictional force is approximately indepen-
dent of contact area and velocity magnitude of the object;
Coefficient of friction depends on pairs of materials. During
knotting or unknotting procedure, suppose there are only two
segments colliding with each other (see Fig. 2). Let µ be the
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Fig. 2. Friction during knotting / unknotting

friction constant, ê be the friction direction vector, n be the
force of repulsion, then the friction f f can be described as:

f f = µ||n||ê. (1)

To calculate the repulsion force n, we introduce a spring-
damper between the contact point C and the end point E.

n = (krs(2r−d)− krd(vr · n̂))n̂. (2)

where krs is a spring constant for the repulsion force, r
is the radius of the suture model, d is the distance between
point C to point E (see (b) of Fig. 2), krd is the damper
constant for the repulsion force, vr is the relative velocity of
point C with respect to point E, n̂ is the unit vector from
point E to point C. We use linear interpolation to compute
the velocity of a point on the segment. For example (see Fig.
2), vc = (1−a)va + avb, where a is the fraction of point C
along

−−→
PaPb, ve = (1−b)vc +bvd , where b is the fraction of
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point E along
−−→
PcPd . Then the relative velocity vr = vc −ve,

and the friction direction vector ê is computed as follows:

ê =
(vr · n̂)n̂−vr

||(vr · n̂)n̂−vr||
. (3)

B. Internal Forces

1) Linear spring force: The linear spring force is com-
puted by comparing the current segment length, li, between
point, Pi and Pi+1, with the rest length of the segment lr, and
by projecting the resulting difference on the direction from
point Pi to Pi+1. Then, li = ||Pi+1−Pi||, ∆l = li−lr

lr
, and lr, is

the rest length between point, Pi and Pi+1. Let êi be the unit
vector from point, Pi to Pi+1, then,

êi =
Pi+1−Pi

||Pi+1−Pi||
, (4)

fs = kl∆lêi. (5)

where kl is the linear spring constant.
2) Linear damper: We simulate all the factors that try

to stop the spring as it moves as one constant called the
damping factor, kd . This force opposes the direction of
movement and is proportional to the velocity of the moving
mass. When the system is at rest (v = 0), no linear damping
force is involved.

fd = kd(vi+1− vi)êi. (6)

where vi+1 = vi+1 · êi, vi = vi · êi, kd is the linear damper
constant. vi+1 and vi are the norms of the components of the
velocity of point Pi+1 and Pi on the direction êi.

3) Torsional spring: The torsional spring is derived from
the angle, α , between two connected segments of the rope.
The basic idea is to model each two connected segments
as a triangle with a spring as the hypothesis pushing the
end points to the full expanded position. The length of
the two connected segments remain unchanged. Only the
force component orthogonal to the segments is used for the
end points (See (a) of Fig. 3). Let êi−1 and êi be the unit
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Fig. 3. Torsional Spring and Swivel Damper

vectors with directions from point, Pi−1 to Pi, and from Pi to
Pi+1, respectively. Let t̂i−1 and t̂i+1 be the unit vectors with
directions the same as the torsional force applied at the two
endpoints and therefore, orthogonal to êi−1 and êi respec-
tively. Then, t̂i+1 = êi× (êi−1× êi), t̂i−1 = êi−1× (êi−1× êi).
If êi−1 · êi = 0, α = arcsin(||êi−1 × êi||). If êi−1 · êi < 0,

α = π − arcsin(||êi−1 × êi||). The torsional spring force can
be computed as follows:

fi−1 = kts
α

π||Pi−1−Pi||
t̂i−1, (7)

fi+1 = kts
α

π||Pi+1−Pi||
t̂i+1, (8)

fi = −(fi−1 + fi+1). (9)

where kts is the torsional spring constant.
4) Torsional damper: The torsional damper works against

the torsional spring to prevent any harmonic motion from
accumulating. Similar to the linear damper, it also models
the internal friction that resists bending in regular objects.
Let, vi−1, vib, be the norms of the velocity components of,
vi−1, and, vi, on the direction of, t̂i−1, and let, vi+1, via, be
the norms of the velocity components of, vi+1, and, vi, on the
direction of, t̂i+1, Then, the torsional damper on the points,
Pi−1, Pi and Pi+1, can be computed by:

fi−1 = (
(vi−1− vib)
||Pi−1−Pi||

+
(vi+1− via)
||Pi+1−Pi||

)
ktd t̂i−1

||Pi−1−Pi||
, (10)

fi+1 = (
(vi−1− vib)
||Pi−1−Pi||

+
(vi+1− via)
||Pi+1−Pi||

)
ktd t̂i+1

||Pi+1−Pi||
, (11)

fi = −(fi−1 + fi+1). (12)

where ktd is torsional damper constant, vi−1 = vi−1 · t̂i−1,
vib = vi · t̂i−1, vi+1 = vi+1 · t̂i+1, via = vi · t̂i+1.

5) Swivel damper: Point, Pi−1, has a velocity relative
to the center point, Pi. So far, two components of that
relative velocity have been dampened. There still remains
a component perpendicular to those two. Without the damp-
ening, point Pi−1 could indefinitely orbit the line formed by
extending the edge connecting point Pi+1 and point Pi (See
(b) of Fig. 3).

Let ŝ be the unit vector of the swivel dampers of point
Pi−1 and Pi+1, then, ŝ = êi−1 × êi. The swivel dampers can
be computed by:

fi−1 = ksw
(vi−1−vi) · ŝ
||Pi−1−Pi||

ŝ, (13)

fi+1 = ksw
(vi+1−vi) · ŝ
||Pi+1−Pi||

ŝ, (14)

fi = −(fi−1 + fi+1). (15)

where ksw is the swivel damper constant.

IV. FORCE PROPAGATION ALONG THE SUTURE

To prevent our suture from being stretched too long or
compressed too short, we set lmax and lmin as the maximum
and minimum length of one suture segment respectively.Let
li be the segment length between Pi and Pi+1. To analyze the
force propagation when the user grabs the suture, we need
to compute the forces acting at each point from the grabbed
point to the start point and to the end point of the suture.
We define different scenarios as follows:
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A. Condition A

Assume the user grabs point Pi+1 with one hand. If lmin <
li < lmax. There is no propagation of the user input force
fh from point Pi+1 to Pi. All the user input force has been
converted to the internal forces along the suture.

B. Condition B

Assume the user grabs point Pi+1 with one hand. If the
expected segment length l′i > lmax or l′i < lmin, we need to
adjust the segment length to lmax or lmin (see (a) of Fig. 4).
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(a) One-Hand Pulling (b) Two-Hand Pulling

Fig. 4. Force Propagation

Let fp be the component of the input force fh along the
segment direction, and fp is the input force propagated to
point Pi from point Pi+1. fp and fm can be obtain from the
following equations:

fp = (fh · êi)êi, (16)
fm = (fh · êm)êm. (17)

where êm = êi×fh
||êi×fh||

× êi, êi can be obtain from equation
(5). Using the same method as above, we can derive the
user input force propagated at each point of the suture.

C. Condition C

In this condition, we assume the user is pulling two
points,Pk and Pi, of the suture. The method is almost the
same as in condition B. But we need to do the propagation
computation twice, first starting from point Pi, and then
starting from point Pk (see (b) of Fig. 4).

V. CASE STUDY AND RESULT

A. Collision Detection and Management

First, we build a bounding-volume hierarchy (BVH) from
the bottom-up representing the shape of the rope at succes-
sive levels of detail. This method is similar to the method
proposed in [16]. To find the self-collisions of the rope, we
explore two copies of the BVH from the top down. Whenever
two BVHs (one from each copy) are found to not overlap, we
know that they cannot contain colliding segments, and hence,
we do not explore their contents. When two leaf spheres
overlap, the distance between the two centers of the nodes
is computed. If it is less than the node diameter, 2r, then the
two segments are reported to collide. However, no node is
ever considered to be in collision with itself or its immediate
neighbors along the suture chain.

To find the collisions between the rope and grippers, we
consider the gripper as line segments with a given radius,

and check if the BHV of the rope has any overlap with the
line segments.

When two suture segments are detected to be at a dis-
tance d < 2r from each other, then, an equal (but opposite)
displacement vector is applied to each segment along. This
displacement is just long enough to take the segments out of
collision, with a slight ”safety margin”. Hence, each node is
shifted away by r−d/2+ ε/2.

If a collision occurred, during real time simulation, we
need to compute new velocities of mass points which are
involved in the collision. Similarly to the method presented
in [17], we apply impulses to the end points of these two
segments. See Fig. 2 for the case where point C with relative
position a along the segment

−−→
PaPb interacts with point E

with relative position b along the segment
−−→
PcPd . Let i be the

impulse, then, i = n∆t. where n is the repulsion force that
we can obtain from equation (3). Then we can compute the
new velocities as follows:

i′ =
2||i||

(a2 +b2 +(1−a)2 +(1−b)2)
, (18)

vnew
a = va +(1−a)

i′

m
n̂, (19)

vnew
b = vb +a

i′

m
n̂, (20)

vnew
c = vc− (1−b)

i′

m
n̂, (21)

vnew
d = vd −b

i′

m
n̂. (22)

where m is the mass of each mass point Pa, Pb, Pc, and Pd .
n̂ is the unit vector from point E to point C.

B. Experiment Setup

Our simulation was implemented on a PC with dual 3.2G
IntelrPentiumr4 CPUs and 512 MB memory. For physics-
based models, the most challenging part is how to determine
its parameters. If parameters are inappropriate, it may impact
the whole system’s stability or even over its limits. After
many experiments, we chose our suture parameters as in
Table I:

TABLE I
SUTURE PARAMETER SETTING

Parameter Value Remarks
N 20 ∼ 50 Number of Points
l 5.0m Length of the suture
r 0.05m Radius of the suture
m 0.05kg mass of one point
G 9.8N/kg Gravity
kh 1200 Virtual coupling spring constant
s 0.003 Scale factor for output force
µ 10 Friction constant
krs 100 Repulse spring constant
krd 5 Repulse spring damper constant
kl 800 Linear spring constant
kd 1 Linear damper constant
kts 10 Torsional spring constant
ktd 0.05 Torsional damper constant
ksw 0.2 Swivel damper constant
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With the parameters above, we can obtain around 500Hz∼
1000Hz update rate for both Phantom Omnis. Users can feel
the output forces of smooth quality.

C. Experiment of Knotting

We build five different models with various combinations
of forces models described in section III. With two PHAN-
TOM Omni haptic devices, users can tie an arbitrary knot
about the suture which is hung up on one fixed frame (see
Fig. 5).

Fig. 5. A user is tying knot with two PHANTOM Omnis

1) Model 1: This model contains only a linear spring
and a linear damper. It is the least realistic model. The two
connected segments can bend to any angle effortlessly.

TABLE II
SCREEN SHOTS OF DIFFERENT MODELS

Model Screen Shot 1 Screen Shot 2

1

2

3

4

5

2) Model 2: This model is almost the same as model 1,
but also contains a torsional spring. The torsional spring adds
a lot more realistic behaviour to the thread, but also, because
it uses a nonlinear function ‘acos’, it creates some harmonic
wave motions.

3) Model 3: Compared to model 2, a torsional damper has
been added to this model. This damper stops the harmonic
motion presented in model 2. But this model creates another
class of instability where it is very sensitive to the thread
and creates a self-excitation phenomenon.

4) Model 4: This model includes a ‘swivel’ damper to
fix the problem of perpetual orbiting (the self excitation
mentioned in the above). The result is a thread that looks
more like a real thread.

5) Model 5: This model has all the components of model
4. The only difference is that the linear spring’s force
computed quadratically on the difference between its current
length and rest length, instead on linearly. This makes the
thread appear a lot less stretchy, which is more realistic since
the real threads stretch very little. The thread’s non-linear
response also makes it a lot more responsive to movements.

Comparing the results from above five different models
(See TABLE II for the comparison), we can draw a conclu-
sion that model 4 is the most ideal model for our surgical
training environment.

D. Experiment of Force Propagation

Because the maximum exertable face for PHANTOM
Omni is 0.75lbf (3.3N), we can not output the forces to
the Haptic devices from virtual coupling spring directly.
Therefore, we chose a constant equal to 0.003 to scale the
forces before we feed them to PHANTOM Omnis. We plot
the forces which we send to PHANTOM Omni during each
haptic update frame for both one-hand pulling and two-hand
pulling cases. Taking the magnitudes of the forces as y-axis
and each haptic update frame as x-axis, we obtain the forces
plots as in TABLE III.

E. Experiment of Unknotting

Same as the knotting experiment, the suture is hung up
on one fixed frame. Also, to make knotting and unknotting
easier, we set up a desk under the suture model to let
part of the suture lay on the desk.In order to untie a knot
successfully, we have to pick up the right point, otherwise
the knot could be more tightening instead of loosening. This
is part of the unknotting planning algorithm which will not
be discussed here. Fig. 6 show the successful unknotting of
a figure-of-eight knot. Fig. 7 shows if you grab the wrong
point, the knot can not be untied.

VI. CONCLUSION AND FUTURE WORK

We presented a fast and simple approach to compute
3D DLO simulations. We simulate both internal forces and
external forces. Also, we analyzed how forces propagate
along the suture when the user pulls the suture with one
hand or two hands. While our simulation cannot produce
physically exact shapes and forces, even sometimes the user
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TABLE III
FORCE PLOTS OF SUTURING PULLING

Screen Shot Force Plot

Force Output: One Hand Pulling

0

0.2

0.4

0.6

0.8

1

1.2

1.4

Haptic Update Frame

Force Output for Phantom Omni One

0

0.5

1

1.5

2

Haptic Update Frame

Force Output for Phantom Omni Two

0

0.5

1

1.5

2

Haptic Update Frame

Fig. 6. Unknot a figure-of-eight knot

might feel the force feedback a little unstable (because of
the high demanding of the haptic device refresh rate), our
methods can be used in virtual reality simulation to give
users more realistic senses.

Because our model is based on the finite element method,
to make sutures more realistic, we must add more segments
and more mass points to the model, which may cause
the program run more slowly (the more mass points the
model has, the more time we need to complete dynamic
computation and collision detection). Therefore, we cannot
guarantee the haptic rendering rate to be around 1000Hz.
Users may feel the force output less smooth sometimes.
To solve the problem mentioned above, we may introduce
level of detail methods to the modeling and undertake some
optimization of dynamic computation and collision detection
methods. Also, to speed-up the operation, we will look into
Physics Process Unit (PPU) for the case of suturing and
knotting in surgical training environment. In this paper, we
did not consider the static friction, our next step is to study
the forces when the user is trying to tie a knot tightly and
untie a tight knot.

Fig. 7. Unsuccessful unknotting
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