2007 IEEE International Conference on
Robotics and Automation
Roma, Italy, 10-14 April 2007

WeB10.3

Implementing a Control System Framework for Automatic Generation
of Manufacturing Cell Controllers

Oscar Ljungkrantz* Knut Akesson*

* Department of Signals and Systems
Chalmers University of Technology
Goteborg, Sweden

{1jungkra, knut, kickid}@chalmers.se

Abstract— Quickly adapting the manufacturing system to
the production of new or modified products is critical for
manufacturers in order to stay competitive. For flexible man-
ufacturing systems this typically implies modifications of the
control programs. In previous work a framework for automatic
generation of cell controllers has been developed. In this paper
an implementation of the framework is presented.

Important properties of the presented implementation are:
the information from earlier design phases is reused; automatic
code generation for faster development and reduced imple-
mentation errors; the supervisory control theory is used to
generate control functions that are correct by construction;
object oriented principles are used in order to allow the reuse
of existing library functions. The implementation is generic
in the sense that it may generate control programs for a
number of target platforms, but in this paper the focus is
on generating a control program for the Java platform. An
industrial example of a reconfigurable manufacturing cell has
been used in the implementation process and shows that the
framework is feasible for large manufacturing systems.

I. INTRODUCTION

The life-cycles of many mass-produced products, includ-
ing automotive products, are constantly shortening due to
frequently changing market demands and increased com-
petition. Hence the manufacturing systems need to handle
extensions and reconfigurations more frequently. To be able
to modify the manufacturing system in a fast way, the
manufacturing control system also has to be quickly modified
and made fully operational [1], [2].

One way to decrease the development time for the control
system is to reuse the information from the requirements and
design phase of the development process of the manufactur-
ing system. This information can be used to automatically
generate important parts of the control system.

Decreasing the time spent on modifying the control pro-
gram at the shop floor is critical for cost reasons. This
may be accomplished using off-line verification. A related
approach is to automatically generate a control function that
will be guaranteed to fulfill given specifications, such as
which operations to perform and operation conditions that
may not be violated.

Some parts of the control program may be reused in many
manufacturing cells. Those parts of the control program
are suitable to arrange into a software component library.
Reusing such software components could reduce the devel-
opment time and the errors, as components already verified

1-4244-0602-1/07/$20.00 ©2007 IEEE.

Johan Richardsson™* Kristin Andersson®

** Advanced Equipment Engineering
Volvo Car Corporation
Goteborg, Sweden
jrichl03@volvocars.com

to work properly are used.

This paper describes a framework and an implementation
of the framework, for developing control programs for manu-
facturing cells. It uses the ideas and methods presented above
by having the following four properties:

Property 1: Reusing information from the requirement
and design phase of the development process,

Property 2: Using automatic code generation for faster
development and reduced implementation errors,

Property 3: Using formal methods to generate control
functions that by construction fulfill given specifications,

Property 4: Using general and object-oriented component
structure for higher reusability and reliability.

An example of a flexible manufacturing cell, shown in
Fig. 1, has been used to test the methods and algorithms
of the implementation. It will also be used to explain the
implementation through out this paper.

. Gripper
Fixture 151 PP <
FIX151 \ & Robot 3325
obo
Tipdresser\ 5 ﬁ(RBZS
Robot 3323-— (Q
R3323 % ‘D\Tumtable 153
— TT153
[:: — ‘ Operator safety scanner
/v g ==Y \
Conveyor 415 ‘D/Tumtable 154
CNV415 @@ }TT154
Robot 3324 8 3 /
R3324 / e A Robot 3326
. [R3326
Fixture 1521

T
FIX152 Weld gun

Fig. 1. An example of a manufacturing cell in which parts are welded to
the floor of a car. The cell is an existing manufacturing cell at Volvo Car
Corporation in Goteborg and consists of nine machines that are controlled
by one PLC: four robots, two fixtures, two turntables and one conveyor. [4]

A Programmable Logic Controller (PLC) is an industrial
computer that executes given control programs on the shop
floor. The main idea of the presented framework is to trans-
form data from the development process of a manufacturing
cell into an operational PLC program. To do this, some of
the data is used to build an object oriented structure of
the control program, and some is used as input to a tool
for synthesis that calculates an overall control function of

674

the cell that satisfies the specified requirements. The control
program structure, the control function and available PLC
software components from a component library are then used
to automatically generate a PLC program.

The program structure of the control program is based
on previous work by Richardsson [4] and Andersson [5].
Examples of other frameworks and architectures can be
found in [6], [7] and [8]. The main contributions of the work
presented in this paper are the following:

o The implementation itself, as glue that makes a whole
out of different parts.
o Definitions of the information, in terms of input files
and formats, needed for the framework.
o Methods and algorithms for automatic generation of the
PLC program.
o Extensions and modifications of the program structure.
The paper is organized as follows: Section II introduces
the workflow for control program generation. In Section III
the entire framework and the implementation are presented.
Conclusions are presented in Section IV.

II. WORKFLOW FOR CONTROL PROGRAM
GENERATION

This section introduces the proposed framework by de-
scribing the main workflow for making an operational control
program for a manufacturing cell. The principles of the
framework are outlined in Fig. 2.

Control Information from the development process of the
manufacturing cell is used to create a Control System Model
which is a representation of the equipment and the control
function of the cell. Formal methods are used to synthesize a
cell control function that fulfills the specification. The control
system model is used, together with existing component
library to create the PLC program.

The Control Information consist of mainly two parts, one
describing the manufacturing cell itself (robots, conveyors
etc.) and one describing specification and conditions for the

Control Information

Automata
synthesis ajnd extraction

v

CoP
EOP [l

Deserptonf ™ Model

Standard e vy
Libray Y A :

IEC
61499

Fig. 2. The main principles of the presented framework for generating
PLC programs for manufacturing cells. All parts of the figure are explained
in Section III. The solid lines represent what is the focus of this paper. The
dotted parts are also included in the framework but they are not part of the
presented implementation.

WeB10.3

operations that are to be performed in the cell. The control
information is supposed to be extracted from the mechanical
design of the cell and from robot simulations. Some of this
information is automatically converted into finite automata.
These automata are used to calculate/synthesize a supervisor
according to the supervisory control theory [3]. This means
that the operations in the different machines in the cell will
be coordinated so that the work in the cell is performed ac-
cording to the specifications and that no operation conditions
are violated, for example that two or more machines are not
in the same work zone simultaneously.

The control function and the description of the cell are
used to generate a Control System Model. This control sys-
tem model contains most of the data necessary for generating
the control program but implies no specific PLC program-
ming language. The control system model is object oriented
with a hierarchical structure corresponding to the structure
of the physical equipment of the cell. Hence the cell object
contains machine objects, one per machine in the cell, that in
turn may contain sensor and actuator objects etc., see Fig. 3.

The control function of the cell is divided into different
levels: COPs, Coordinated OPerations, at the cell level and
EOPs, Execution of OPerations, at the machines level. In
the cell object the COPs hold information about how to
coordinate the operations of the different machines. The
COPs are directly extracted from the supervisor described
above. In the machine objects the EOPs, one per operation,
in turn hold information about how to execute each operation.
The EOPs are extracted from the control information.

From the control system model different PLC programs
can be implemented. The parts representing the control
function can automatically be generated from the control
system model. The other parts of the control program can
also be generated if the control information is extensive but
normally much of this information is stored in a component
library. The approach chosen in this paper is that existing
and suitable library components are instantiated while the
remaining parts of the program are automatically created
from the control system model. In this work, Java programs
and an IEC 61499 [9] prototype are generated to show
the feasibility of the framework. In the future customary
IEC 61131 [10] PLC languages could be added as well.

A. Restrictions

In this work only the control of single manufacturing cells
are considered, not the whole manufacturing control system.

o -
Machine

Cell Control Model

Machine

Controller

Coordinator

. L

Fig. 3. The main objects of the control system model. The cell control
model consists of machine objects and control information. The machine
objects in turn consist of objects representing components, such as actuators
and sensors, and information on how to execute each operation.

675

A cell consists of multiple, concurrently executing machines,
but each machine may only perform one operation at a time.
However, if some machine can perform many operations
at a time this machine can usually be considered as many
sub-machines, one for each simultaneous operation. Certain
machines, for instance robots, often have their own control
systems. The presented framework assumes that those control
systems take care of the execution of the different operations,
see [11], and the cell control program tells those machines
when to perform each operation. The implementation focuses
on automatic control of the cell and does not include,
although the concept indeed does, start and stop of the cell,
human interaction, alarm and time handling etc.

I1I. FRAMEWORK AND IMPLEMENTATION FOR
CONTROL PROGRAM GENERATION

The framework, data and methods for making a PLC
program for controlling a manufacturing cell are presented
in this section. The framework, outlined in Fig. 2, will
be explained step by step and it will be shown how the
framework fulfills Property 1-4 listed in the introduction.

The whole cell will mainly be controlled by one PLC
program that tells all the different machines when to exe-
cute which operation. The executions of the operations for
machines, such as the fixtures, that do not have own control
systems will also be controlled by this PLC program.

The main parts represented by solid lines in Fig. 2
have been implemented in this work, in Java. To facilitate
automatic code generation the formats of the EOPs, Cell
Description and the overall control function (COPs) have
been clearly defined, using XML schemas [12]. Due to
restricted space the XML schemas and XML files for the
example cell are omitted in this paper but are available
at [13]. Having this defined formats, the files for a specific
cell can be automatically converted into objects of the control
system model, which in turn can be converted into objects
of the PLC program. This fulfills Property 2.

A. Control Information

The Control Information consists of DOP (Declaration of
OPerations), EOPs, IL (InterLocks) and Cell Description, and
is supposed to be extracted from the development process of
the manufacturing system. In a study at Volvo Car Corpo-
ration [14] it was shown that most of the information for
generating a manufacturing PLC program can be extracted
from the mechanical design of the cell. Furthermore, robot
simulation can be used to decide which collision zones to
use, and when each machine needs access to the zones. Since
all this information might be stored in different and possibly
company specific systems, the control information specified
in this paper is supposed to be extracted from those systems.
This fulfills Property 1.

An operation is a set of actions in one machine which
are chosen so that interaction with other machines is not
needed during the execution of that operation. The DOP
holds information about when an operation in the cell can
be executed. Here natural predecessor relations between the
different operations are stated, for instance that the robot
has to have changed tool to the weld gun and that the floor

WeB10.3

and the plate has to be in place, before the robot can weld
the plate to the floor of the car. The DOP also contains
information about product type, type of operation, duration
of the operation etc.

The EOPs describe how each operation shall be executed
by the corresponding machine. In Table I an example of the
EOP for moving the fixtures from home to work position,
with a plate fixed by the clamp, can be seen. The first row
of the table is the supposed Initial State of the components.
The machine controller checks if the states of the components
match the desired state. If they do, it continues with the first
action, otherwise an alarm is raised. In Action 1 the machine
controller orders the fixation pin to go to state unlocked.
When this is fulfilled the machine controller performs Action
2, moving the fixture itself, and so on. The clamp shall be
closed during the whole operation holding the plate, which
must be in place as indicated by the part sensors.

TABLE 1
EOP (PART OF) FOR THE OPERATION OF MOVING THE FIXTURES FROM
HOME POSITION TO WORK POSITION.

internal components

H Ay Az As ‘ S1 | S2
Fixture pos. | Fixation pin | Clamp | Part sensors
Initial state home locked closed on | on
Action 1 home unlocked closed on | on
Action 2 work pos unlocked closed on | on
Action 3 work pos locked closed on | on

The IL specifies the conditions, states of the components
in the cell, which have to be fulfilled before a machine can
move an actuator without causing damage to the cell.

The cell description is divided into two parts: physical
resources and virtual resources. The physical resources de-
scribe the mechanical, hierarchical, structure of the cell.
The virtual resources contain information about the collision
zones of the cell and variables used by the EOPs in the
different machines. Hence, the virtual resources depend not
only on the structure of the cell but also on the control design.

Part of the physical resources needed for the example cell
can be seen in Fig. 4. The cell has a number of machines. If
they do not have their own control system we need to specify
the Equipment, such as sensors and actuators, in the machine.
Equipment, which can be in one of a number of specified
states, can be made up by equipment and of Elements. An
element represents the lowest physical part of the equipment
at which the communication between the control system and
the real actuators and sensors take place. As an example
consider the clamp group Ajs in the fixture FIX151. This
clamp group actually consists of two clamps which cylinders
are controlled simultaneously by one valve. Each clamp has
two sensors, one indicating that the clamp is closed and one
indicating that the clamp is open. Hence Ag is an equipment
entity consisting of one element, the valve, and two lower
level equipment entities representing the two clamps. Those
clamp equipment contain no elements, since one clamp can
not be actuated alone, but consist of two equipment entities,
one representing each sensor.

676

-Physical Resources - Example cell
-Machines
Robot - R3323, hasOwnControlSystem: Yes
-Fixture - FIX151, hasOwnControlSystem: No
-Equipment
-Sensor - S1, part sensor
-States
on
off
-Elements
Element - FIX151S1
+Sensor - S2, part sensor
Actuator - A3, Clamp Group
-States
open
closed
-Elements
Element - FIX151A3, bistable valve
-Equipment
-Actuator - A3A, Cylinder clamp 1
-States
open
closed
+Equipment
-Sensor - A3ASl, Sensor clamp 1 open
-States
open
not open
~Elements
Element - FIX151A3AS1
+Sensor - A3AS2, Sensor clamp 1 closed
+Actuator - A3B, Cylinder clamp 2

Fig. 4. Physical resources. Part of the cell description of the example cell.

B. Coordinating the operations - building the COPs

The cell control function is rather complex since it has to
handle different concurrently executing machines, collision
zones and other conditions that must not be violated. It may
also be more complicated to test the control of the entire cell,
compared to testing a single machine. For those reasons we
automatically create the COPs, the coordinated operations,
that by construction are guaranteed to fulfill the conditions.

The information in the DOP, the EOPs and the IL can be
extracted and processed into finite automata. These automata
are used to synthesize a supervisor for the cell according
to the supervisory control theory, SCT, of Ramadge and
Wonham [3]. From this supervisor automaton the relevant
information is extracted and presented as COPs. The SCT
tool Supremica, see [13] and [15], is used to perform the
synthesis. The procedure for creating the COPs is described
in detail in [5]. Below the main principles are explained.

Five different types of automata are needed: operation
models, machine models, relation specifications, zone models
and safety specifications. The operations are extracted from
the DOP and are each modeled using two events, one
controllable event representing the start of the operation
and one uncontrollable event representing the finish of the
operation. The machines are also extracted from the DOP
and are modeled as simple two-state automata stating that
the machine may only perform one operation at a time. The
relation specifications too are extracted from the DOP and
describe the order in which the operations are specified to
be performed. The zone models, which are extracted from
the EOPs, state that only one machine can access each zone
at a time. They have one state indicating that the zone is
free and one state for each machine that may book the zone.
Finally, the safety specifications are extracted from the IL
and the EOPs, and model restrictions on the execution of
each operation. As seen in Table I an operation consists of
a number of actions. For an operation to be allowed to be
executed all interlocks for all actions must be fulfilled. If
an operation violates the interlocks for any of the actions in

WeB10.3

another operation, the two operations are not allowed to be
executed at the same time.

All extracted automata (the operation models as plant
automata and the rest as specification automata) are used
to perform the synthesis, resulting in a supervisor. From the
supervisor the COPs are extracted. The algorithm for the
extraction, for each operation lists all states in the supervisor
in which that operation could be started. From these lists,
restriction expressions are built, which are simplified and
presented as COPs. This fulfills Property 3.

Each operation in the COPs has a set of preconditions,
which are operations in other machines that have to be
performed before this operation can be started. The precon-
ditions have either been specified in the DOP or added by the
synthesis. To facilitate concurrent execution of operations in
different machines, when allowed, the coordinated operations
are organized into different COPs, one per machine and
product type. Especially if the cell can work on several
products simultaneously this partitioning is useful [5]. A
schematic example of a COP can be seen in Fig. 5.

Op 31 Op 32 Op 33 Op 35
Ready to [—{Close Clamps [—®{Move fixture to [—"{Move fixture to
receive part? work position home position

A A A

R3323, Op54
R3325, Op73 CNV415, Op21 - Weld job 2
- Put part in fixture - Move in product R3325, Op79
- Weld job 2

Fig. 5. Schematic picture of the COP for fixture FIX151 in the example
cell. The operations must be performed in the order from left to right and
some of the operations have preconditions which state that some operations
in other machines have to be performed before this operation can be started.
For instance the fixture can only move forward to the work position (Op33)
when the product is in place (Op21 finished by the conveyor) and the clamps
are closed (Op32).

C. Control System Model

The purpose of the control system model is to have a mid-
dle layer that incorporates all the information about the cell
and its control and the control system architecture, without
stating the implementation details. In this way many different
control system implementations, PLC programs, can be made
from the same control system model, making it possible to
quickly adapt the code generation to different companies that
have different PLC hardware. Thus the control system model
contains EOPs, COPs, the complete hierarchical structure
of the cell, equipment states, machine variables etc. plus
components specific to the chosen control system structure
such as coordinators for controlling the cell and machine
controllers for controlling the machines. However nothing is
stated about how the different parts shall communicate with
each other, or other PLC program specific details.

D. PLC Program

Multiple target platforms are supported by the framework,
however only the Java platform is fully supported in this
implementation. The Java PLC program generator has been
implemented mainly to develop and evaluate the presented
framework. In this section the Java implementation will be
discussed but many of the principles are suitable for other

677

implementation languages as well, for example IEC 61131
Function Block Diagrams and IEC 61499. The PLC program
structure is based on the program structure described in [4].
Some parts, such as zone and variable handling have been
extended, as presented later in this section.

Main objects: The main objects of the PLC program are
presented in Fig. 6. Each Machine in the cell is controlled
by a Coordinator which tells the different machines when
to perform which operation according to the COPs. As
mentioned above the cell control function is divided into
different COPs, one per machine and product type. Likewise,
the coordinator uses different Machine Coordinators, one per
machine, to handle the active COP for each machine. The
machine typically has one COP per product and additional
start cycle COPs etc., but only one COP per machine can be
active at a time. When a COP is registered to the coordinator
it creates a machine coordinator for the relevant machine, if
not yet created, and sets the COP to that machine coordinator.

Mailbox communication: All communication between the
machine coordinators and the machine objects is done by
sending messages via the Mailbox. The purpose of the
mailbox is that objects such as machines can easily be
instantiated and added without having to rewrite too much.
Examples of message types are performEOP and EOPDone.
All messages include the name of the receiver and the
mailbox is implemented so that it delivers the messages to
the receiver.

Machine object: Each machine object consists of subcom-
ponents, see Fig. 6. The control of the machine is handled
by the Machine Controller. The machine controller performs
the operations by changing the states of the machine step
by step by sending messages to objects representing the
components Actuators, Sensors and Variables in the machine.
When the machine coordinator tells the machine to perform
an operation, the machine controller loads the corresponding
EOP that defines the order of the states for that operation.
The machine controller communicates with the components
via a mailbox, for the same reasons as for the cell mailbox.

Different messages when performing an EOP: The ma-
chine coordinator communicates with the actuators and sen-
sors by sending four different types of messages: Request
State - asks which state the component is in; Check State -
asks the component if it is in the desired state, otherwise an

Machine
Controller

Cell Control Program Machine

Fig. 6. The main objects of the manufacturing cell PLC program. To the
right, the main sub-objects of the machine object are presented as well.

WeB10.3

alarm is raised; Order State - tells the component to go to
the desired state and report when it is done; Monitor State
- an alarm is raised if the state is changed when the
state monitoring is on. In [16] the different messages are
elaborated on and an implementation of sensors and actuators
in IEC 61499 is described.

Component hierarchy: Actuators can have an inner hi-
erarchy consisting of actuators and sensors, e.g. the clamp
group Ag in the fixtures, described in Section III-A above. To
reduce the complexity of the EOPs, the machine controller
only controls the top level actuators and sensor components,
such as the clamp group As and the actuator control object
representing A3 in turn controls the inner, lower level objects.
The lower level components are checked by the upper level
components by a request state method. Lower level actuators
also have a state order method.

Variables: Some machines have internal variables, corre-
sponding to relevant sub-states of the machine not represent-
ed by an actuator or a sensor. An example of a variable is
“new rack in cell” in the turntables, which indicates a new
rack of plates on the side of the turntable facing the cell and
is needed for the robots to determine which plate to pick from
the rack. In this implementation the variables are treated the
same way as sensors and actuators, that is they respond to
request state, check state and order state messages. The rea-
son for this choice is to be consistent in the implementation
and to prepare for a distributed implementation.

Zone handling: The cell PLC program also consists of
Zone objects. The zone objects represent volumes in the
manufacturing cells that are common for some machines but
in which only one machine can be in at any time, to prevent
collision. A zone must be booked by a machine before
entering it and is unbooked when left by the machine. The
COPs are synthesized so that, in automatic mode, more than
one machine will never try to be in a zone at the same time.
In manual mode the operators shall be prevented to enter an
occupied zone, as specified by the IL. Hence, to be able to go
from automatic to manual mode, the zones must be booked
and unbooked also in the automatic mode. Therefore, in this
implementation the states of the relevant zones are included
in the EOPs. The state of the zones in the perspective of
a single machine is “booked (by me)” or “unbooked (by
me)”. Each zone is represented as an object connected to
the cell mailbox, see Fig. 6, and knows which machine that
has booked the zone or if it is unbooked. When a zone is to
be booked by a machine, the machine controller that reads
the EOP tells the machine object to send a message, via the
cell mailbox, to the corresponding zone. This way the zones
are treated almost the same way as other components, which
too is consistent and suitable for distributed control systems.

General algorithms and component libraries: One of the
goals for the Java PLC program has been to develop general
algorithms that can be used for as many different cells,
machines and components as possible. The algorithms can
also be used as a help when building a component library.
The developed algorithms are general enough to handle all
different components of the example cell. For making a
complete PLC program, alarm and time handling etc. also
has to be defined. An example of a general algorithm that

678

can be used for many different kind of components is the

actuator request state algorithm, which can be seen below:
procedure REQUESTSTATE
if any lowerLevelActuators then
currentState <«
getFirstLowerLevelActuator () .requestState (
for all lowerLevelActuators do
if (currentLowerLevelActuator.requestState ()
currentState) then
broken equipment, alarm!
end if
end for
else if any lowerLevelSensors then
stateFound <« false
for all lowerLevelSensors do
currentSensorState <«—
currentLowerLevelSensor.requestState ()
if knownState (currentSensorState) then
if NOT stateFound then
stateFound «— true
currentState «— currentSensorState
else if currentState # currentSensorState
then
broken equipment, alarm!
end if
end if
end for
if NOT stateFound then
broken or moving equipment!
end if
end if
// For actuators with no sensors (rare)
// the state is the last ordered state
return currentState
end procedure

The code that requests the states of the sensors may seem
a bit complex, but imagine an actuator that can be in one of
two states A and B and that has two sensors, one in each
position. The two sensors have the possible states A and “not
A” and B and “not B” respectively, however only A and B
are known by the actuator. A and B shall not be given at the
same time, then the equipment is broken. “not A” and “not
B” at the same time indicate a broken or moving actuator.
The presented algorithm works for many types of actuators
and sensors but not for all types. For instance some safety
sensors are coupled so that a signal is given if two out of
three sensors are high. If such a sensor is used in the cell, a
library component for this sensor has to be available.

We propose to use existing and suitable library com-
ponents for parts that can be reused between cells and
to automatically create the rest of the program from the
control system model. Those library components must also
comply with the object-oriented structure presented above.
This fulfills Property 4.

IV. CONCLUSIONS AND FUTURE WORK

In this paper an implementation of a framework for
generating control programs for a manufacturing cell has
been presented. The framework reuses information from
the development process of the manufacturing system to
automatically create a control program. Supervisory control
theory is used to guarantee that the control program fulfills
the specification. The implementation structure is object-
oriented and hierarchical to make it easy to read and maintain
and to use component libraries for parts that are not conve-
nient to automatically create from specifications.

These properties are intended to make it faster to develop
operational control programs for manufacturing cells. Being
able to faster develop and change the control programs
of manufacturing cells should make it faster to reach full

WeB10.3

productivity, thus leading to higher productivity at the man-
ufacturing company.

This work contributes an implementation that aims to
evaluate and develop the framework. It also extends previous
work by defining information and providing methods and
algorithms for automatic generation of PLC programs.

The Java PLC program for the example cell has been tested
in detail on a text-based simulation of the cell. The Java
program has also been used as a basis for an IEC 61499
program generator prototype which has been used to control
a 3D simulation of the example cell. In this prototype the
operations of the machines where simulated and controlled,
but not detailed movement of the actuators and sensors
involved. The 3D simulation can be seen at [13]. Both
simulations have shown that the framework is suitable for
industrial manufacturing systems. In the future we plan to
further develop the IEC 61499 program generator.

ACKNOWLEDGEMENT

This research is financed by the ProViking research pro-
gramme.

REFERENCES

[1] M. G. Mehrabi, A. G. Ulsoy, and Y. Koren, “Reconfigurable manufac-
turing systems: Key to future manufacturing,” Journal of Intelligent
Manufacturing, vol. 11, no. 4, pp. 403—419, 2000.

[2] Valckenaers, P., V. Brussel, H., M. Kollingbaum, and O. Bochmann,
“Multi-agent coordination and control using stigmergy applied to
manufacturing control,” ser. Lecture Notes in Computer Science, vol.
2086/2001. Springer, 2001, pp. 317-334.

[3] P. J. Ramadge and W. M. Wonham, “The control of discrete event
systems,” Proceedings of the IEEE, vol. 77, no. 1, pp. 81-98, 1989.

[4] J. Richardsson, “Development and verification of control systems for
flexible automation,” Licentiate thesis, Dept. of Signals and Systems,
Chalmers University of Technology, Goteborg, Sweden, 2005.

[5]1 K. Andersson, “Hierarchical control and restart of flexible manu-
facturing systems,” Licentiate thesis, Dept. of Signals and Systems,
Chalmers University of Technology, Goteborg, Sweden, 2006.

[6] E. W. Endsley, E. E. Almeida, and D. M. Tilbury, “Modular finite state
machines: Development and application to reconfigurable manufactur-
ing cell controller generation,” Control Engineering Practice, vol. 14,
no. 10, pp. 1127-1142, 2006.

[71 K. C. Thramboulidis, “Model integrated mechatronics—towards a
new paradigm in the development of manufacturing systems,” IEEE
Transactions on Industrial Informatics, vol. 1, no. 1, 2005.

[8] R. R. Lindeke, J. Kapla, A. Stadtler, and D. Green, “Develop-
ing a virtual process controller—the missing link in the automated
manufacturing process tree,” in Flexible Automation & Intelligent
Manufacturing, 2005.

[9] IEC, “IEC 61499-1: Function blocks—part 1: Architecture,” Interna-
tional Electrotechnical Commission, Tech. Rep., 2005.

[10] R. W. Lewis, Programming industrial control systems using IEC 1131-
3 Revised edition. The Institution of Electrical Engineers, 1998.

[11] T. Nordin, “Off-line programming at Volvo Cars—the technique,” in
33rd International Symposium on Robotics, 2002.

[12] “XML schema.” [Online]. Available: http://www.w3.org/XML/Schema

[13] “Supremica.” [Online]. Available: http://www.supremica.org

[14] A. von Euler-Chelpin, , P. Holmstrom, and J. Richardsson, “A neutral
representation of process and resource information of an assembly
cell—supporting control code development, process planning and
resource life cycle management,” in 2nd International Seminar on
Digital Enterprise Technology, Seattle, USA, 2004.

[15] K. Akesson, M. Fabian, H. Flordal, and R. Malik, “Supremica—
an integrated environment for verification, synthesis and simulation
of discrete event systems,” in Proceedings of the Sth Workshop on
Discrete Event Systems, Ann Arbor, MI,U USA, 2006, pp. 384-385.

[16] G. Cengic, O. Ljungkrantz, and K. Akesson, “A framework for
component based distributed control software development using IEC
61499, in Proceedings of the 11th IEEE International Conference
on Emerging Technologies and Factory Automation, Prague, Czech
Republic, 2006.

679

