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Abstract − This article concerns road safety and driving 
assistance. To solve this problem, we propose a data fusion 
architecture based on the Dempster-Shafer theory. This multi-
level approach allows the management of complementary and 
redundant data which come from two perception systems: an 
omnidirectional vision sensor and a laser telemeter. The 
originality of this architecture is its ability to manage and 
propagate uncertainties from low level data until an high level 
information of danger given to the driver. The first part 
concerns the data sensor The second part deals with the 
quantification of the uncertainties of the detected vehicles, 
followed by a determination of situations of danger and the 
evaluation of their level of dangerousness with the aim of 
supplying the driver with an indicator of global danger around 
the vehicle. 

I. INTRODUCTION 
One of the pre-requisites in driving a car is to have a supply 
of reliable information to the driver about the state of 
neighbouring vehicles. For that purpose, an essential criterion 
is to be capable of situating one's own vehicle on the road and 
to envisage the location of the other vehicles on the same 
axis. At the moment, this characteristic still constitutes the 
object of research in numerous laboratories working on road 
safety. In spite of a great deal of research having ended in 
supposedly "reliable" solutions, it has to be remarked that 
very few car manufacturers have developed them to the point 
of integrating them into their marketed vehicles. 
We can, nevertheless, notice that major constructors have 
proposed some solutions, but with particular conditions of use 
and on privileged axes of traffic: on highways where traffic 
lanes are separated and on which the road markings in are 
very well maintained. For example, we can quote the LDW 
system (Lane Departure Warning ) proposed by the french car 
manufacturer Citroën as an option on certain vehicles, to alert 
the careless driver of a deliberate change of lane without 
having activated the indicators. This system is composed of 
three sets of two aligned infrared sensors located along the 
front side of the vehicle. During a sideways movement, these 
sensors detect the crossing of the white line and alert the 
driver to a change of lane in a reliable way. But the system 
must only be activated while travelling along a highway. 
Another LDW system developed by Volkswagen integrates 
cameras implanted in front of the vehicle which permanently 
analyse the trajectory. If this strays, a sound or sensory alert 
is sent to the driver. 
Our solution integrates two essential parts which consist of 
the detection of situations connected with road configurations 
which could lead to a danger (crossroads, reductions in traffic 
lanes, speed limits, etc.) by using a SIG system matched with 
a GPS differential localisation (longitudinal detection). On 
the other hand, there is the detection of dangers connected to 

traffic lanes by analysis of the environment closed to the 
vehicle (lateral dangers). 
This article constitutes a continuation in the work presented 
in [11] in which we explained the mechanisms of extraction 
and processing of the low level information.  
In this article, we propose the parallel use of an 
omnidirectional sensor and a telemetric sensor. The first 
sensor is positioned on the roof of our experimental vehicle 
and allows an image of the road situation over 360 degrees to 
be attained in a single acquisition. The telemetric sensor is 
positioned behind the experimental vehicle to measure the 
distance of following vehicles. For the experimental results 
conducted in this project, we restricted the environment of 
use of our system to roadways with traffic in one direction 
only and with one, two or three lanes of the motorway type 
and urban ring-roads with contrasting markings on the 
ground. In the first part, we will briefly present the 
architecture of our experimental vehicle and we will show the 
various data processing phase resulting from both sensors (for 
more details, see [11]). In the second part, we will detail the 
data fusion module and multi target tracking module, both 
based on the Transferable Belief Model [12], a variant of the 
Dempster Shafer theory [2]. In particular, we will focus on 
the data uncertainty treatment. 

II. DATA SENSOR AND PROCESSING 

II.1 Sensors  
The first sensor which composes our perception system is an 
omnidirectional sensor from the Japanese company 
ACCOWLE. It consists of an hyperbolic convex mirror and a 
CCD SONY EVI 330 camera (colour camera 768×576). It is 
schematised in figure 1 and photographed in figure 2. It is 
installed on the vehicle’s roof (figure 3). 

  
Fig. 1. Sensor 
characteristic 

Fig 2. The 
Accowle 

hyperbolic sensor 

Fig 3. Sensor configuration 

The telemeter is installed behind the vehicle (fig. 4) because 
of problems of safety. It can be installed at the front, but only 
if the laws in force permit it. The system used is a laser 
telemeter SICK LMS 200, from which a 180 degrees 2D 
depth view of the scene can be obtained, by steps of 0,5°. 
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Fig.4. The laser telemeter and its installation of the vehicle. • v(s) is the position vector of the point of contour which 
coordinates are x (s) and y(s) II.2 Data processing 

II.2.1 Omnidirectional images 

The image obtained with the hyperbolic sensor is not totally 
exploitable. Indeed, it is easy to notice that, in 
omnidirectional images, the most outer zone corresponds to a 
part of the image not reflected by the hyperbolic mirror, thus 
not reflecting the scene around the vehicle. Also, the central 
zone of the image corresponds to the reflection of the camera 
and the black part to the lens of the sensor. The elimination of 
these image parts enables to gain more than 40% in 
processing time. 

• v(1) and v(0) are the position vectors of the contour 
extremities 

The total energy of the contour for which we try to minimize 
is represented by the following function [1]. 

Esnake = 0∫
 1

Esnake(v(s)) ds=0
 1 

Eint(v(s)) + Eext(v(s)) ds ∫

• Eint is the internal energy, it is intrinsic in the snake, it 
represents the rigidity and to the elasticity of the contour 
(curvature) 

• Eext is the external energy of the system, it represents 
gradients of the image. Then, the omnidirectionnal image is interpolated in the form 

of a classic 2D image in order to use operators of classic 
image processing. 

Several resolution approaches exist. Let us quote the model of 
Amini[7], based on dynamic programming. William and 
Schah [5] proposed the algorithm Greedy. It was 
demonstrated in [10] that this algorithm turned out to be 
faster than those using variational calculation and dynamic 
programming. It is the approach which we adopted in our 
previous works [8]. In spite of the originality of this method, 
we did not obtain satisfactory results; we are thus directed to 
another method levy GVF (Gradient Vector Flow) [9]. 

II.2.2 Improvement of omnidirectional processing 
The detection of vehicles by omnidirectional vision goes 
through two stages. The first stage consists of determining the 
zone identifying the road in every "sub-image", the second 
stage allows objects on the road to be segmented, with the 
aim of extracting vehicles. 
  

  Algorithm of research for zone representing the road   Initialisation of the detection process  

The algorithm of research for the zone representing the road 
is made according to several criteria:  

One of the major problems which exist when using active 
contours is their initialisation. Indeed, in the major part of the 
applications using this technique, the initialisation is done 
manually by asking the user to select points around the shape 
to be detected. These points will constitute the initial contour. 
In our project, we developed an algorithm of automatic 
initialisation, which consists of discovering homogeneous 
zones characterising the texture of vehicles on the road zone. 
This method is illustrated by figure 5, which represents an 
example of initialisation of the active GVF contours in an 
image extracted from our road sequence. 

� the detection of the edge of the road defined by 
white lines or projections of shadow, 

 

� the colour of the road established by searching for 
limit threshold in various spaces of colour, 

�  final shape of the detected zone. 
This algorithm is executed at initialisation of the process of 
vehicle detection and during the loss of the detection of the 
road zone in the image sequence. The first stage of our 
algorithm consists of approximating points characterising the 
edges of road (right-hand side, left-hand side) by a linear 
interpolation. "Candidate" points arise out of a search for 
peaks on five horizontal equidistant lines taken in the lower 
image. At the same time, the RGB image undergoes a 
transformation HSV (hue, saturation, value) and a 
transformation YCbCr (luminance, chrominance blue, 
chrominance reed) to associate homogeneous zones. 

 

 

The combination of both processes allows a triangular closed 
shape to be identified, approximated by two straight lines and 
which informs us of the location of the experimental vehicle 
on the road (vehicle centred on the highway, vehicle on the 
left-hand side, vehicle on the right-hand side). 

 
Fig.5. Example of the active contours initialisation  

The following segmentation stage consists of identifying 
objects in the previous zone contrasting with the homogeneity 
of pixels. Our choice is the use of a modelling method based 
on the active contours, or “snakes”. 

Figures numbered from 1 to 9 show the various stages of 
GVF snakes initialisation:  

1. The figure 1 represents the initial image with the edges 
of road  

 2. Masking of zones situated outside of the road (outside of 
the triangle) (figure 2)   Segmentation  

A snake [1] is an elasticised curve which can be modelled by 
a parametric shape normalised as follows: 3. Transformation of the image obtained previously (stage 

1) in the space YCbCr (figure 3)   Ω : [0, 1] →  R2 4. Filtering of the zones obtained (figure 4) 
               s      →  v(s) = {x(s), y(s)} 5. Grouping of the homogeneous zones (figure 5 and 6) 
where: 6. Increase of the square size with frame detected zones 

(figure 7 and 8) 

 

• s is the curvilinear abscissa or the parameter on the curve 
which belongs to the spatial domain Ω, 
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III.2 Uncertainty of the telemetric segments 7. Search for initial points of the “snake” (figure 9) 
 To determine the uncertainty of each segment found by 
the telemetric sensor, two criteria are taken into account and 
they are then merged within the framework of the TBM. 

II.2.3 Telemetric Data  
The data resulting from an acquisition with the SICK LMS 
200 are characterised by a pair of data (ρi,θi) expressing the 
polar coordinates of each point in the laser telemeter centre 
coordinate system. The following figure illustrates a road 
scene in a car park where vehicles were stationary. A first 
stage of grouping has been made to associate the points to a 
single object. 

 

  Frame of  discernment: 
Our frame of discernment Θseg is composed of the two 
hypotheses YES and NO corresponding respectively to the 
two assertions "Yes, the segment exists" and "No, the 
segment does not exist": Θseg={YES, NO} 

The various stages for the identification of vehicles consist of 
segmenting the groupings of points to filter out the 
inappropriate segments, and a final stage of fusion is needed 
to associate the close co-linear or perpendicular segments. 

 

  Criterion 1: average distance of the points from the 
segment which contains them 

Experimentally, we determined the mass function m1 shown 
in figure 7. • From these associations of segments, we be able to detect 

vehicles by performing an identification with the possible 
signatures of vehicles. 
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III. DETERMINATION OF THE DETECTED VEHICLES 
UNCERTAINTY 

III.1 Introduction  
To the aim of obtaining a quantification of the uncertainty of 
the danger level in which our experimental vehicle is found, 
we developed an uncertainty propagation architecture from 
the low level sensors data to the higher levels. Our 
architecture is divided into four stages summarized in fig. 6. 

Fig. 7. Mass function of the first criterion 
 

The figure 8 shows that the greater this distance is, the more 
points on average are far from the segment. If the distance is 
high, we can say that the segment does not well approximate 
the set of points. As a result, we consider it rather unreliable. 

The telemetric data processing and those stemming from the 
omnidirectional vision respectively supply a set of segments 
(stage E1-2) and a set of active contours (stage E1-1). An 
uncertainty quantification is associated to each object 
(segments and snakes). From these segments and these 
snakes, we extract objects of the "vehicle" type (stage E2). 
An uncertainty about each vehicle is computed. This 
uncertainty takes into account in particular the uncertainties 
of the segments and of the snake which compose the 
concerned vehicle by a propagation mechanism which will be 
described in the next paragraphs. To quantify the evolution of 
the uncertainty of each detected vehicle more finely, we 
integrate an algorithm of multi-target tracking into stage E3 
(tracks being vehicles detected). The final stage (E4) allows 
the possible danger situation in which our car is situated to be 
characterised. 

 

  Criterion 2: number of points of the segment 

This criterion can only discriminate when the segment 
contains very few points. In that case, it can be considered 
unreliable. 
 

  Fusion of both criteria 
We tested these criteria on a set of fifty significant 
experimental readings. We particularly observed the value of 
the conflict. It turned out that conflict is weak in almost every 
case (average conflict: 0.13). This proves that our criteria are 
relevant and consensual. 
Finally, the fusion of both criteria described previously 
allows us to obtain mseg(YES), mseg(NO) and mseg(Θseg) These 
three values allow us to obtain a quantification of the 
uncertainty on the considered segment. For example, if 
mseg(NO) is high, it means that the segment is not reliable. 

 

 

III.3 Uncertainty of the active contours 

  Frame of  discernment: 
We are still working in a binary frame of discernment 
consisting of both hypotheses YES and NO corresponding 
respectively to both assertions "Yes, the active contour exists" 
and "No, the active contour does not exist ". 

 

Θsnake={YES, NO} 
 

  Criterion used Fig. 6.  Architecture of distribution of the uncertainties. 
To characterise the uncertainty of a snake, we use the 
redundancy of the data, by confirmation of a snake detection 
by the laser telemeter. Indeed, a detection of a snake 
confirmed by a telemetric segment is more reliable than 
detection realised only by omnidirectional vision. 

The key tool used in this data fusion and uncertainties 
propagation system is the Transferable Belief Model [12] 
(TBM of Smets), a non-probabilistic variant of the Dempster 
Shafer theory [2]. 
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So, for an unconfirmed snake by telemetric detection, the 
function mass msnake characterising its uncertainty was 
experimentally fixed in: 

� msnake(YES)=0.2 
� msnake(Θsnake)=0.8 
� msnake(NO)=0 

On the other hand, for a snake to which we were able to 
associate a telemetric measure, the function mass msnake is 
equal to: 

� msnake(YES)=0.8 
� msnake(Θsnake)=0.2 
� msnake(NO)=0 

III.4 Uncertainty of the vehicles 

  Frame of  discernment: 
Our frame of discernment Θveh is composed of two 
hypotheses YES and NO which correspond respectively to 
the two assertions "Yes, the vehicle exists" and "No, the 
vehicle does not exist": Θveh={YES, NO} 

 

  Criteria used: 
To determine the uncertainty of a primitive of vehicle type, 
we take into account three criteria: 

- the angle between the two segments which compose the 
vehicle. A vehicle normally consists of two segments at 
90 degrees, except when the vehicle is seen from the 
front or from the back. The more the angle varies from 
90 degrees, the less likely it is that we are in the 
presence of a vehicle. The mass function of this criterion 
is given by ma 

- the uncertainty of the segment(s) which compose the 
vehicle. Indeed, if a vehicle is compose of two unreliable 
segments, then this vehicle will not be reliable.  
Let be mseg

S1 and mseg
S2 the respective uncertainties of 

two segments S1 and S2 which compose a vehicle. The 
mass function of this criterion is then given by mi = 
mseg

S1 ∩ mseg
S2, where ∩ represents the Smets fusion 

operator [12]. We can note that this mass function 
allows us to propagate the uncertainties computed at the 
previous level E1 to this level E2 

- the uncertainty of the snake corresponding to the 
vehicle, denoted by the mass function msnake computed 
on paragraph III-3 

The three previous function masses ma, mi, msnake are merged 
to obtain a mass mveh quantifying the uncertainty of the 
detected vehicle: mveh = ma ∩ mi ∩ msnake 
 

So, at the end of this step, we have a list of vehicle primitives 
with an associated uncertainty for each vehicle through the 
set mass mveh. This uncertainty includes the uncertainty about 
the type of the primitive and the uncertainty about the 
existence (the reliability) of the segments and of the snake 
which compose it. 

IV. MULTI-TARGET TRACKING AND ESTIMATION OF THE 
DANGER 

IV.1 Multi target tracking. 
Our method is based on a tracking of vehicle primitives: we 
propagate the matchings made at an acquisition n on an 

acquisition n+1. Our algorithm is based on a prediction-
observation paradigm. So we have developed a prediction 
system based on a linear extrapolation of the azimuth angle 
curves of the vehicle primitives (on experimental results, we 
can note that the angles variation is locally linear): we 
generate a predictive observation vector composed of angles 
got by linear extrapolation (figure 9). For example, if we 
examine the evolution of the vehicle angles Θ1, Θ2 and Θ3 
(figure 8), we remark that the curve can be extrapolated in 
order to have a prediction Θ4p. If a matching is done between 
Θ4p and an angle observation, the track is propagated. 

 
Figure 8: evolution of vehicle angles. 

Figure 9: principle of angular measures extrapolation. 
At this level, the problem is to match for each type of 
primitive the p angular observations obtained at the 
acquisition t with the q predictions. These q predictions are 
computed from the Nmes last observations. To reach this aim, 
we use the Dempster-Shafer theory in the framework of 
extended open word [3] because of the introduction in the 
frame of discernment of an element noted * which represents 
all the hypothesis which are not modelled in the frame of 
discernment. This will allow us to manage the notion of 
appearance or disappearance of tracks, that is to say vehicles. 
For each prediction Qj (j∈[1,q]), we apply the following 
algorithm. 
� The frame of discernment Θj is composed of: 
� the p observations represented by the hypotheses Pi 

(Pi means “the prediction Qj is matched with the 
observation Pi”) 

� and the element * which means “the prediction Qj 
canno  be matched with one of the p observations”. t

So: { },*,..., 21 pPPP=Θ  
� The matching criteria are: 
� the angular difference between an observation and a 

prediction (mass function ma, figure 10) 
� the difference of tint RGB between an observation 

and a prediction (mass function mRGB)  
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Figure 10: BPA of the matching criterion ma 

� For each observation Pi, we compute : 
�  the mass associated with the proposition “the 

observation Pi is matched with the prediction Qj”. 
)( ii Pm

� )( ii Pm  the mass associated with the proposition “Pi 
is not matched with Qj”. 
�  the mass represented the ignorance 

concerning the observation Pi. 
)( iim Θ

� This mass function mi comes from the fusion of ma 
and mRGB : mi = ma ∩ mRGB 

After the treatment of all the Pi observations, we have p 
triplets :   )( 11 Pm )( 11 Pm    )( 11 Θm

)( 22 Pm   )( 22 Pm   )( 22 Θm  
… 

)( pp Pm  )( pp Pm   )( ppm Θ
We fuse these triplets and we get mmatch(P1), mmatch(P2),…, 
mmatch(Pp), mmatch(*) and mmatch(Θ) by using the condensed 
formulas obtained by Gruyer in [4]: 
� mapp(Pi) is the mass associated with the proposition 

«the observation Pi can be match with the prediction 
Qj ». 

� mapp(*) is the mass associated with the proposition 
« the prediction Qj cannot be matched with one of 
the observations Pi ». 

� mapp(Θ) is the mass of the proposition «we know 
nothing about the matching of the prediction Qj». 

� The final decision is the one which has the maximal 
mass. 

Finally, we can note that this matching method enables us to 
easily manage vehicle appearances and disappearances: 
� If an element Pi cannot be matched, Pi is an appeared 

vehicle and a track can be initialized. 
� If a prediction Qj is matched with *, the vehicle is 

temporarily or definitively lost. 
 

After this stage, we have to update the track uncertainty at 
time t denoted by the mass function mtrack t defined on the 
frame of discernment Θtrack composed of the two hypotheses 
“yes” and “no” corresponding to the assertions “Yes, the 
track exists” and “no, the track does not exist”. 
We can distinguish three situations: 

1) Initialisation of a track: this case corresponds to the 
appearance of a new vehicle near our vehicle, that is to say 
the case where an observation is matched with no prediction. 
This track initial uncertainty is mtrack 0 = mveh. 
 

2)  Propagation of a track: as soon as a track is 
initialised, its uncertainty is updated in every new acquisition 
by means of three criteria: the uncertainty of the track at time 

t-1 mtrack t-1, the uncertainty of the vehicle primitive mveh and 
the uncertainty of the matching mapp. The previous three 
masses are merged to obtain a mass mtrack t = mtrack t-1 ∩ mvéh ∩ 
mapp quantifying the uncertainty of the track at time t. As long 
as this uncertainty remains weak, the track is propagated. 
This means that we do not immediately abandon a track as 
soon as it is no longer propagated. We can thus take 
momentary eclipses of vehicles into account. 
 

 3) Non-propagation of a track: if a prediction is 
matched with no observation, the uncertainty of the track 
increases. This uncertainty is updated by merging two 
criteria: the uncertainty of the track at time t-1 mtrack t-1 and a 
predefined mass function m2: 
 m2(yes)=0, m2(no)=0.2, m2({yes, no})=0.8 
This mass function m2 is built to regularly increase the track 
uncertainty by attributing some mass on the “no” hypothesis. 
If this track uncertainty at time t mtrack t is too strong, the track 
is definitively cancelled. 

IV.2 Estimation of the danger 
The final stage of our algorithm of estimation and 
propagation of uncertainties consists of characterising the 
level of danger represented by each of the vehicles bordering 
our vehicle and computing this danger uncertainty.  
To estimate the type of danger and its uncertainty, we first 
determine the type of danger and, secondly, its uncertainty.  
To determine the type of danger, we have to characterise 
three types of situation for every vehicle tracked. 
� A “green” danger: the tracked vehicle does not represent 

a danger. 
� An “orange” danger: the tracked vehicle is situated near 

the side of our vehicle. This can represent a danger if our 
vehicle wants to overtake or seeks to pull back in after 
overtaking. 

� A “red” danger: the vehicle is situated too close to the 
rear or the front of our vehicle. Safe distances are no 
longer respected, there is a danger, for example in the 
case of sudden braking of this vehicle. 

So, for every vehicle tracked, we define a frame of difference 
Θdanger = {GREEN, ORANGE, RED}. To determine the type 
of danger, we consider the two following criteria: 

� Criterion 1: distance between our vehicle and another 
vehicle. The closer a vehicle is to our vehicle, the greater 
the danger, in particular if the vehicle is situated in front 
or to the rear. 

� Criterion 2: angle between our vehicle and the tracked 
vehicle. For example, if this angle is close to 0 degree or 
to 180 degrees, we can be in the presence of a red 
danger, but only if the distance between us and the 
vehicle is small. 

As soon as the type of danger is determined, it is necessary to 
calculate its uncertainty. To this end, we take two types of 
uncertainties into account: 
� The uncertainty of the track corresponding to the vehicle 

tracked. This uncertainty is represented by the mass 
function mtrack  t 

� The uncertainty of the danger represented by the mass 
function mtype  

This uncertainty is obtained notably by propagation of the 
low level uncertainties calculated previously (figure 11). 
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So, each vehicle around us is characterised by a danger 
(green, orange, red) with an associated uncertainty through a 
mass set mdanger on a binary frame of discernment 
Θdanger={YES, NO}. 
 

 

 

Fig. 11. Propagation of the uncertainties from low level to compute 
the danger uncertainty 

V. EXPERIMENTAL RESULTS 

All the results obtained by our experiment of cooperation for 
the assistance to driving are illustrated by figure 12. This 
figure shows the results obtained by telemetric acquisitions 
and from actual omnidirectional images. 
            

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 12. Results of a detection of the surrounding vehicles  
In the example of the figure 12, two vehicles situated behind 
our vehicle are detected by the laser telemeter. The first 
vehicle is situated at a distance of 3 metres and the second at 
a distance of 5 metres. 
These vehicles are detected by the omnidirectional vision 
among which the one is partially detected. So, four vehicles 
situated in front are detected by the vision. For the fusion of 
both types of detection, that of the back is precise (estimated 
error is weak), that made by the active contours is less precise 
where from the thickness of the "red square". In this situation, 
the detected vehicles are too close and the distances of safety 
are not respected, it brings to the ignition of the alarm of 
"orange" level. 

VI. CONCLUSION AND PERSPECTIVES 
In this article we have shown an extension to what is 

currently on offer by car manufacturers in their new systems 
of assistance to driving (systems which have been marketed 
for two years). Indeed, the various solutions which we 
described in our introduction show the usefulness of these 
systems for the lane following in traffic, but in no case do 
they take account of surrounding vehicles. In our system, we 
have suggested extending the use of the LDW systems by 

combining them with the immediate road configuration 
(number of traffic lanes + immediate traffic), the main and 
original sensor being used based on omnidirectional vision 
which has the added advantage of showing the road in one 
view over 360 degrees. This information, combined with the 
telemetry laser, allows the information sensor to be 
considered supplementary, or even redundant . The use of the 
theory of evidence for the fusion of multi-criteria data has 
allowed the process of identification of the immediate danger 
to become reliable. 

In our future work, we should, at the low processing level, 
apply Gradient Vector Flow (GVF) analytical methods of 
pressure to identify the place where the initial points of the 
active contour in the following image have to be positioned in 
a surer and more restrictive way. Indeed, at present, between 
two successive images, a rather imprecise algorithm is used to 
increase the future active contour which historically 
surrounds the vehicle. Also, the choice of the suitability of the 
fusion criteria could be revised with the aim of improving the 
management of the alarms. At the moment we have to 
envisage three cases of well identified figures but, according 
to the precision of the criteria, these solutions could be 
increased to better discern all the risk situations. 

a/  Front display c/ 2D  reconstruction 
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