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ABSTRACT

This paper presents a new fusion strategy that mixes Interval
Analysis techniques and particle filters for data fusion and state es-
timation purposes occurring in many robotic perception problems.
The method requires a small number of ”box particles”. This, in
fact, answers one of major problems when using particle filters
techniques. We report the case study of a land vehicle localization
problem and we make a comparison based on real data between
the performance of a particle filter and the new developed strategy.

Keywords: State filtering and estimation, sensor fusion,
particle filter, Kalman filter, interval analysis.

1. INTRODUCTION

In many robotics applications, the perception function
is essential to accomplish intelligent tasks by monitoring
the environment in the face of uncertainty and variabil-
ity. Usually, for many problems like obstacle detection,
localization or Simultaneous Localization and Map Build-
ing (SLAM) [8], the perception system of a mobile robot
relies on the fusion of several kinds of sensors like video
cameras, lidars, dead-reckoning sensors, etc. The multi-
sensor fusion problem is popularly described by state space
equations defining the interesting state, the evolution and
observation models. Based on this state space descrip-
tion, the state estimation problem can be formulated as a
state tracking problem. To deal with this state observa-
tion problem, when uncertainty occurs, the probabilistic
Bayesian approaches are the most used in robotics, even if
new approaches like the set-membership one (also known as
bound errors approach) [5] or Belief theory (also known as
Dempster-Shafer) [9] have proved themselves in some ap-
plications. The Extended or Unscented Kalman filters have
demonstrated their efficiency in many real applications. Re-
cently, Particles Filters (PF) have been extensively stud-
ied [3] [4] because of their ability to deal with non linearity,
non gaussianity and multimodal density functions. Never-
theless, particle filter methods suffer from some drawbacks.
These methods are very sensitive to non consistent measures

or large measurement errors. In fact, the efficiency of the
filter depends mostly on the number of particles used in the
estimation process and on the propagation function used to
re-allocate weights to these particles at each iteration. If
the imprecision (i.e. bias and noise) of the available infor-
mation is high, and in order to explore a significant part
of the state space, the number of particles has to be very
large which induces complexity problems non adapted to a
real-time implementation. Several works try to combine ap-
proaches in order to overcome these shortcomings (see for
example [6] and references therein). Other works use statis-
tical approaches to increase the efficiency of particle filters
by adapting the size of sample sets during the estimation
process [4].

In this paper, we propose a new state estimation scheme
called Box Particle Filter (BPF) which tries to reduce these
drawbacks, particulary the particle number, while conserv-
ing the particle filters advantages by using ”box particles”
instead of ”discrete particles”. The key idea is to use In-
terval Analysis, constraint propagation techniques and to
model noises by bounded errors. This is reinforced by two
possible understandings of an interval in one dimension:

1. An interval represents infinity of particles continuously
distributed on the interval.

2. An interval represents a particle imprecisely located in
the interval.

In a BPF, the PF paradigm is followed except that no ran-
dom noise is generated as it is usually done in Monte Carlo
filtering [6]. There are also similarities between the BPF
and nonlinear bayesian estimation using Gaussian sum ap-
proximations in that any set can be approximated by a sum
of boxes [1].

2. Sketch of particle filtering

Many multisensor fusion problems can be described by
a state space representation:

{
xk+1 = f (xk,uk,vk)

yk = g(xk,wk)
(1)
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where f : R
nx ×R

nu ×R
nv −→ R

nx is a possibly non-linear
function defining the state at time k + 1 from the previ-
ous state at time k, the input uk and an independent iden-
tically distributed process noise sequence vk,k ∈ N. We
note by nx, nu and nv, respectively, the dimensions of the
state, the input and process noise vectors. The function g :
R

nx×R
nw −→R

ny is a possibly non-linear function defining
the relation between the state and the measurement at time
k, wk,k ∈ N is an i.i.d measurement noise sequence. ny, nw

are dimensions of the measurement and measurement noise
vectors, respectively. The states and the measurements up
to time k will be represented by Xk = {xi, i = 1, · · · ,k} and
Yk = {yi, i = 1, · · · ,k}, respectively.

The sketch of a particle filter algorithm is as follows. Ini-
tially, all particles have equivalent weights attached to them.
To progress to the next time instance, two steps are per-
formed in sequence. First, at the prediction step, the state
of every particle is updated according to the motion model.
An accurate dynamical model is essential for robust prop-
erties of the algorithm and for achieving real-time perfor-
mance. Next, during the measurement step, new informa-
tion that became available about the system is used to adjust
the particle weights. The weight is set to be the likelihood
of this particle state describing the true current state of the
system, which can be computed, via bayesian inference, to
be proportional to the probability of the observed measure-
ments given the particle state (assuming all object states are
equiprobable). The sample states are then redistributed to
obtain uniform weighting for the next algorithm iteration
by resampling them from the computed posterior probabil-
ity distribution. At any time, some characteristics (position,
speed etc.) can be directly computed, if desired, by using
the particle set and weights as an approximation of the true
probability density function.

3. Interval analysis
We briefly present interval analysis and we describe the

constraints propagation technique which is also called con-
sistency technique in some research works.

3.1. Elements of interval analysis

A real interval, denoted [x], is defined as a closed and
connected subset of R, and a box [x] of R

nx as a cartesian
product of nx intervals: [x] = [x1]× [x2] · · ·× [xn] =×nx

i=1[xi].
Usually, interval analysis is used to model quantities which
vary around a central value within certain bounds.

When working with intervals, one should introduce the
inclusion function [ f ] of a function f , defined such that the
image by [ f ] of an interval [x] is an interval [ f ]([x]) [7]. This
function is calculated such that the interval enclosing the
image set is optimal. One should also extend all elemen-
tary arithmetic operations like +, -,*,/, etc to the bounded
error context and extend usual operations between sets of
R

n, e.g., ⊂,⊃,∩, . . .

Different algorithms, called contractors, exist in order to
reduce the size of boxes enclosing the solutions. For the fu-
sion problem considered, we have chosen to use constraints
propagation techniques [7], because of the great redundancy
of data and equations.

3.2. Constraints Satisfaction Problem (CSP)

Consider a system of m relations fm linking variables
xi of a vector x of R

nx by a set of equations of the forms:
f j(x1, . . . ,xnx) = 0, j = 1 . . .m, which can be written in a
compact way as f (x) = 0, where f is the cartesian product
of the f j’s.

Definition 1 (Constraints Satisfaction Problem). A Con-
straints Satisfaction Problem H is the problem which gath-
ers a vector of variables x from an initial domain D and a
set of constraints f linking the variables xi of x.

Note that under the interval framework, D = [x] =
×nx

i=1[xi]. The CSP consists on finding the values of x which
satisfy f (x) = 0. The solution set of the CSP will be de-
fined as S = {x ∈ [x] | f{x} = 0}. Note that S is not nec-
essary a box. Under the interval framework, solve the CSP
is interpreted as finding the minimal box [x

′
]⊂ [x] such that

S⊂ [x
′
].

3.3. Waltz’s Contractor

Definition 2 (Contractor). A contractor is defined as an op-
erator used to contract the initial domain of the CSP, and
thus to provide a new box [x

′
]⊂ [x] such that S⊂ [x

′
].

There are different kinds of methods to develop contrac-
tors. Each of these methods may be adapted to some spe-
cific CSPs and not to others. The method used in this paper
is the Waltz’s algorithm [7] which is based on the constraint
decomposition on primitive ones and on the use of forward-
backward propagation (FBP) technique [7] for each of prim-
itive constraints. A primitive constraint involves only an
arithmetic operator or a usual function (cos, exp, etc.). The
principle of the Waltz’s contractor is to use FBP for each
constraint, without any a priori order, until the contractor
becomes inefficient. The use of this contractor appears to be
specially efficient when one has a redundancy of data and
equations. In fact, this is the case for the data used in sec-
tion (5).

The principle of FBP is explained via the following ex-
ample. Let us consider the constraint z = x.exp(y). At first,
this constraint is decomposed into two primitive constraints,
a = exp(y) and z = x.a (Where a is an auxiliary variable
initialized by [a] = [0,+∞[). By using the inclusion func-
tions [exp] and [(exp)−1] = [ln], the FBP works as follows:
1−Forward propagation,we have F1: [a] = [a]∩ [exp]([y])
and F2: [z] = [z] ∩ [x].[a], 2−Backward propagation,
B3: [x] = [x]∩ ([z]/[a]), B4: [a] = [a]∩ ([z]/[x]) and B5: [y] =
[y]∩ [ln]([a]).
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Note that Waltz’s algorithm is independent of the non-
linearities and provides a locally consistent contractors [7].

4. Box particle strategy

For real data measurements, one usually receives differ-
ent answers when repeating the same measurement. This
variation is due to stochastic error and statistical methods
are used to model maximum information from the results.
In many applications, the interval framework seems to be a
good methodology to deal with non-white and biased mea-
surements specially when these measures vary around a
central value within certain bounds. This approach is used
in the following to introduce an interval based multisensor
data fusion approach.

Instead of point particles and probabilistic models for the
errors and for the inputs, the key idea for BPF is to use box
particles and a bounded error model.

4.1. Initialization

In order to explore the state space, one can split the state
space region under consideration in N boxes {[x(i)]}N

i=1 with
empty intersection and associate equivalent weight for each
of them. A first advantage expected with this initialization
using boxes is the possibility to explore the space with a
reduced number of particles.

4.2. Propagation or prediction step

In this step, the state of every box particle is updated
according to the evolution model thanks to interval analy-
sis tools. Knowing the box particles {[x(i)]}N

i=1 and the in-
put {[u(k)]} at step k, the boxes at step k + 1 are built using
the following propagation equation: [xi

k+1] = [ f ]([xi
k], [uk]),

where [ f ] is an inclusion function for f . The interesting
propriety one can notice here is that, in order to propagate
the box particles, the bounded error method is used without
introducing any noise.

4.3. Measurement update

In this step, one uses the new measurement to adjust the
particle weights and contract the boxes.
4.3.1. Innovation. Innovation for BPF is a quantity which
should indicates the proximity between the real and the pre-
dicted measure boxes. In the bounded error framework, this
quantity can be evaluated as the intersection between these
two boxes. Thus, for all box particles, i = 1 · · ·N, we have to
predict box measurements using [zi

k+1] = [g]([xi
k+1]), where

[g] is an inclusion function for g. The innovation here con-
sists on the intersection with the box real measure [yk+1].
This intersection is calculated as [ri

k+1] = [zi
k+1]∩ [yk+1].

4.3.2. Likelihood. Under the bounded error framework,
it’s obvious to conclude that, a box for which the pre-
dicted measure box hasn’t an intersection with the real mea-
sure box should be penalized and a box particle for which

the predicted measure is included in the real measure box
should be favorite. This lead us to construct a measure of

the box likelihood as: Ai = ∏p
1 Ai( j) where Ai( j)=

|[ri
k+1( j)]|
|[zi

k+1( j)]| ,

p is the dimension of the measure and |[X ]| is the width of
[X ].

4.3.3. Box particles contraction. This step, used only for
box particles, doesn’t appear in the particle filter algorithm.
In fact, in the particle filter algorithm, each particle is prop-
agated without any information about the variance of it’s
position. Note that the weight of the particle give us only an
information about certainty when using this particle. In an
opposite manner, after been propagated, the width of each
box particle is assumed to take into account the impreci-
sion caused by the model errors and inputs imprecisions.
In order to conserve a judicious width of each box, one
should use contraction algorithms which eliminate the non
consistent part of the box particle with respect to the box
measure [5]. This is in fact similar to the correction step
of Kalman filtering when the variance-covariance matrix is
corrected using the measure [6].

Thus, if the innovation [ri
k+1] is not empty, then we

should contract the box particle [xi
k+1] using the intersection

box [ri
k+1] and Waltz’s algorithm to obtain a new box parti-

cle [xi
k+1]

new. Else, [xi
k+1]

new = [xi
k+1] and the box particle

stays unchanged.

4.3.4. Weights update. The update of the weights is con-
structed by multiplying the previous weight by each box
likelihood as: ω i

k+1 = (∏p
1 Ai( j))ω i

k = Aiω i
k

4.4. Normalization

This step is necessary in order to use normalized weights

so that their sum is equal to one: ω i
k+1←−

ω i
k+1

∑N
j=1 ω j

k+1

4.5. Estimation

The state can be estimated by the center means of the
weighted box particles as: x̂k = ∑N

i=1 ω i
kC

i
k, where Ci

k is the
center of the box particle i. One can use also a maximum
weight estimate, i.e the state estimate will be the center of
the box particle with the larger weight. A pessimist confi-
dence in the estimation will be a very well determined area
consisting in a box which contain all the possible weighted
boxes. Hence, one can assign for this box the noun of en-
closing box. Note that the estimation x̂k is calculated by
using N vectors Ci

k. Thus, another confidence in the estima-
tion based on the confidence of each Ci

k can be calculated
with the expression: P̂k = ∑N

i=1 ω i
kPi

k, where Pi
k is the partial

confidence generated when using each box particle center
Ci

k. In practice, Pi
k can be taken as the half width of each

box particle. Thus, P̂k = ∑N
i=1 ω i

k
|[xi

k]|
2 .
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4.6. Resampling

After some iterations, only few box particles may be
likely and the rest may have weights close, or even exactly
equal to zero. Thus, one has to sample box particles accord-
ing to their weights. Box particles that have high weights
are more likely to survive, whereas those with lower weights
are less likely. The resampling can be efficiently imple-
mented using a classical algorithm for sampling N ordered
independent identically distributed variables [6]. The prob-
lem of the resampling is that the resulting samples are de-
pendent since there is a big chance that the samples will be
drawn from a few number of ancestors. In the case of parti-
cle filter algorithm, instead of representing the smooth prob-
ability density as they should, particles are clustered into
groups. Therefore, some artificial noise should be added to
the resampled particles in order to lessen the dependency.
This step avoids the particle filter to fall down. One can
use the same strategy for box particles by adding an artifi-
cial noise to the bounds of the box. Moreover, regarding the
possibilities given by boxes properties, other techniques of
resampling can be considered. For example, in order to ob-
tain independent and small boxes around regions with high
likelihoods, it’s easily perceived that we can divide each box
by the correspondent number of realization after sampling.
Nevertheless, in the bounded error area, the choice of the
number of divisions that one have to do for each dimension
constitutes an open problem under study [2]. After the re-
sampling step, we have to assign the same weight for all box
particles.

Note that an estimation of the effective sample size Ne f f

is given by [6]: Ne f f = 1
∑N

i=1(ω i
k)

2 . The resampling step can

be performed if the effective number of samples is less than
some threshold Nth which is determined experimentally.

A summary of the BPF algorithm is given in Figure 1.

5. Application to dynamic localization using
GPS, a gyro and an odometer

Let consider the localization problem of a land vehicle.
The vehicle frame origin M is chosen at the middle of rear
axle. The elementary rotation and displacement between
two samples can be obtained with good precision uniquely
using a fiber optic gyrometer and the two rears wheels ABS
sensors. Between two sampling instants, elementary ro-
tations of the two rear wheels are integrated by counters.
These values allow calculating the distances travelled be-
tween two samples by the rear wheels. Thus, one can ob-
tain at instant k, the elementary displacement covered by

M, δS,k = δRR,k+δRL,k
2 and its elementary rotation δθ ,k = δ gyro

θ ,k
where δRR,k and δRL,k denote the measured variables with
valued counted between two samples, and δ gyro

θ ,k is a mea-
sure of the elementary rotation given by the gyro. To com-
pute the odometer intervals ([δRR,k] and [δRL,k]), we suppose

1. Initialization

Set k = 0 and generate N boxes {x(i)(k)}N
i=1 with empty

intersection and with same width and weights equal
to 1

N

2. FOR i = 1 · · ·N
3. Propagation or prediction

[xi
k+1] = [ f ]([xi

k], [uk]).

4. Measurement update

• Predicted measurement: [zi
k+1] = [g]([xi

k+1]).

• Innovation: [ri
k+1] = [zi

k+1]∩ [yk+1].

• likelihood: Ai = ∏p
1 Ai( j), where Ai( j) =

|[ri
k+1( j)]|
|[zi

k+1( j)]| .

• Box particle contraction: IF [ri
k+1] �= /0, THEN,

contract [xi
k+1] using [ri

k+1] and Waltz algorithm

to obtain [xi
k+1]

new, ELSE, [xi
k+1]

new = [xi
k+1], ENDIF.

• Weights update: ω i
k+1 = (∏p

1 Ai( j))ω i
k = Aiω i

k

ENDFOR.

5. Weights normalization

FOR i = 1 · · ·N, ω i
k+1←−

ω i
k+1

∑N
j=1 ω j

k+1

, ENDFOR

6. State estimation

x̂k = ∑N
i=1 ω i

kC
i
k. P̂k = ∑N

i=1 ω i
k
|[xi

k ]|
2 .

7. Resampling

Ne f f = 1
∑N

i=1(ω i
k)2

. IF Ne f f < Nth, THEN resample to create N

new particle boxes with the same weights.

8. k = k +1, Goto 2 Until k = kend

Fig. 1. BPF algorithm.

that the covered distance error between two instants tk−1

and tk is less than the covered distance corresponding to one
top of the ABS sensor counter (denoted δABS) with the as-
sumption that the vehicle rolls without slipping. For gyro
interval measurement, thanks to specific static tests, we esti-
mate the maximum of the error which is for the experiments
δ gyro

θ ,k = 3.10−3 degrees. The position and heading angle of
the vehicle which is at time k, [Xk] = [xk]× [yk]× [θk] are cal-
culated in time by using linear and angular velocities thanks
to the following discrete representation:




xk+1 = xk +δS,k cos(θk + δθ ,k
2 )

yk+1 = yk +δS,k sin(θk + δθ ,k
2 )

θk+1 = θk +δθ ,k

(2)

where (xk,yk) and θk represent respectively the vehicle po-
sition and heading angle at time tk. Note here that the width
of each interval should guarantee maximum variation of the
variables between two instants. The measurement of the
position at time consists here in a Global Position System
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(GPS) which is (xGPS,yGPS). The ”longitude, latitude” es-
timated point of the GPS is converted in a Cartesian local
frame and the GPS bounded error measurement is obtained
thanks to the GST NMEA sentence [5]. The width of the
GPS measure box can be quantified using the standard devi-
ation σGPS estimated in real time by the GPS receiver (GST
frame). Thus,

{
[xGPS] = [xGPS−3σGPS,xGPS +3σGPS]
[yGPS] = [yGPS−3σGPS,yGPS +3σGPS]

(3)

The GPS measurement ([xGPS], [yGPS]) is used to initial-
ize the box state position ([x1], [y1]) at instant t1. Note
that we haven’t a direct measure of the heading angle, so
the heading state of the vehicle should be initialized as
[θ1] = [−∞,+∞].

In order to be able to compute estimation errors, we
have used a Thales Navigation GPS receiver used in a Post-
Processed Kinematic mode working with a local base (a
Trimble 7400). This system was able to give reference po-
sitions at 1 Hz sampling rate. Since the constellation of the
satellites was good enough during all the trials, all the kine-
matics ambiguities were fixed. Therefore, a few centimeters
accuracy was reached. The synchronization between this
reference and the outputs of the dynamic localizers (BPF
and PF) has been made thanks to the GPS timestamps. We
have also taken into account the position offsets between
the antennas of the two GPS receivers and the origin of the
mobile frame.

Experiments have been carried out on a test track in Ver-
sailles (France) with our experimental vehicle. The data of
the sensors have been time stamped and logged during sev-
eral tests. We report hereafter the analysis of a 4.7 Km path
with a mean speed of 50 Km/h using a 3GHz Pentium 4 and
a Matlab implementation. The two filters provide outputs at
the frequency of the GPS (5Hz). We use the available data
in order to compare the BPF and the PF. This comparison
is based simultaneously on the accuracy of the estimation
and the guarantee. In addition, a comparison between the
number of particles and box particles for the two algorithms
will be given.

The resampling method used for the BPF consists on
a subdivision strategy. The idea behind the subdivision
resampling becomes from the fact that the manipulation
of interval data gives always a very pessimistic solution
caused by the basic rules of the interval arithmetics and
the phenomenon of wrapping effect when propagate boxes
via models [7]. Thus, in order to obtain a more selective
and precise solution, one can divide the pessimistic box to
several ones which give us the possibility to refine the so-
lution for the next steps. Consequently, the idea consists
first in sampling box particles according to their weights us-
ing for example a classical deterministic algorithm, and sec-
ond in dividing each resampled box to several boxes with a

number equals to the realizations of this box resulting from
the resampling algorithm. This type of resampling refines
the solution around regions with high likelihood and elim-
inates boxes with low weights. Nevertheless, as stated in
section (4.6), one has to determine the number of divisions
to do for each dimension. For example, for the state consid-
ered in the case of the model (2), which is a three variables
state, the box particles will be in R

3. If after the resample
step we conclude that we have to divide a box particle to
four sub-boxes, this will not be a straightforward job since
we can do this by different manners. In our case, we sug-
gest to give the preference to bisect boxes heading angle
[θ ] since we haven’t a direct measure on this variable, but
only the elementary rotation δθ of the mobile. This divi-
sion is firstly performed until the width of the interval on θ
constructing the resampled box is more than a fixed quan-
tity (two degrees for example). For the choice between the
subdivision of intervals on x or intervals on y, we give the
preference to intervals with larger width.

Figure 2 shows the absolute error for GPS (bold black),
BPF (solid blue) and PF (dashed green). As a conclusion,
BPF and PF give equivalent filtering performances. This is
also concluded from the mean square error given in Table 1.
Nevertheless, for the BPF running, we use only 10 box par-
ticles comparing with 3000 particles for the PF. The few
number of box particles explain the slow convergence of the
BPF in the first seconds. The box particles number is very
encouraging for using BPF since one can reduce significa-
tively the particles number (for this application, the factor
is about 300). Table 1 gives the mean of the running time
of one step for each algorithm. Since the output frequency
of each filter is 5 HZ, the running time for BPF satisfy real
time constraints despite the use of interval arithmetic pro-
grams under Matlab and without code optimization. This is
not the case of the PF. Figure 3 shows the interval error for
x and y estimated for GPS (dashed black), BPF (bold black)
and PF (solid blue). For PF, the interval error is calculated
by using 3σ errors bounds around the point estimate. It can
be seen that for this nonlinear problem, the two filters are
consistent. Note that if the interval error contain ”0” then
the interval contains the PPK point.

Figure 4 plots the heading estimated error and the inter-
val errors, in degrees, for BPF (bold black) and PF (solid
blue). The errors on the heading estimation angles provided
by BPF and PF are of the same magnitude. One can con-
clude that BPF is able to reconstruct a non directly mea-
sured variable. Note that the reference heading angle was
built manually from the PPK measurements.

6. CONCLUSION AND FUTURE WORKS

A new algorithm for localization based simultaneously
on particle filters and interval data has been proposed.
The main idea consists on dealing with interval framework
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Fig. 2. Absolute error for GPS (bold black), BPF (solid blue) and
PF (dashed green).
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Fig. 3. Interval errors for x and y for GPS (dashed black),
BPF (bold black) and PF (solid blue).
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Fig. 4. Heading error and interval errors for BPF (bold black) and
PF (solid blue).

GPS PF BPF

mean square error for x 0.134 0.129 0.119
mean square error for y 0.374 0.217 0.242
particle number - 3000 10
one step running time - 666 ms 149 ms

Table 1. Comparison of PF and BPF.

which seems to be a good methodology to use with non-
white and biased measurements. The experiments on real
data show the feasibility and the effectiveness of the method
compared with PF. In addition, the new algorithm seems
to be well adapted to real time applications which is not
the case for PF. One of the perspectives of this research is
to create other resampling strategies by using properties of
the interval framework. In our opinion, BPF is particularly
adapted when using map data with rectangular roads. In-
deed, in this case the boxes are adapted to calculate an in-
tersection with the map. Thus, future works will consist on
applying the BPF algorithm to Map Matching problems.
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