
Tectonic SAM:

Exact, Out-of-Core, Submap-Based SLAM

Kai Ni∗, Drew Steedly†, and Frank Dellaert∗

∗College of Computing, Georgia Institute of Technology, Atlanta, GA 30332
†Microsoft Live Labs, Redmond, WA 98052

{nikai,dellaert}@cc.gatech.edu, steedly@microsoft.com

Abstract— Simultaneous localization and mapping (SLAM)
is a method that robots use to explore, navigate, and map an
unknown environment. However, this method poses inherent
problems with regard to cost and time. To lower computation
costs, smoothing and mapping (SAM) approaches have shown
some promise, and they also provide more accurate solutions
than filtering approaches in realistic scenarios. However, in
SAM approaches, updating the linearization is still the most
time-consuming step. To mitigate this problem, we propose a
submap-based approach, Tectonic SAM, in which the original
optimization problem is solved by using a divide-and-conquer
scheme. Submaps are optimized independently and parameter-
ized relative to a local coordinate frame. During the optimization,
the global position of the submap may change dramatically,
but the positions of the nodes in the submap relative to the
local coordinate frame do not change very much. The key
contribution of this paper is to show that the linearization of
the submaps can be cached and reused when they are combined
into a global map. According to the results of both simulation
and real experiments, Tectonic SAM drastically speeds up SAM
in very large environments while still maintaining its global
accuracy.

I. INTRODUCTION

Simultaneous localization and mapping (SLAM) is a

method to help robots explore, navigate, and map an un-

known environment [22], [24]. It is well known that tradi-

tional methods for SLAM based on the extended Kalman

filter (EKF) suffer computational complexity problems when

dealing with large-scale environments, as well as inconsis-

tencies for non-linear SLAM problems [16].

Because of this tremendous computation, growing interest

has been noticed in smoothing approaches. A typical ap-

proach is simultaneous smoothing and mapping (SAM) [5],

also called full SLAM [25]. Instead of considering only robot

trajectories [3], [21], [18], SAM attempts to estimate the

entire set of robot poses and features in the environment. It

has the advantage of providing higher quality solutions often

at lower cost [24], [26]. It has already been demonstrated

that SAM can be used in real-time [17]. SAM is also the

key technology used in structure from motion (SFM), e.g.,

3D photo tourism. In this paper, we will propose a new

algorithm on the basis of SAM that enhances the performance

by solving the large SLAM problems in a divide-and-conquer

manner.

In many applications of SLAM, the artifact of interest

Fig. 1. The optimized Victoria Park data set with 153 landmarks, 6969
robot poses, and 3626 bearing-range measurements.

is the map itself, e.g., for urban reconstruction, search-and-

rescue operations and battlefield reconnaissance. In order to

map large-scale environments, we can often quite accurately

reconstruct parts of the world without necessarily knowing

the exact metric relationships with other parts of the world.

Although a canonical example for this intuitively appealing

idea is offices and meeting rooms in an indoor office envi-

ronment, the idea applies equally well to large-scale outdoor

environments such as cities.

In this paper, we introduce a new approach to map large-

scale environments. The basic idea of our algorithm is to

maintain a set of submaps whose internal structures are

relatively well known but whose relative poses are relatively

fluid and can move with respect to one another. We name the

algorithm Tectonic SAM (T-SAM) because of the analogy to

the geological phenomenon of plate tectonics.

Many authors have advocated the use of submaps [19],

[23], [27], [2], [8], [9], [6], [12], but all make approximations

so that the final product does not use all of the available

information. An exception is the compressed filter [14],

which uses a submap around the current position of the robot

but then periodically integrates it into a global map. However,

2007 IEEE International Conference on
Robotics and Automation
Roma, Italy, 10-14 April 2007

ThA1.4

1-4244-0602-1/07/$20.00 ©2007 IEEE. 1678

even the compressed filter yields inconsistent maps as it is

still a filtering paradigm [16]. In contrast to those approaches,

Tectonic SAM will yield the exact solution under mild as-

sumptions. Given that we are smoothing rather than filtering,

and under the assumption that the variables in the submap are

sufficiently constrained by local measurements, our approach

will yield the exact maximum likelihood solution for even

very large full SLAM problems.

As stated in [5], linearization is the most time-consuming

task in the entire smoothing process. Due to the nonlinear na-

ture of typical SLAM problems, smoothing approaches have

to relinearize the measurement equations and re-factorize

at every iteration. Tectonic SAM solves this problem by

introducing base nodes to capture the global positions of

submaps. The algorithm first solves each submap locally by

updating the linearization using the new estimation in each

iteration. Then a global alignment follows to compute the

relative location of the submaps. Given the fact that the

submaps will only slightly change after incorporating all local

constraints, the linearization points of the submap variables

can be fixed in this stage. As a result, most linearization

calculations need to be done only in local submaps while

they can be kept constant after that.

The closest related efforts to our approach are the star-

node idea in [9] and the tree-map algorithm by Frese [10],

[11]. The first graphical SLAM approach in [9] includes a

mechanism that compresses the graph in a way very similar

to what we will propose below. However, their approach is

based on EKF and requires additional tweaking to handle spe-

cial cases, e.g., loop closing. The second approach [11], [12]

uses a binary-tree to perform integration and marginalization,

leading to an impressive algorithm that has the ability to

deal with very large maps. However, multiple approximations

are employed to reduce the complexity, while our approach

solves the full and exact problem and therefore allows

relinearization of all variables at any time. In [13], once

variables are combined in a node, they cannot be separated

again. In this way, several different linearization points are

propagated in different factors, leading to inconsistency of

the final result.

Instead of employing a tree-based data structure, we use

a k-way cut as a mechanism to guide computation without

making any representational compromises. We made this

choice because the error on the linearization points is mostly

limited in this case, which will be explained in detail later.

In addition, our approach is more generally stated in terms

of graphs and their associated matrices: we do not differ-

entiate between landmarks and poses. Unlike most other

approaches, our approach maintains local maps explicitly,

which is straightforward and crucial in various applications.

II. SMOOTHING AND MAPPING

A natural representation for the SLAM problem is a factor

graph, a bipartite graph containing two types of nodes:

unknowns, representing unknown landmarks and poses, and

factors corresponding to landmark measurements and odom-

l1

l2

l3

l4

l5

l6

l7

l8

x0 x1 x2 x3

Fig. 2. The factor graph for a typical SLAM problem. The cyan
circles are the robot trajectory and the blue squares are the landmarks in
the environment. The filled black nodes represent the factors induced by
landmark measurements and odometry.

etry. An example of factor graph is shown in Figure 2 and

will be used throughout the paper to explain our approach.

In this example we assume that, without loss of generality,

the landmarks and bearing/range measurements are 2D. The

algorithm can equally be applied in a SFM setting to cameras

and 3D environments.

The smoothing approach [7], [15] of optimizing over all

unknown robot poses in addition to features in the environ-

ment is also called SAM in robotics and bundle adjustment in

photogrammetry [26]. The advantage of this process is that it

produces joint optimal parameters instead of the inexact ones

obtained by a non-linear filtering scheme, which inevitably

freezes incorrect linearization points. In particular, we seek

the maximum a posteriori (MAP) estimate for the robot poses

X = {xi | i ∈ 0...M} and the map L = {lj | j ∈ 1...N},

given the measurements Z = {zk | k ∈ 1...K} and the

control inputs U = {ui | i ∈ 1...M} (readers may refer to

[5] for more detailed derivations). Under the assumption of

independent, zero-mean, normally distributed measurement

noise, the MAP estimate is the minimum of a non-linear

least-squares criterion:

M
∑

i=1

‖fi(xi−1, ui) − xi‖2

Λi
+

K
∑

k=1

‖hk(xik
, ljk

) − zk‖2

Σk
(1)

where fi(.) is a motion model with associated covariance Λi,

and hk(.) a measurement model with associated covariance

Σk. The notation ‖.‖2

Σ
stands for the squared Mahalanobis

distance with covariance matrix Σ.

The terms in Equation 1 can be linearized as

fi(xi−1, ui) − xi

≈
{

fi(x
0
i−1

, ui) + F i−1

i δxi−1

}

−
{

x0
i + δxi

}

(2)

and

hk(xik
, ljk

) − zk

≈
{

hk(x0
ik

, l0jk
) + Hik

k δxik
+ J

jk

k δljk

}

− zk (3)

where F i−1

i is the Jacobian of fi(.) evaluated at x0
i−1

and

Hik

k , J
jk

k are the Jacobians of hk(.) with respect to xik
, ljk

and evaluated at (x0
ik

, l0jk
).

ThA1.4

1679

Fig. 3. The corresponding block-structured matrix A′ for the factor graph
in Figure 2. The red-shaded rows are odometry measurements, and the blue-
shaded ones are landmark measurements.

Algorithm 1 Solving the least-squares system in Equation 5

with reordering

• Reorder A
π→ Aπ

• Repeat

– Linearize the system and evaluate Jacobian A

– Cholesky factorization of A: AT A → RT R

– Solve RT y = AT b

– Solve Rθ = y

• Until convergence

• Backorder solution θπ π→ θ

By inserting Equations 2 and 3 into Equation 1, we obtain

δ∗ = argmin
δ

{

M
∑

i=1

∥

∥F i−1

i δxi−1 + Gi
iδxi − ai

∥

∥

2

Λi

+
K

∑

k=1

∥

∥

∥
Hik

k δxik
+ J

jk

k δljk
− ek

∥

∥

∥

2

Σk

}

(4)

where we define Gi
i

∆
= −Idi

, ai
∆
= x0

i − fi(x
0
i−1

, ui) and

ek
∆
= zk − hk(x0

ik
, l0jk

).
By combining the Jacobians into matrix A and the vectors

ai and ek into right-hand side (RHS) vector c, we obtain

δ∗ = argmin
δ

‖Aδ − c‖2

2
(5)

We will particularly be interested in the block structure of

matrix A, which we denote as A′. As shown in Figure 3,

for our small example, the columns of matrix A′ correspond

to the unknowns {x0;x1;x2;x3; l1; l2; l3; l4; l5; l6; l7; l8} and

each row represents a measurement. The first three rows

correspond to the odometry, while the three groups of four

rows below them correspond to landmark measurements at

poses x0, x1, x2, and x3, respectively.

An efficient solution to SAM uses a blend of numerical

methods and graph theory. From a linear algebra point of

view, solving (5) can be done through Cholesky factorization

of the information matrix I = AT A, which is summarized

in Algorithm 1. As the algorithm is based on matrix square

roots, this family of approaches will be referred to as square

root SAM (
√

SAM) [5].

From a graphic-theoretic point of view, the factorization is

equivalent to variable elimination, in which we eliminate one

node at a time. Eliminating a node pi introduces dependencies

on the adjacent nodes, i.e., all the nodes that are adjacent

to pi have to be fully connected into a clique. In matrix

terminology, these extra edges correspond to the non-zero

fill-in. The more fill-in, the slower factorization will be,

and different variable orderings may yield dramatically more

or less fill-in. Since finding an optimal ordering is NP-

complete, various algorithms have been developed to find an

approximately optimal ordering quickly [20], [1], [4]. The

most widely used are known as minimum degree algorithms

(MD). One of the algorithms in this family is approximate

minimum degree (AMD) ordering [1], [4], which collects

nodes into cliques and eliminates the least constrained ones.

We have found empirically that AMD, the ordering used in

this paper, is slightly faster than other MD algorithms.

III. TECTONIC SAM

In Tectonic SAM, we employ a divide-and-conquer ap-

proach and partition the network of nodes into submaps.

First, each submap is independently optimized using non-

linear least-squares. We then solve the entire smoothing and

mapping problem by aligning the submaps.

A key element of our approach is that each submap main-

tains its own base pose to define a local coordinate system.

Poses and landmarks inside each submap are parameterized

relative to this base pose rather than the global coordinate

frame. We assume that the local trajectory and landmarks in

a submap contain enough information to obtain both a good

estimate and a linearization point.

Since we use a local coordinate system, the linearization

point of the nodes in the submap remains valid even when

the base pose undergoes large transformations. Therefore, the

only measurements that are re-linearized are ones that span

submaps and hence involve the base poses of at least two

submaps.

We align the submaps by iteratively optimizing only the

nodes in the separator, which are the nodes connected to the

measurements spanning submaps. For example, imagine a

pair of rooms, joined by a hallway, each room corresponding

to a submap, and the nodes in the hallway that see through

both rooms are in the separator. By caching the factorization

of each submap, the separator optimization is very efficient.

After the separator converges, we finally update the nodes

in each submap by back-substitution. Again, the cached

factorization of the submaps is employed.

A. Submap Building

We partition the factor graph into P submaps, denoted as

{Mp | p ∈ 1...P}, with each submap containing connected

pose nodes and landmark nodes. In Figure 4, we apply a

ThA1.4

1680

l1

l2

l3

l4

l5

l6

l7

l8

x0 x1 x2 x3

Fig. 4. The factor graph in Figure 2 is partitioned into the two submaps.
Each submap is indicated by a colored rectangle boundary.

Fig. 5. The block structure of the Jacobian in Figure 3 with rows ordered
according to the measurement types and the submap indices. From top to
bottom, the shaded areas represent Z1, Z2, and Z1,2.

vertical cut to our example problem to generate two submaps

M1 and M2.

We categorize measurements as either intra-measurements

Zp or inter-measurements Zp,q. Intra-measurements Zp

are the set of measurements that involve only the

nodes in submap Mp, and the inter-measurements are

the set Zp,q that have dependencies on both Mp and

Mq. In Figure 4, the inter-measurements are Z1,2 =
{ux1,x2

, zx1,l5 , zx1,l6 , zx2,l3 , zx2,l4}, and all other measure-

ments make up the intra-measurements Z1 and Z2. The intra-

measurements are iteratively relinearized when aligning the

submaps locally. The linearization of the intra-measurements

is then fixed when optimizing the separator, and only the

inter-measurements are linearized during each iteration.

From a matrix point of view, the rows of the block-

structure A′ can be ordered in a way such that Z1 and Z2

(rows 1 to 14 in Figure 5) are placed above Z1,2 (rows 15 to

19). As we are going to optimize the submaps one by one, the

intra-measurements (rows 1 to 14) are internally ordered with

respect to their submap indices p, e.g., first Z1 (red-shaded

area) and then Z2 (blue-shaded area).

We also define boundary variables and non-boundary

variables with respect to the roles that variables play in the

measurements. Variables are boundary if they are involved in

Fig. 6. The subsystems in two submaps. Their columns Vp and Sp are
ordered by AMD and covered by red and blue shading.

at least one inter-measurement and non-boundary otherwise.

Thus, each submap Mp is made up of two sets: a non-

boundary variable set Vp and a boundary variable set Sp,

such that

Mp = Vp ∪ Sp (6)

In Figure 4, we have V1 = {x0; l1; l2}, V2 = {x3; l7; l8},

S1 = {x1; l3; l4}, and S2 = {x2; l5; l6}.

B. Submap Optimization

Each submap Mp can be optimized locally and indepen-

dently only using intra-measurements. The optimization of

every single submap is simply a small-scale
√

SAM problem

which can be written as

ApδMp = cp (7)

where Ap and cp are corresponding parts of A and c in

Equation 5 and contain the columns only involved in Zp.

In order to allow re-use of the linearization point of the

intra-measurements, the columns of Ap corresponding to the

boundary variables are ordered last, as follows:

[

AVp
ASp

]

[

δVp

δSp

]

= cp (8)

As always, choosing a good column ordering is important, es-

pecially if the submaps contain many variables. As discussed

in Section II, we use AMD to obtain a good ordering of both

Vp and Sp. The block-structure of the re-ordered matrices Ap

in Equation 7 are shown in Figure 6.

Note that after computing the Hessian and its Cholesky

factorization, the system of equations being solved is
[

Rp Tp

0 Up

] [

δVp

δSp

]

=

[

dp

dUp

]

where
{

dp; dUp

}

is obtained by solving

[

Rp Tp

0 Up

]T [

dp

dUp

]

= cp

Since the separating set variables correspond to the lower

right block of the Cholesky factor, the system of equations

involving only variables in the boundary variable set can be

extracted trivially for later use in the separator optimization:

UpδSp = dUp

ThA1.4

1681

b1 b2

l1

l2

l3

l4

l5

l6

l7

l8

x0 x1 x2 x3

Fig. 7. Two base nodes b1 and b2 are added to the partitioned graph in
Figure 4. Inter-measurements Z1,2 are shown in yellow.

Fig. 8. The subsystem in the separator. Its columns S are also ordered by
AMD.

After an individual submap is optimized to convergence,

a final linearization and factorization is computed at the

optimized submap state and passed on to the separator

optimization. In order to ensure that the linearization point

remains valid as the submaps are being aligned, we parame-

terize the submap nodes relative to a local coordinate frame.

More specifically, this is accomplished by assigning a base

node bp to each submap Mp. All the nodes x in Mp are

represented as a relative value x′

i with respect to bp:

xp = bp ⊕ x′

p

Here x can be either a robot pose or a landmark. The set of

all base nodes is defined as B = {bi | i ∈ (1, p)}.

The result of creating base nodes for both submaps in

our example problem is shown in Figure 7. Each inter-

measurement connects the two boundary variables and the

two base nodes of the corresponding submaps. For instance,

in Figure 7, the odometry ux1,x2
factor connects the four

nodes x1, x2, b1, and b2.

By choosing the parameterization in this way, large global

motions of the submaps may significantly affect the lineariza-

tion point of the inter-measurements, but the linearization

point of the intra-measurements will be relatively unaffected.

C. Separator Optimization

Once all the submaps are aligned internally, they are next

assembled and optimized. Aligning the submaps and opti-

mizing the separator variables is no longer simply a standard√
SAM problem since the linearization of the submaps is

cached instead of recomputed at each iteration. The separator

S is the set of all nodes connected to inter-measurements,

indicating that it contains all boundary variables Sp and base

nodes bp:

S = S1 ∪ · · · ∪ SP ∪ B

As we did with the submaps, we use AMD to order S and

we only refer to the reordered S in the remaining paper. In

our example problem, the resulting ordered submap variables

are S = {l3; l4; l5; l6; b1; b2;x1;x2}.

By linearizing the inter-measurements, we obtain the fol-

lowing system of equations

ASδS = cS (9)

which is depicted in Figure 8. These measurements are

the only ones relinearized at each iteration of the separator

optimization.

The full system of equations is obtained by combining the

linearized submap equations with (9). To do that, the update

matrices Up and dUp
have to share the same column ordering

as AS . This is achieved by reordering and inserting all-zero

columns, resulting in the update matrices Ũp and d̃Up
. The

full system of equations can then be expressed as

Ũ1

...

ŨP

AS

δS =

d̃U1

...

d̃UP

cS

(10)

The boundary nodes in the separator keep their values from

the submap optimization and the base nodes have to be

initialized, for example, by using odometry.

Since the update matrices Ũ =
{

Ũ1; . . . ; ŨP

}

do not

change from iteration to iteration, the Hessian matrix in the

Levenberg-Marquardt optimization is calculated as follows:

√
λI

Ũ

AS

T

√
λI

Ũ

AS

 = AT
SAS + λI + ŨT Ũ

where ŨT Ũ is calculated only once. Similarly, for the right-

hand-side of Equation 10, we have

√
λI

Ũ

AS

T

0
dU

cS

 = AT
S cS + ŨT dU

where ŨT dU is fixed. Although we still need to generate

AS every time, the algorithm still has more than 50% time

savings considered that Ũ is bigger than AS in most test

cases.

D. Back-Substitution

Since Sp was modified while optimizing the separator,

the final step in the algorithm is to back-substitute and

update the submaps. Just as they can be initially optimized

independently, the final update of each submap can be done

independently. The update step for VP , given the update step

for the separator δSP , is obtained by solving

ThA1.4

1682

RP δVP = dP − TP δSP (11)

where δSP is the difference between the linearization point

and the final separator value δSp = S0
p −SN

p . The final value

V̂p = V
wp

p − δVp for the non-boundary nodes in the submap

Vp is then obtained.

E. Summary

In this section, we will summarize the T-SAM algorithm

we discussed above, and more importantly, we will show the

ultimate matrix system in T-SAM, which may give readers a

good intuition.

In T-SAM, a base node is assigned to each partitioned

submap. By defining the boundary variables, non-boundary

variables, and the separator, we may derive an optimal

ordering for the nodes in the factor graph:

V1@ · · ·@VP @S (12)

where @ indicates the concatenating operation. Note that our

approach orders small submaps first and the separator last,

rather than order the columns of the entire sparse matrix

A′. As we discussed above, the ordering obtained here is

crucial to speed up the optimization for the submaps and the

separator.

In a matrix view, matrix A′ is manipulated as follows:

1) Rows are reordered so that intra-measurements {Zp}
are placed above inter-measurements {Zp,q}.

2) Rows for intra-measurements {Zp} are ordered by the

submap index p.

3) For Zp, the measurements involved only with Vp are

placed above those involved with Sp.

4) Columns are ordered according to Equation 12.

After these manipulations, the entire system can be restruc-

tured as

AV1
AS1

. . .
...

AVP
ASP

0 · · · 0 AS

δV1

...

δVP

δS

=

c1

...

cP

cS

The example matrix is shown in Figure 9.

One point worth mentioning is the gauge freedom [26].

When we optimize submaps locally, we randomly pick up

a node from each submap and use the current estimation of

that node as its prior. For the separator, a prior is set on the

base node of the first submap.

IV. NUMERICAL ANALYSIS

With the main idea of T-SAM presented mostly in the

last section, we will show how the numerical performance

of SAM can be enhanced by doing T-SAM. Previous work

[5] already shows that a typical SAM iteration consists of

three most computationally expensive parts: linearization for

the measurements, matrix multiplications from computing

Hessian matrices, and factorization.

Fig. 9. The full matrix A′ after all manipulations.

Fig. 11. One floor from the skyscraper simulation data set from [13].

The optimization for the submap is carried out by using

normal bundle adjustment, and it does not have much possible

tweaking. However, the separator usually contains more vari-

ables than any single submap does in practice, and consumes

more time. Fortunately considerable computation time can be

saved by taking advantage of T-SAM.

Rather than linearize all the measurements involved

with the separator variables, we relinearize only the inter-

measurements to AS and keep the factor U from intra-

measurements. In the experiments, we found that the size

of U is usually slightly larger than AS , leading to 50% time

savings in the linearization work.

V. EXPERIMENTS

A. Data Set

We have carried out experiments on both synthetic environ-

ments and real world data. In the simulation tests, we created

block-world environments like the one shown in Figure 10.

As we know the exact ground truth, it is ideal to verify the

accuracy of T-SAM algorithm. The other simulation data set

ThA1.4

1683

(1) (2) (3) (4)

Fig. 10. The block-world data set with noise, which has 18000 landmarks along with a 4856-step walk trajectory, and 55038 measurements. Shown from
left to right: 1) the original data set; 2) the system with noise added; 3) the system after submaps are optimized locally; 4) the system after the separator
is optimized.

SAM T-SAM Separator

Block World 18000 13.15s 36 × 0.12s 0.30s

Victoria Park Data 6.28s 5 × 0.19s 0.10s

TABLE I

RESULTS OF T-SAM APPLIED TO THE SYNTHETIC BLOCK-WORLD DATA

AND THE VICTORIA PARK DATA SET. SHOWN FROM LEFT TO RIGHT IS

THE TIME PER ITERATION USED IN SAM, THE T-SAM SUBMAP, AND

THE SEPARATOR.

is four skyscrapers from [13]. We also test the T-SAM algo-

rithm on the Victoria Park dataset in which a truck equipped

with a laser scanner was driven through Victoria Park in Syd-

ney, Australia (available at http://www.acfr.usyd.edu.

au/homepages/academic/enebot/dataset.htm). Trees

within the park serve as point features in the SLAM map.

We assume the data association is known and focus on only

verifying the SLAM solver. The testbed is a T60 laptop with

an Intel T2400 1.83GHz CPU and 1GB memory.

B. Experimental Results

The experimental results are listed in Table I. In the block-

world data set, the origin map is partitioned by 6 × 6 grids,

which is the most common way to partition well-structured

data. Notice that after the submaps are optimized, the nodes

are nicely aligned in Figure 10(2). In the separator, we ob-

tained a Hessian matrix with size 13829×13829 and 411075
non-zero fill-in. The result yields a 65.9% time savings in

each iteration compared with normal SAM approach, and

the residual is 0.06 compared with SAM’s 0.03.

For the Victoria data set, the submaps are created along the

trajectory when a new pose or landmark is not in the range of

previous submaps. The data set generates a separator with a

779×779 Hessian matrix and 61265 non-zero fill-in. As there

are fewer measurements in this data set, the sensor poses do

not have many constraints, which make the quality of submap

optimization not as good as the block-world one. The residual

of the final estimation is 0.81, while SAM achieves a residual

of 0.35.

Next, we analyze the performance impact caused by

1 2 3 4 5 6 7 8 9 10
0

1

2

3

4

5

6

7

8

9

10

Number of Partitions

T
im

e
 p

e
r

it
e
ra

ti
o
n

Fig. 12. The time per iteration using different partition number. The blue,
cyan, green, and red dashed lines are the time cost for each iteration in one
submap, all submaps, the separator, and the overall system respectively.

submap partitions in T-SAM. As the only approximation

we made is the linearization point in each submap, the

performance is influenced by the partition number. In the

extreme case, if we make partitions such that every node in

the graph is a submap, then there is no optimization work

in the submaps. The separator will involve all the nodes

in the original graph and we are actually doing full bundle

adjustment when we optimize the separator. In Figure 12,

the result of full bundle adjustment using AMD ordering

corresponds to the point with partition number 1. We also

show the performance with different partition numbers, which

are compared with full bundle adjustment. As shown in the

figure, the time per iteration in submaps decreases linearly

at first and then stays the same later, as does the time for

the overall system. With a good partition, the size of the

separator does not increase very much and its optimization

time stays almost constant.

Not very surprisingly, we also found that decomposed

problems converge more easily than the normal ones. In

practice, it usually takes 40% to 50% less iterations.

T-SAM can be easily implemented to process data that is

too large to fit into a computer’s physical memory, i.e., out-of-

ThA1.4

1684

core, which is essential to tackle large-scale problems such

as the one in Figure 11. Given the fact that the submaps

can be optimized independently, we implement the out-of-

core version of T-SAM, so that the optimized submaps and

the update matrices are stored on disks after they are no

longer in use, and load them when we start to optimize the

separator. By doing this, we only keep a small portion of

data in the memory. In theory, our approach can handle any

size of problems as long as the memory can hold both single

submaps and the separator. We optimized four eight-floor

buildings (one of these floors is shown in Figure 11), and

each floor takes 2.30 seconds per iteration to optimize locally.

The separator is optimized in 0.05 seconds given the fact that

each floor is only connected by an elevator.

VI. CONCLUSION & DISCUSSION

The contributions of this paper can be summarized as

follows:

1) We propose a submap algorithm to solve the SLAM

problem in a smoothing scheme. Unlike existing EKF-

based approaches, our algorithm is exact in nature.

2) The optimal orderings are derived from small submaps

instead of an entire graph. Our results show that the

ordering helps both speeding up the factorization and

generating update matrices.

3) Our approach saves time on linearization by fixing

linearization points when optimizing the separator.

4) Submaps are explicit, which is ideal for various appli-

cations.

Readers may argue that our algorithm can be improved by

implementing multiple levels of submaps and separators.

We are not doing so because the linearization point is a

very crucial factor when solving the non-linear problem.

When the system has multiple levels, e.g., [12], factors with

imperfect linearizations are passed around from the leaves to

the root. The more levels we have, the more error will get

accumulated. In some sense, our approach is a partitioned

version of SAM, while most previous work uses a bundled

version of EKF, which results in more approximation.

For the future work, to yield as few inter-measurements as

possible, we are planning to integrate more advanced partition

algorithms instead of the current manual partitioning. Our

plan also includes a 3D implementation working for cameras

instead of laser scanners.

Acknowledgements: This material is based upon work

supported by the National Science Foundation under Grant

No. IIS - 0448111. Early exploratory work on this topic

was done by Alexander Kipp and Peter Krauthausen, without

which our task would have been much harder. In addition,

we would like to thank Udo Frese as well as Eduardo Nebot

and Hugh Durrant-Whyte for sharing their datasets with us.

REFERENCES

[1] P.R. Amestoy, T. Davis, and I.S. Duff. An approximate minimum
degree ordering algorithm. SIAM Journal on Matrix Analysis and

Applications, 17(4):886–905, 1996.

[2] M. Bosse, P. Newman, J. Leonard, M. Soika, W. Feiten, and S. Teller.
An Atlas framework for scalable mapping. In IEEE Intl. Conf. on

Robotics and Automation (ICRA), 2003.
[3] R. Chatila and J.-P. Laumond. Position referencing and consistent

world modeling for mobile robots. In IEEE Intl. Conf. on Robotics

and Automation (ICRA), pages 138–145, 1985.
[4] T.A. Davis, J.R. Gilbert, S.I. Larimore, and E.G. Ng. A column

approximate minimum degree ordering algorithm. ACM Trans. Math.

Softw., 30(3):353–376, 2004.
[5] F. Dellaert. Square Root SAM: Simultaneous location and mapping via

square root information smoothing. In Robotics: Science and Systems

(RSS), 2005.
[6] C. Estrada, J. Neira, and J.D. Tardos. Hierarchical SLAM: Real-

time accurate mapping of large environments. IEEE Trans. Robotics,
21(4):588–596, August 2005.

[7] O.D. Faugeras. Three-dimensional computer vision: A geometric

viewpoint. The MIT press, Cambridge, MA, 1993.
[8] J. Folkesson and H. I. Christensen. Graphical SLAM - a self-correcting

map. In IEEE Intl. Conf. on Robotics and Automation (ICRA),
volume 1, pages 383 – 390, 2004.

[9] J. Folkesson, P. Jensfelt, and H.I. Christensen. Graphical SLAM using
vision and the measurement subspace. In IEEE/RSJ Intl. Conf. on

Intelligent Robots and Systems (IROS), 2005.
[10] U. Frese. An O(log n) Algorithm for Simultaneous Localization and

Mapping of Mobile Robots in Indoor Environments. PhD thesis,
University of Erlangen-Nürnberg, 2004.

[11] U. Frese. Treemap: An O(log n) algorithm for simultaneous localiza-
tion and mapping. In Spatial Cognition IV, pages 455–476. Springer
Verlag, 2005.

[12] U. Frese. Treemap: An O(log n) algorithm for indoor simultaneous
localization and mapping. Autonomous Robots, 21(2):103–122, 2006.

[13] U. Frese and L. Schröder. Closing a million-landmarks loop. In
IEEE/RSJ Intl. Conf. on Intelligent Robots and Systems (IROS), pages
5032–5039, Oct 2006.

[14] J. Guivant and E. Nebot. Compressed filter for real time implemen-
tation of simultaneous localization and map building. In FSR 2001

International Conference on Field and Service Robots, volume 1, pages
309–314, 2001.

[15] R. Hartley and A. Zisserman. Multiple View Geometry in Computer

Vision. Cambridge University Press, 2000.
[16] S.J. Julier and J.K. Uhlmann. A counter example to the theory of

simultaneous localization and map building. In IEEE Intl. Conf. on

Robotics and Automation (ICRA), volume 4, pages 4238–4243, 2001.
[17] M. Kaess, A. Ranganathan, and F. Dellaert. Fast incremental square

root information smoothing. In Intl. Joint Conf. on Artificial Intelli-

gence (IJCAI), pages 2129–2134, Hyderabad, India, 2007.
[18] K. Konolige. Large-scale map-making. In Proc. 21th AAAI National

Conference on AI, San Jose, CA, 2004.
[19] J. J. Leonard and H. J. S. Feder. Decoupled stochastic mapping. IEEE

Journal of Oceanic Engineering, pages 561–571, October 2001.
[20] R.J. Lipton and R.E. Tarjan. Generalized nested dissection. SIAM

Journal on Applied Mathematics, 16(2):346–358, 1979.
[21] F. Lu and E. Milios. Globally consistent range scan alignment for

environment mapping. Autonomous Robots, pages 333–349, April
1997.

[22] R. Smith and P. Cheeseman. On the representation and estimation of
spatial uncertainty. Intl. J. of Robotics Research, 5(4):56–68, 1987.

[23] J.D. Tardós, J. Neira, P.M. Newman, and J.J. Leonard. Robust mapping
and localization in indoor environments using sonar data. Intl. J. of

Robotics Research, 21(4):311–330, 2002.
[24] S. Thrun. Robotic mapping: a survey. In Exploring artificial

intelligence in the new millennium, pages 1–35. Morgan Kaufmann,
Inc., 2003.

[25] S. Thrun, W. Burgard, and D. Fox. Probabilistic Robotics. The MIT
press, Cambridge, MA, 2005.

[26] B. Triggs, P. McLauchlan, R. Hartley, and A. Fitzgibbon. Bundle
adjustment – a modern synthesis. In W. Triggs, A. Zisserman, and
R. Szeliski, editors, Vision Algorithms: Theory and Practice, LNCS,
pages 298–375. Springer Verlag, 2000.

[27] S.B. Williams, G. Dissanayake, and H. Durrant-Whyte. An efficient
approach to the simultaneous localisation and mapping problem. In
IEEE Intl. Conf. on Robotics and Automation (ICRA), pages 406–411,
2002.

ThA1.4

1685

