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Abstract— Many computer vision problems such as recogni-
tion, image retrieval, and tracking require matching two images.
Currently, ones try to find as reliable as possible matching
techniques with a very little constraint of computational time.
In this paper, we are interested in applying image matching
technique into robotic problems such as visual servoing in
which the computational time is a critical element. We propose
in this paper a real time keypoint based matching method.
The novelties of this method include a fast corner detector,
a compact corner descriptor based on Principal Component
Analysis (PCA) technique and an efficient matching with help
of Approximate Nearest Neighbor (ANN) technique. We show
that the method gives a very satisfying result on accuracy as well
as the computational time. The matching algorithm is applied
to control a robot in a visual servoing application. It works at
10-14Hz and is well robust to variations in 3D viewpoint and
illumination.

I. INTRODUCTION

When dealing with vision-based robot control, real-time

tracking is a fundamental issue. This problem received

much interest in the literature and various approach can

be considered: tracking based on point of interest [25], 2D

features [11], [3], 2D templates [10], [2], 3D model [7], [4],

[6], etc. A presentation of real-time tracking algorithms for

visual servoing purposes is given in [19]. Although usually

efficient, these methods failed to address two important

issues: initialization and failure recovery (which in fact is a

re-initialization problem). Addressing all these issues (initial-

ization, tracking, failure recovery) within the same approach

can be achieved considering tracking as a recognition or

image matching issue.

Image matching consists to automatically establish the

correspondence between primitives extracted from two im-

ages. First solutions for image matching have been sug-

gested already in the late fifties [12]. Since then a steady

increase in the interest for image matching has occurred.

But matching still remains one of the most challenging

tasks in the computer vision field. The reason comes not

only from the high implicit information contained in the

image to be discriminally represented, but also from noise

during image acquisition, changes of camera viewpoints,

illumination, occlusion, etc. Recently, some keypoints based

matching methods obtained impressive results in object

recognition/classification [21], [17], [22]. The high precision

and the robustness of these methods to some transformations

such as scale change, illumination change, rotation are due to

a very careful design of keypoint detector as well as keypoint

descriptor. Consequently, they are usually time-consuming.
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Considering robot control, not only the accuracy is re-

quired but also the computation cost. In order to address

these issues, a real-time, robust image matching method

is proposed. The main idea is to explore advantages from

existing matching techniques, adapt them so that a good

trade-off between the computational time and the precision

can be achieved. In addition, we shift some of computational

burdens into offline training. This allows our method meets

well requirements of visual servoing task.

The contributions of this paper are found in each step of

the matching algorithm:

• Keypoint detection: We propose a criterion which

eliminates quickly edge points or points in uniform

regions from corner points in an image. This is done

from the full-resolution image.

• Keypoint description: Each keypoint is described by

a compact descriptor (e.g. 20-elements vector). This

speeds up significantly the matching. The idea is to

use PCA technique to reduce dimensionality of feature

space. Eigenspace is pre-built in training phase, so does

not take time in running phase.

• Keypoint matching: Using ANN technique for point

matching is efficient in computational time as well as

precision. For each reference image, keypoints, descrip-

tors, and corresponding kd-tree are precomputed. At

running time, we detect keypoints and describe them

from only current image. This reduces a half of time

against some state of the art algorithms.

Finally, to validate our approach, the matching/tracking al-

gorithm is used to performed positioning task using visual

servoing [8].

The organization of the paper is as follows: Section II

explains the keypoint detection and their description. Section

III describes the matching algorithm. In section IV, experi-

mental results of matching on servoing task will be analyzed.

We conclude and give some ideas to improve the actual

method in order to obtain higher matching performance in

section V.

II. KEYPOINTS DETECTION AND REPRESENTATION

A. Keypoints detection

Keypoint detection is the first step in a process of points

matching. By definition, keypoints are points which contain

more information than other points in the image. They allow

a more compact representation of the image and help to

recognize better the scene than all rough pixels.

Fast keypoint detection algorithm have been recently pro-

posed [24], [16]. Following this way, in our work, a point is
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Fig. 1. Tests for a keypoint. Two opposite neighbors p and q of candidate
point x are on the 16-circle.

identified as keypoint where the image signal is significantly

different from those of two opposite neighbors. Formally,

Given an image I. A point x is not considered as a keypoint

if there exists two opposite points p and q such that:
{

|I(x) − I(p)| ≤ ǫd

|I(x) − I(q)| ≤ ǫd
(1)

where ǫd is a sufficient small threshold. p and q are two

points on a circle of 16 pixels around the candidate keypoint

x, as illustrated in Figure 1.

The criterion (1) will eliminate quickly edge and region

responses. To avoid detecting keypoints on skewed edges,

we do the test also on two skewed opposite points q + 1,

q − 1. The test is started from one point on the circle and

stopped when it returns true. In this case x is not a keypoint.

Once edge and region responses are eliminated, we re-

ject remaining multiple adjacent responses by keeping only

points which have extremal value of Laplacian. The Lapla-

cian is approximated in a very simple manner:

L(x) =
∑

∀(p,q)

(I(p) + I(q) − I(x)) (2)

where p,q are two right opposite points on the 16-circle

associated to the considered point x.

Obviously, our detection will be realized more faster than

a multi-scales or scale-space approach because only the

original image is considered. This makes the method not

invariant to scale. However, as we can see in the following,

in the context of visual servoing where scale does not change

strongly, detected keypoints from image still remain quite

repeatable.

B. Invariance to image orientation

By assigning a consistent orientation to each keypoint

based on local image properties, the keypoint descriptor

can be represented relative to this orientation and therefore

achieve invariance to image orientation.

We propose to use a principle similar to the one pre-

sented in [17] for orientation assignment. Nevertheless, since

keypoints are not detected in scale-space, only a histogram

of gradient orientation is computed for all points within a

region of size 7x7 centered at the keypoint. The orientation

histogram has 36 bins covering the 360 degree range of

orientation. Each sample added to the histogram is weighted

by its gradient magnitude and by a Gaussian-weighted cir-

cular window with σ = 3 (radius of 16-circle). The most

significant peak in the histogram corresponds to the canonical

orientation of local gradient.

The assignment of orientation in this way costs lightly

more expensive than the one proposed in [16] where an ori-

entation which maximizes gradient magnitude is computed.

However, the obtained orientations are more stable to noise.

Fig. 2. Keypoints points detected from a building image. Each keypoint
is assigned one canonical orientation. The descriptor is built using the local
patch (blue squares) around the keypoint, in the canonical orientation.

Figure 2 shows keypoints detected from an image of

buildings. Each keypoint is assigned an orientation, depicted

in the Figure by a red arrow. We can see that almost key-

points represent corners of buildings in the scene. They are

quite similar but the descriptors built in respective canonical

orientations are discriminant.

C. Computation of eigenspace

Considering a set of oriented keypoints, the next step

is to compute a descriptor for the local region around a

keypoint that is highly distinctive yet is as invariant as

possible to variations, such as change in illumination or

3D viewpoint. Obviously, we can extract an intensity region

around each keypoint and match these using a correlation

measure. However the intensity correlation is too sensitive

to noise and the search in such high dimensional space is

very time consuming. We propose to use gradient magnitude

computed from normalized image which allows an invari-

ance to illumination changes. Furthermore, to reduce high

dimensions, Principal Component Analysis (PCA) technique

is considered.

PCA is a standard technique which enables to linearly-

project high-dimensional samples onto a low-dimensional

feature space, that is called eigenspace. Such method has

been shown to be very well-suited to representing keypoint

patches [15].

The building of the eigenspace consists in following steps:

• Extract patches P1, P2, ..., PM (training patches) in

the canonical orientation at each keypoint detected from

training images. Each patch is centered and of the same

size N × N (with N = 17). If the number of patches

is not large enough, we create more patches by using

synthesizing technique [16].
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• Represent each patch Pi by a vector that is the gradient

vector Γi of (N − 2)2 elements (points at boundary

are not taken into account) (see Figure 3). Gradient

magnitude is determined by:

G(x) = ∇I2
x(x) + ∇I2

y(x) (3)

where ∇Ix(x) (resp. ∇Iy(x)) is the image gradient

along the x axe (resp. y axe).
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Patches extracted from image

Gradient magnitude maps computed from corresponding patches

N
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(gradient magnitude)

(N−2)x(N−2)

Fig. 3. Patches are extracted and each is described by a vector of gradient
magnitudes.

• Normalize the gradient vector ∀i = 1 . . . M :

Ωi = Γi − Ψ with Ψ =
1

M

M∑

i=j

Γj

• Compute the covariance matrix C:

C =
1

M

M∑

n=1

ΩnΩ⊤

n = AA⊤ (4)

C is a (N − 2)2 × (N − 2)2 matrix. A = [Ω1 . . .ΩM ]
is a (N − 2)2 × M matrix.

• Compute the eigenvalues ei of C and the corresponding

eigenvectors vi by applying Singular Value Decompo-

sition technique (SVD) on the covariance matrix C.

• Finally, keep only K eigenvectors corresponding to K

largest eigenvalues. These vectors create a new basis

of eigenspace of K dimensions. K = 20 is chosen

experimentally which is small enough to allow a good

discriminant descriptor of keypoints.

D. Local region description

Once an eigenspace is built, we have a new basis

(v1,v2, ...,vK) to describe patches. Computing keypoint

descriptor in the eigenspace follows these steps:

• Step 1: subtract gradient magnitude vector Γ by the

average vector Ψ : Ω = Γ − Ψ

• Step 2: project Ω onto eigenspace:

Ω̂ =

K∑

i=1

wivi with wi = v⊤

i Ω

• Step 3: represent Ω as a K-elements vector: Ω̂ =
(w1 . . . wK)

⊤

Each patch is represented as a K-elements vector Ω̂ which

is considerably smaller than the original vector Γ (eg. 20

against 39×39=1521 with patch size N = 41). Obviously,

this representation is more compact than the original one and

thus allows a faster search using nearest neighbors algorithm.

In addition, it tolerates intra-class variations and recognizes

better the extra-class variation.

+ + +=

*

0.5234 −0.0796 −0.0813 
* * *

Descriptor = ( −0.0571 

+ ...

...)

Fig. 4. Vector of gradient magnitudes is a linear combination of eigenvec-
tors.

Figure 4 illustrates how a patch is described in eigenspace.

At left, we have an input is a gradient magnitude map. At

right, we show 4 eigenpatches corresponding to 4 first eigen-

vectors in the basis. The input vector is a linear combination

of these eigenvectors. The multiplicative coefficients wi form

a vector descriptor for the patch in eigenspace.

III. KEYPOINTS MATCHING

To match points in two images, keypoints are detected

(section II-A) and projected (section II-D) onto pre-built

eigenspace (section II-C). Basically, matching keypoints now

consists in searching for the nearest neighbor. Nevertheless,

for efficiency issue specific algorithms have to be considered.

A. Approximate nearest neighbor based point matching

In the nearest neighbor problem a set of data points coded

as by descriptor in K-dimensional space are given. These

points are preprocessed into an appropriate structure, so that

given any query point Ω̂, the nearest points to Ω̂ can be

reported as quickly as possible. Although nearest neighbor

searching can be performed efficiently in low-dimension

spaces, search time grows exponentially as a function of

dimension [14].

To efficiently match two sets of points, we use approx-

imate nearest neighbor technique proposed by Mount [1],

[23]. The idea is to organize feature points into a kd-tree

structure and compute the nearest neighbors approximately.

The similarity between two feature points in eigenspace is

measured by:

||Ω̂ − Ω̂k|| =
K∑

i=1

1

ei

(wi − wk
i )2 (5)

Computing the approximate nearest neighbors allows to

achieve significantly faster running times although it can

undergo some matching errors. We overcome this error by

using second-closest neighbor criterion, as proposed in [17].

Concretely, a match is considered as a correct match when it

has the closest neighbor significantly closer than the closest

incorrect match. All matches in which the second-closest

ratio is greater than some threshold ǫr will be rejected.
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B. Outliers rejection using RANSAC

Apart from using of second-closest criterion, we add a

more robust criterion to reject outliers matching. Specifically,

once keypoints from two images have been matched, a robust

estimation of the multi-view geometry that links the two

images is computed using RANSAC [9].

More precisely, an homography aHb links the projection

of matched point axi and bxi: ∀i,a xi =a Hb
bxi (for planar

scenes) where axi and bxi are points 2D homogeneous

coordinates and aHb is a 3 × 3 matrix. At each iteration

of RANSAC, the homography aHb is estimated using the

method presented in [18] which requires at least 4 couples

of points for planar scene or 8 for non-planar scene. Although

the computed homography is not used in the current version

of our system, this method allows to reject efficiently the

remaining outliers.

IV. EXPERIMENTAL RESULTS

A. Context of experiments

The aim of the experiments is to validate if the proposed

matching algorithm is sufficiently fast and reliable for vision-

based control applications. The considered task is to control

the end-effector of a robot to achieve a positioning task.

This is a classical problem in robotic (eg. grasping task).

It consists in 2 steps. In the first learning step, the camera is

moved to its desired position. The desired image Id of the

target corresponding to this position is acquired. We then

detect keypoints from this image, project them onto the pre-

built eigenspace and organize them into kd-tree structure.

As the eigenspace is pre-built at learning phase, this step

takes only around tens millisecond, depending on if the

object is complex or not. Note that we do not need to build

eigenspace in this phase because the nature eigenspace does

not influence strongly the matching result (as well indicated

in [15]).

After some unknown displacements of the camera or

the object, the robot is controlled so that that the current

image features reach their desired position in the image.

This is done by detecting and describing keypoints from the

current image then applying matching algorithm to search

correspondences. The error of position of matched points

are used to command 6-d.o.f of the robot. The positioning

task ends when the error is smaller than a given threshold.

At convergence, the camera is located at the same position

wrt to the object in learning phase.

These processes have been tested at IRISA-INRIA Rennes

on a gantry robot and have been implemented using the ViSP

package [20].

B. Visual servoing

We consider the generic positioning task. The goal of

visual servoing is essentially to minimize the error ∆ =
s− s∗ between a set of visual features s, that depends of the

actual camera location, and a set of desired visual features

s∗. The control law that performs ∆ minimization is usually

handled using a least square approach [13].

In our case, s∗ describes the set of points extracted

from the desired image Id using the method presented in

Section II-A. Assuming that n points have been detected

in Id, we then have s∗ = (x∗
1, y

∗
1 , . . . , x∗

n, y∗
n)⊤. s contains

information about the matched points in the current image

I. Obviously the number m of matched point is such that

m ≤ n. s is then defined as s∗ = (x1, y1, . . . , xn, yn)⊤ with

(xi, yi) = (0, 0) if point (x∗
i , y

∗
i ) has not been matched.

Since non matched points must not be considered in the

control law we also defined a diagonal n × n matrix D.

D = diag(. . . , ωi, . . .) with ωi = 0 if point (x∗
i , y

∗
i ) has

not been matched, and 1 otherwise. The control law is given

by [5]:

v = −λ(DL)+D(s − s∗). (6)

where v is the computed camera velocity and Ls is the

interaction matrix related to the point [8].

C. Results

Two experiments are reported, the former (named “marvels

experiment”) consider a positioning task wrt to a planar

scene with textured posters, while the latter (named “castle

experiment”) consider a positioning task wrt a complex 3D

object. Figures 5 and 7 shows the reference and initial

image of the positioning tasks along with match points. As

mentioned, one of the interest of such tracking by matching

approach is that initialization (ie, matching between s and

s∗) which is usually a tough problem in visual servoing is,

here, a trivial issue. Partial or total occlusion is also easily

handled (only the number of matched points decreases).

Figure 6 (resp. Figure 8) show the camera velocity (Fig-

ure 6ab and 8ab) and the norm of the error ‖s − s∗‖
which decreases as expected. Let us note that this is rough

results. The extracted position of the matched points are not

filtered which may introduce noise in vector s and then in

the computed camera velocity. Kalman filter may be easily

considered to cope with this issue.

Table I gives some informations about the computational

time at each operation in the matching algorithm. In general

the matching works at 10Hz on a Pentium IV, 2.6GHz.

When these images are quite similar (robot near to desired

position), the speed increases to 14Hz.

Operation Times (ms)

Keypoints Extraction 10ms

Keypoints Characterization 30ms

ANN Matching 20ms

RANSAC based outliers rejection 30ms

TABLE I

COMPUTATIONAL TIME FOR IMAGE MATCHING.

The last experiment (Figure 9) demonstrates the good

behavior of our system when partial or complete occlusions

occur (see also the video). When the occlusion is complete,

no match are found and the robot stops. When occlusion

ends, new matches are found and visual servoing continue.

FrB9.3

3790



Fig. 5. Initial (top) and reference (bottom) image for the marvel experiment.
Green lines link two matched point.
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Fig. 6. Marvel experiment: Camera velocity (a) translation (b) rotation ;
(c) norm of the error

V. CONCLUSIONS

In this paper, a method for tracking by matching has been

proposed. Thanks to the definition of a very simple but

efficient keypoint detector, efficient keypoint description and

matching, this method is showed to be very efficient for real-

time application like visual servoing. The matching algorithm

works at 10-14Hz and is well robust to 3D viewpoint as well

as illumination changes. Efficient has a price, the number of

points detected and matched is smaller than in some state of

the art literature methods, but it is enough for applications

such as visual servoing or pose estimation.

In comparison with some existing matching methods such

as SIFT[17], PCA-SIFT[15], [16], in term of computational

time, our method is significantly faster than SIFT or PCA-

SIFT thanks to the very fast keypoint detector. Compared

Fig. 7. Initial (top) and reference (bottom) image for the castle experiment.
Green lines link two matched point.
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Fig. 8. Castle experiment: Camera velocity (a) translation (b) rotation ;
(c) norm of the error

to method proposed by Lepetit et al. [16], our method are

lightly more time consumming at step of computing canon-

ical orientations. A quantitative comparision of recognition

rate betweeen methods should be performed.

The performance of the tracking by matching algorithm

can be improved at some following directions. Keypoints

should be detected and matched in scale space in order to

give reliable result when scale are different. Specifically,

training images (desired image) can be processed at several

scales. At runtime, the current image will be matched with

all smoothed image and the best match will be taken into

account. Multi-scales approach saves times better than scale-

space approach because all computations for desired image

are done offline.
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Fig. 9. Six images of the marvel sequence. Note that multiple occlusions
are done (partial or complete). When the occlusion is complete, no match
are found and the robot stops. When occlusion ends, new matches are found
and visual servoing continue.
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