
A Motion Planner for a Hybrid Robotic System with

Kinodynamic Constraints

Erion Plaku Lydia E. Kavraki Moshe Y. Vardi

Abstract— The rapidly increasing complexity of tasks robotic
systems are expected to carry out underscores the need for
the development of motion planners that can take into account
discrete changes in the continuous motions of the system. Com-
pletion of tasks such as exploration of unknown or hazardous
environments often requires discrete changes in the controls and
motions of the robot in order to adapt to different terrains or
maintain operability during partial failures or other mishaps.

The contribution of this work toward this objective is the
development of an efficient motion planner for a hybrid robotic
system. The controls and motion equations of the robot could
change discretely in order to enable the robot to operate in
different terrains. The framework in this paper blends discrete
searching with sampling-based motion planning for continuous
state spaces and is well-suited for robotic systems modeled as
hybrid systems with numerous discrete modes and transitions.
This multi-layered approach offers considerable improvements
over existing methods addressing similar problems, as indicated
by the experimental results.

I. INTRODUCTION

Nowadays robotic systems are designed to perform in-

creasingly complex tasks. Robots are expected to explore

unknown, dynamic, or possibly hazardous environments,

quickly modifying their controls to respond to unanticipated

changes in the environment, mishaps, or other failures. For

example, a vehicle may be required to employ different

controls over different terrains due to safety issues, and a

reconfigurable robot may change its shape and use different

gaits to climb, crawl, or walk fast. Such changes in the robot

behavior are often realized by instantaneously switching to

a different operating mode.

A challenging yet important problem is the development

of motion planners for these hybrid robotic systems. The

challenge lies in that a hybrid system combines discrete and

continuous dynamics by associating continuous dynamics

with each operating mode and using discrete logic to switch

between modes. Fig. 1 provides an illustration of a hybrid

robotic system, where controls and motion equations depend

on the operating mode. Necessary modifications in controls

and motion equations to adapt to changes in environment

are modeled as discrete transitions between different modes.

The objective is to find a sequence of continuous trajectories

interleaved with discrete transitions that enable the robot to

Work on this paper has been supported in part by NSF CNS 0615328
(EP, LEK, MYV), NSF 0308237 (EP, LEK), GM078988 (EP, LEK), a
Sloan Fellowship (LEK), and NSF CCF 0613889 (MYV). Experiments
reported in this paper have been obtained on equipment supported by
NSF CNS 0454333, and NSF CNS 0421109 in partnership with Rice
University, AMD, and Cray. The authors are with the Department of
Computer Science, Rice University, Houston, TX 77005, USA {plakue,
kavraki, vardi}@cs.rice.edu

Reeds-Shepp Car

Continuous Car

Dubins Car

Simple Car

Fig. 1. The controls and motion equations of the robot could change
discretely to quickly respond to changes in terrain and other driving
conditions associated with different regions of a workspace. In the top-left
region, the robot drives as a car controlled by accelerating and slowly turning
the steering wheel. In the other regions, controls and motion equations are
modified to respond to changes in terrain. The robot can leave the current
region only when it reaches a guard set, which indicates a discrete transfer to
the next region (from a gray triangle to an empty triangle). After the discrete
transfer, the robot moves according to the controls and motion equations
associated with the new region. The objective is to find a collision-free
trajectory (obstacles shown in black) from some initial to some final state,
indicated by polygons shaped as the “I” and “F” letters, respectively. The
solution (shown as a gradient) consists of continuous trajectories interleaved
with discrete transitions. The blue line traces out the path of the centroid of
the box representing the car’s geometry. Intermediate configurations certain
distance apart are also shown along the solution trajectory.

move from an initial to a final state associated with pos-

sibly different modes, while respecting collision-avoidance,

kinodynamic, and other constraints.

Methods developed in hybrid systems that are also applica-

ble to motion planning generally rely on symbolic reasoning,

decompositions of the state space, or simplified abstractions

[1]–[3]. The exponential dependency on the dimension, com-

plexity of dynamics, and other factors limit the practicality

of these methods only to simple systems with five to six

dimensions, linear dynamics, or no controls, underscoring

the need for alternative approaches [1]–[3].

In the absence of discrete modes, sampling-based motion

planning has successfully been used for complex robotic sys-

tems with high-dimensional continuous state spaces [4]–[9].

In addition to collision avoidance, sampling-based methods

can take into account kinodynamic constraints and plan even

for robots whose motion is governed by nonlinear dynamics.

The use of the Rapidly-exploring Random Tree (RRT) [5],

[10], a sampling-based method, has recently shown promise

as a motion planning method for hybrid robotic systems

with few discrete states [11], [12]. The applicability of RRT

to more complex hybrid systems, especially systems with

a large number of discrete modes and transitions, remains

however challenging, since (i) an RRT relies heavily on

2007 IEEE International Conference on
Robotics and Automation
Roma, Italy, 10-14 April 2007

WeB11.1

1-4244-0602-1/07/$20.00 ©2007 IEEE. 692

distance metrics that should indicate how easily the hybrid

system can transition from one state to another – the defini-

tion of such distance metrics is difficult, even in the case of

continuous systems, since it is not even clear that a distance

metric can express this property [13]; (ii) the growth of an

RRT significantly slows down as the number of nodes in the

tree increases [4], [5], [12], limiting the ability of RRT to

successfully explore the continuous state spaces of systems

with a large number of discrete modes and transitions; (iii)

the exploration of continuous state spaces by an RRT is local

and frequently gets stuck in certain regions [4], [6], [7], [12].

More recent work, such as the Sampling-based Roadmap

of Trees (SRT) [6], [7], which may be relevant in the context

of hybrid systems, shows how to combine RRT and other

tree-based methods [14] with PRM [15] in order to address

some of the issues observed with single-tree planners.

The contribution of this work is the development of an

efficient motion planner for hybrid robotic systems that

blends in novel ways discrete and continuous sampling-

based searching. The work in this paper complements and

extends the SRT framework by using a discrete compo-

nent to guide the exploration. The discrete component uses

the graph of discrete transitions and information collected

during previous explorations to guide the sampling-based

component to explore relevant regions of the continuous

state spaces. In contrast to previous work [11], [12], the

multi-layered approach developed in this paper is well-

suited for systems with many discrete states and transitions

and offers considerable computational improvements over

existing methods, as indicated by the experimental results.

The rest of the paper is as follows. Sections II and III

describe the problem considered in this work and the pro-

posed motion planning framework. Experiments and results

are described in section IV and the conclusion is in section V.

II. PROBLEM DESCRIPTION

A given workspace is divided into a number of nonover-

lapping regions R1, . . ., RN . The robot motion inside each

region Ri is governed by a set of, possibly nonlinear,

differential equations fi : Xi × Ui → TgXi, where Xi,

TgXi, and Ui are the continuous state space, tangent of Xi,

and the set of control inputs. Each continuous state space Xi

could include derivatives of different orders, e.g., velocity

and acceleration of a car. As an example consider the case

of a robot which behaves as a car controlled by accelerating

and turning the steering wheel in one region, while in another

region the robot behaves as a car which cannot reverse and

cannot make sharp turns. A discrete transition from Ri to

Rj occurs when the robot enters a part of Ri referred to

as the guard set Gij ⊂ Ri. It is only through a discrete

transition that the robot could move from one region to the

other. If there are no discrete transitions, the robot cannot

move outside the current region. The guard set could be

thought of as indicating necessary changes in the way the

robot should be controlled. For example, when approaching

sharp turns or driving in rough terrain the robot should reduce

the speed. Upon entering the guard set the robot is discretely

transferred onto some part Jij ⊂ Rj where it continues

to move according to fj . Thus, a trajectory of the robot

consists of one or more continuous trajectories interleaved

with discrete transitions. Fig. 1 provides an illustration.

The robot behavior is modeled as a hybrid system repre-

sented by the tuple H = (S, f, I, F,E), where S = Q×X; Q
is a discrete and finite set; X = {X1, . . . ,XN} represents the

different continuous state spaces; f = {f1, . . . , fN} indicates

the motion equations associated with the continuous state

spaces; I, F ⊂ S are the sets of initial and final states,

respectively. The discrete state qi ∈ Q is associated with

the region Ri. A discrete transition (qi, qj) ∈ E ⊂ Q×Q is

associated with the guard Gij ⊂ Ri and reset Jij ⊂ Rj sets.

The objective is to construct one or more feasible trajec-

tories that enable the robot to move from some initial state

s0 ∈ I to some final state p ∈ F .

III. METHODS

The proposed framework is a multi-layered approach that

interleaves two components, GUIDE and EXPLORE, which

can be categorized as search methods for discrete and

continuous spaces, respectively. GUIDE searches the discrete

space (Q,E) for discrete solution sequences, i.e., sequences

of discrete transitions from some s0 ∈ I to some p ∈ F ,

and EXPLORE is a sampling-based approach for exploring

continuous state spaces. GUIDE and EXPLORE work in

tandem and are iteratively called until a solution trajectory

is obtained or the allocated computation time is exceeded.

Details of EXPLORE and GUIDE are found in sections III-

A and III-B, respectively. Pseudocode for the interplay of

GUIDE and EXPLORE is given in Fig. 2 and an illustration

is provided in Fig. 3.

The efficiency of motion planners for difficult problems

depends on their ability to focus the exploration on important

parts of the state space [16]. For this reason, the objective of

the motion planner in this work is to estimate the importance

of different regions of the state space and allocate more

exploration time to the more promising regions. The motion

planner associates a weight Impij with each (qi, qj) ∈ E
which expresses an estimate on the importance of Sij =
Si ∪ Sj (see section III-B for details). The time allocated

for the exploration of Sij is proportional to Impij . The

estimate Impij is updated after each exploration to reflect

new information gathered from the exploration. In this way,

the motion planner spends most of the time exploring the

most promising regions. At the same time, the motion

planner does not completely ignore less promising regions,

but instead spends less time exploring them. In this way, the

framework aims to strike a desired balance between greedy

and methodical search, which is important in making the

motion planner efficient and robust.

Initially, all the weights Impij are set to zero (lines 1-

2). Each step (lines 4-14) consists of a computation of

a sequence σ of discrete transitions by GUIDE (lines 5-

6) followed by exploration of the continuous state spaces

by EXPLORE (lines 7-14). A step ends when a solution

WeB11.1

693

A motion planner for hybrid robotic systems

Input:
H = (S, f, I, F, E), a hybrid robotic system
T ∈ R

>0, upper bound on computation time
Output:
A solution trajectory τ or FAILURE if no trajectory is found

1: for each (qi, qj) ∈ E do
2: Impij ← 0, initial estimate expressing importance of Sij

3: t← 0
4: while t < T and no solution is found do
5: σ ← GUIDE(H), a relevant sequence of discrete transitions
6: t← t+tg , where tg is the computation time used by GUIDE

7: tc ∈ [0, T − t]← time allocated for exploration using σ
8: for each (qi, qj) ∈ σ do
9: tij ← tcImpij/

P

(qk,qℓ)∈σ
Impkℓ

10: use EXPLORE(H) to explore Sij for tij units of time
11: Impij ← update estimate based on exploration of Sij

12: t← t + tc

13: τ ← search roadmap for solution trajectory
14: if τ 6= NIL then return τ
15: return FAILURE

Fig. 2. High-level illustration of the proposed motion planner. GUIDE

utilizes the graph of discrete transitions E and information gathered from
the exploration of the continuous state spaces to compute a relevant sequence
of discrete transitions σ. EXPLORE uses σ and the SRT framework to guide
the exploration toward promising regions of the continuous state spaces. A
solution trajectory is obtained when, as part of the exploration, a trajectory
is constructed from an initial state s0 ∈ I to a final state p ∈ F .

trajectory is constructed or when the computation time al-

lowed for one iteration is exceeded. GUIDE uses information

collected from all previous calls to EXPLORE to update

Impij estimates and select more relevant discrete sequences.

EXPLORE uses such sequences to focus the exploration on

the more promising regions. Fig. 3 provides an illustration.

A. Sampling-based Component: EXPLORE

The discrete sequence σ computed by GUIDE indicates

which regions should be explored. EXPLORE extends the

SRT framework [6], [7] to efficiently explore these regions

by generating and connecting trees via feasible trajectories.

The time allocated for exploring each Sij , associated with

(qi, qi+1) ∈ σ, is proportional to the weight Impij . Thus,

more time is spent exploring important regions.

1) Exploration of Sij: The exploration of Sij is based on

explorations of Si and Sj . The exploration of Si, similarly

Sj , constructs and maintains a roadmap of trees. Trees are

grown forward and backward in time in different parts of

Si by sampling roots and exploring around the roots using

a tree-based method [9], [10], [14]. Neighboring trees are

then connected by growing trees toward each-other. For each

neighboring pair of trees (T ′, T ′′), several close pairs of

states of T ′ and T ′′ are quickly checked to determine if local

trajectories can be generated from one state in T ′ to another

state in T ′′. If a local trajectory can be constructed, the trees

are successfully connected and no further computation takes

place. Otherwise, a more complex tree-connection algorithm

is executed, e.g., bi-directional RRT. During the tree con-

nection, additional states are typically added to the trees T ′

and T ′′. Possible remaining gaps due to the kinodynamic

(a) Guide (q1, q2), (q2, q4) (b) Exploration of S12, S24

(no solution trajectory)

(c) Guide (q1, q3), (q3, q4) (d) Exploration of S13, S34

(solution trajectory)

Fig. 3. High-level illustration of the interplay between GUIDE and
EXPLORE. Elbow arrows indicate edges of E. Triangles and stars indicate
some initial and final states, respectively. (a) GUIDE computes the sequence
σ1 = (q1, q2), (q2, q4), indicated by the thick elbow arrows. (b) EXPLORE

uses σ1 to focus the exploration on S12 and S24. The gray areas indicate
explored parts of the continuous state spaces. The arrows from black squares
to empty squares indicate discrete transitions from one continuous state to
another. (c) GUIDE computes another sequence σ2 = (q1, q3), (q3, q4),
since EXPLORE was not able to construct a solution trajectory using σ1.
(d) As a result of the exploration guided by σ2, a solution trajectory is
obtained (thick trajectory lines).

nature of the problem are closed using available steering

or numerical methods [17]. The resulting roadmap of trees

explores Si, as Fig. 4(a) illustrates. The advantage of this

approach is that it results in a global exploration method,

and, unlike RRT, does not get stuck easily [6], [7].

When exploring Sij , it is important to guide the explo-

ration toward the guard Gij to facilitate the connection of

continuous trajectories from Si to Sj . When trees in Si reach

Gij , a discrete transition is made onto some state in Sj . Trees

in Si could thus have branches extending to Sj , as Fig. 4(b)

illustrates. Such branches can be further grown to explore Sj

and connect trajectories from Si to Sj .

2) Quantifying Information Collected During Explo-

ration: Information collected during exploration is used

by GUIDE to select discrete transition sequences that are

deemed important in the construction of solution trajectories.

EXPLORE quantifies such information by assigning to each

Sij a score Scoreij which reflects how well Sij is explored.

One possibility is to define Scoreij as a function of (i) Expij ,

the exploration of Sij , and (ii) Connij , the connections of

trees in Sij , as follows:

Scoreij = wExpij + (1 − w)Connij , 0 < w < 1,

where Expij = (Expi + Expj)/2 and Expi and Expj are

the estimations of the exploration of Si and Sj , respectively.

Drawing from quasirandom sampling [4], this work uses

a variant of the dispersion measure for estimating Expi

(Expj). Intuitively, Si is explored well if new samples are

close to existing samples. The exploration of Si is estimated

by generating a sample s at random and determining if any

of the existing samples are inside a small ball centered at

WeB11.1

694

(a) Exploration of Si

(b) Exploration of Sij

Fig. 4. (a) (left) Several trees are grown in Si. (right) Connections
between trees are computed by growing trees toward each-other. Thinner
lines indicate the resulting additional exploration. (b) As the growth of the
trees in Si is guided toward Gij , several branches extend from Si to Sj ,
as indicated by the arrows. Such branches are further grown to explore Sj .
Connections are also made from these branches to other trees rooted in Sj .

s. Efficient data structures such as [18], [19] can be used to

speed up such computations. The process is repeated several

times and Expi is set equal to the fraction of times an

existing sample was found to be close to a random sample.

A randomized approach is also used to compute Connij .

Let s′ and s′′ be two samples drawn uniformly at random

from samples in Si and determine if there is a trajectory

from s′ to s′′ by searching the roadmap. Let ℓi denote the

number of times a trajectory is found when the above process

is repeated k times. The computation of ℓj is similar, but

draws s′ and s′′ from samples in Sj , while the computation

of ℓij draws s′ and s′′ from samples in Si and Sj , respec-

tively. Then, Connij = (ℓi + ℓj + ℓij) /(3k). Thus, Connij

indicates how well samples in Sij are connected.

B. Discrete Component: GUIDE

The objective of GUIDE is to compute sequences of

discrete transitions to guide the exploration. Such sequences

are computed using the graph of discrete transitions. The se-

lection is biased toward transitions that, according to internal

estimates, further improve the exploration. A probability pij

is associated with each (qi, qj) ∈ E, expressing the running

estimate of the relevance of Sij for constructing solution

trajectories. These probabilities are updated based on new

information gathered at each exploration step.

1) Relevance of Discrete Transitions: An importance

Impij estimate is used to express how much addi-

tional exploration of Sij facilitates the construction of

solution trajectories. The probability pij on the rele-

vance of Sij is then defined by normalizing Impij , i.e.,

pij = Impij/
∑

(qℓ,qm)∈E Impℓm. The importance estimate

is tightly connected to information gathered during explo-

ration of Sij . Let Scoreij represent the quality of this

information, as described in section III-A. The estimate

Impij is based on the history Score0
ij , . . ., Scoren

ij of scores

obtained after each exploration of Sij for t0, · · · , tn units of

time, where Score0
ij = 0 and t0 = 0. Then, Impij is defined

as an exponentially decaying sum of changes of Scoreij , i.e.,

Impij =

n∑

h=1

αn−h
Scoreh

ij − Scoreh−1
ij

th
, 0 < α ≤ 1.

Recent changes have exponentially higher weights, since

recent scores more accurately reflect the relevance of Sij .

2) Selecting Discrete Solution Trajectories: The relevance

of a discrete sequence is estimated as the product of the

probabilities associated with its discrete transitions. In each

stage of the testing process, a discrete solution sequence is

selected according to its probability. In this way, the selection

is biased toward discrete sequences that according to internal

estimates facilitate the construction of solution trajectories.

Variations of A*, Dijkstra’s algorithm, and other graph search

methods can be used to compute such sequences.

We note that only acyclic sequences of discrete transitions

are used as guides, while in fact, solution trajectories may

contain discrete cycles. To address this issue, as described in

section III-A, the exploration of Sij is biased not only toward

Gij , but also toward other guards. Once a guard is met, a

trajectory is constructed from one discrete state to another.

Guiding the exploration toward different guards allows the

connection of continuous trajectories such that the resulting

trajectory could contain discrete cycles.

IV. EXPERIMENTS AND RESULTS

For the initial validation of the framework, we have chosen

problems where the motion equations of the robot change

frequently as the robot moves from one region to the next,

as described in section II. Such discrete changes considerably

add to the complexity of the already complex motion plan-

ning for a continuous state space. As the experimental results

indicate, the integration of GUIDE and EXPLORE results in

an efficient motion planner for hybrid robotic systems.

The Rice Terascale Cluster, PBC Cluster, and Rice Cray

XD1 Cluster ADA were used for code development. Ex-

periments were run on ADA, where each processor runs at

2.2GHz and has 2GB of RAM.

A. Robot Models

Several motion equations are used to define how the

robot moves in different regions of the workspace: a simple

kinematic car, Reeds-Shepp car, Dubins car, and a continuous

car. Fig. 1 provides an illustration. Detailed descriptions of

these models can be found in [4], [5].

1) Simple Car: The motion equations are ẋ =
u0 cos(θ); ẏ = u0 sin(θ); θ̇ = u0 tan(u1)/L, where (x, y, θ)
is the car configuration; u0 ∈ [−1, 1] and u1 ∈ (−π/4, π/4)
are the speed and steering wheel controls; and L, a constant,

is the distance between the front and rear axles.

2) Reeds-Shepp Car: The speed control is limited only to

“reverse,” “park,” and “drive,” i.e., u 0 ∈ {−1, 0, 1}.

3) Dubins Car: An even more restricted model is the

Dubins car which cannot reverse, i.e., u0 ∈ {0, 1}.

WeB11.1

695

4) Continuous Car: The velocity v and steering angle φ
are controlled by changing the acceleration, u0 ∈ [−1, 1], and

the rotational velocity of the steering wheel, u1 ∈ [−1, 1],
as described below: ẋ = v cos(θ); ẏ = v sin(θ); θ̇ =
v tan(φ)/L; v̇ = u0; φ̇ = u1.

In each experiment, the robot geometry is represented by

a 0.086×0.051 box and each region Ri has unit dimension.

B. Results

1) Validating GUIDE and EXPLORE: Fig. 5 illustrates

how GUIDE and EXPLORE tailor future explorations of the

continuous state spaces based on information collected dur-

ing previous explorations. As discussed earlier, the efficiency

of motion planners for difficult problems depends on their

ability to focus the exploration on difficult parts of the

continuous state spaces.

Fig. 5(a) shows a workspace divided into three regions

that have the same motion equations of the simple kinematic

car model, but different number and distribution of obstacles.

These regions can be considered as easy (R0), medium (R1),

and hard (R2). Since a solution trajectory requires the robot

to move through all three regions, we would like the motion

planner to spend most of the time exploring the hard region

and spend little time exploring the easy region. This desired

behavior is achieved by using information collected during

previous explorations to measure the progress in different

regions and bias future explorations toward promising re-

gions. Fig. 5(b) shows the fraction of time allocated to the

exploration of each region as a function of the total time. As

shown in Fig. 5(b), the motion planner initially explores more

the easy region, since this region yields the most progress.

After quickly exploring the easy region, the motion planner

explores the other regions more. This desired behavior is

shown in Fig. 5(b) by the sharp drop on the fraction of

the total time spent exploring the easy region. We also

note that the exploration is now biased toward the medium

region, since this region is currently the most promising.

However, after spending some time exploring the medium

region, the internal estimates indicate that the medium region

has been adequately explored, and so the motion planner

focuses the exploration on the hard region. As desired, the

motion planner spends most of the time exploring the hard

region and little time exploring the easy region.

Fig. 5(c, d) also illustrate the interplay between GUIDE and

EXPLORE. The workspace in Fig. 5(c) is divided into five

regions. The robot can reach a final state by following regions

R2, R3, and R4, referred to as guide A, or regions R2,

R0, R1, referred to as guide B. Fig. 5(d) shows the fraction

of time the motion planner spends exploring each of these

alternative routes as a function of the total exploration time.

As Fig. 5(d) indicates, initially the motion planner makes

more progress using guide A, since the regions of guide A

have more open space. After the initial rapid progress, the

motion planner has difficulty making further progress using

guide A, since it requires connecting samples separated by a

narrow passage in the top-right region. The internal estimates

indicate that guide B is now more promising and thus the

R1

R0

R2

R0 R1

R2 R3 R4

(a) (c)

(b) (d)

Fig. 5. Guiding the exploration toward promising regions. (a) The top,
bottom-left, and bottom-right regions of the workspace can be considered
as easy, medium, and hard, respectively. (b) The fraction of time (y axis)
spent by the motion planner exploring different regions as a function of the
total time (x axis). As desired, the motion planner spends most of the time
exploring the hard region and little time exploring the easy region. (c) A
trajectory from an initial to a final state can be obtained by following any
of the two alternative routes. (d) The fraction of time (y axis) spent by the
motion planner exploring each of the two alternative routes as a function
of the total time.

motion planner allocates more time to the exploration of

guide B. After favoring guide B over guide A for quite some

time, the motion planner switches back to guide A as the

most promising. This is due to the fact that samples separated

by the narrow passage have been successfully connected.

Such connections indicate significant improvements in the

progress estimates. The motion planner is then able to find

a solution trajectory (not shown) using guide A.

The results in Fig. 5 indicate that GUIDE guides EXPLORE

toward regions whose additional exploration would allow

the motion planner to make further progress. EXPLORE,

by drawing from the SRT framework, effectively explores

these regions. At the same time, the motion planner does

not completely ignore alternative routes, but instead spends

less time exploring such routes.

2) Computational Efficiency: Fig. 1 and 6 show the

problems used to test the efficiency of the motion planner for

hybrid robotic systems. In Fig. 1, the workspace is divided

into four regions and a different set of motion equations is

used in each region. A trajectory from an initial to a final

state can be obtained by following two alternative routes.

The motion planner is capable of solving this problem in

42.5s. The computation time is obtained as an average of

20 runs initialized with different pseudorandom seeds. We

also implemented the motion planner described in [12] to

compare the performance of the motion planner in this work

to existing methods addressing similar problems. Although

we made every effort to implement the motion planner in [12]

WeB11.1

696

CSSC

DDRD

RRDR

SCCS

Fig. 6. The workspace is divided into 16 = 4 × 4 different regions
corresponding to 16 discrete modes. The i-th letter in a four-letter string
displayed at the end of each row indicates the dynamics of the robot
associated with the i-th region of that row, counting from left to right. The
letter S, R, D, or C denotes a simple, Reeds-Shepp, Dubins, or continuous
car, respectively. The average total time to find a solution is 105s.

as best as we could, we also note that it is in general difficult

to compare different algorithms since not all the details

necessary to obtain the best implementation are available.

Our implementation of [12] required an average of 110.5s to

solve the same problem using the same experimental setup

as our method. What is important to note are not the actual

running times, which despite our best efforts are still subject

to coding issues, but the computational efficiency of motion

planners as the complexity of the problem increases.

A more challenging example is shown in Fig. 6. The

hybrid system model has 16 discrete modes. There also many

discrete transitions (34) and numerous alternative guides.

The solution of this problem requires generating many trees

with thousands of nodes. Even for this challenging problem,

the motion planner in this work is able to find a solution

trajectory in 89.3s. The motion planner based on the work

in [12] requires a considerably longer time, i.e., 535.8s.

These results indicate that the integration of GUIDE and

EXPLORE produces an effective motion planner for hybrid

robotic systems that is at least as efficient, if not more, as

recent motion planners [11], [12]. Furthermore, the results

also indicate that the computational advantages offered by

the motion planner in this work become more pronounced

as hybrid robotic systems with larger numbers of discrete

modes and transitions are considered.

V. DISCUSSION

Motion planning for hybrid robotic systems is a challeng-

ing yet important problem that requires taking into account

the interplay between continuous behaviors associated with

different discrete modes of operations.

The framework developed in this work carefully integrates

in novel ways discrete searching with sampling-based motion

planning for continuous state spaces. The discrete compo-

nent uses the graph of discrete transitions and information

gathered during previous explorations to guide the sampling-

based component to explore relevant parts of the different

continuous state spaces. The result is an effective motion

planner for hybrid robotic systems especially well-suited for

systems with numerous discrete modes and transitions whose

continuous behavior in each discrete mode is defined by a

possibly different set of complex motion equations. In future

work, we will investigate further improvements to the initial

framework developed in this work and applications to more

realistic 3D examples.

REFERENCES

[1] C. J. Tomlin, I. Mitchell, A. Bayen, and M. Oishi, “Computational
techniques for the verification and control of hybrid systems,” Pro-

ceedings of the IEEE, vol. 91, no. 7, pp. 986–1001, 2003.
[2] C. Chutinan and B. H. Krogh, “Computational techniques for hybrid

system verification,” IEEE Transactions on Automatic Control, vol. 48,
no. 1, pp. 64–75, 2003.

[3] E. Clarke, A. Fehnker, Z. Han, B. Krogh, O. Stursberg,
and M. Theobald, “Verification of hybrid systems based on
counterexample-guided abstraction refinement,” in Inter. Conf. on

Tools and Algorithms for the Construction and Analysis of Systems,
H. Garavel and J. Hatcliff, Eds., 2003, vol. 2619, pp. 192–207.

[4] H. Choset, K. M. Lynch, S. Hutchinson, G. Kantor, W. Burgard,
L. E. Kavraki, and S. Thrun, Principles of Robot Motion: Theory,

Algorithms, and Implementations. Cambridge, MA: MIT Press, 2005.
[5] S. M. LaValle, Planning Algorithms. Cambridge, MA: Cambridge

University Press, 2006.
[6] E. Plaku, K. E. Bekris, B. Y. Chen, A. M. Ladd, and L. E. Kavraki,

“Sampling-based roadmap of trees for parallel motion planning,” IEEE

Transactions on Robotics, vol. 21, no. 4, pp. 597–608, 2005.
[7] E. Plaku and L. E. Kavraki, “Distributed sampling-based roadmap of

trees for large-scale motion planning,” in IEEE Inter. Conf. on Robotics

and Automation, Barcelona, Spain, 2005, pp. 3879–3884.
[8] A. M. Ladd and L. E. Kavraki, “Fast tree-based exploration of state

space for robots with dynamics,” in Workshop on Algo. Found. of

Robot., 2005, pp. 297–312.
[9] G. Sánchez and J.-C. Latombe, “On delaying collision checking in

PRM planning: Application to multi-robot coordination,” International

Journal of Robotics Research, vol. 21, no. 1, pp. 5–26, 2002.
[10] S. M. LaValle and J. J. Kuffner, “Rapidly-exploring random trees:

Progress and prospects,” in New Directions in Algorithmic and Com-

putational Robotics, B. R. Donald, K. Lynch, and D. Rus, Eds., 2001,
pp. 293–308.

[11] J. Kim, J. M. Esposito, and V. Kumar, “An RRT-based algorithm for
testing and validating multi-robot controllers,” in Robotics: Science

and Systems, Boston, MA, 2005, pp. 249–256.
[12] J. M. Esposito, J. Kim, and V. Kumar, “Adaptive RRTs for validating

hybrid robotic control systems,” in Workshop on Algo. Found. of

Robot., Zeist, Netherlands, 2004, pp. 107–132.
[13] N. M. Amato, O. B. Bayazit, L. K. Dale, C. Jones, and D. Vallejo,

“Choosing good distance metrics and local planners for probabilistic
roadmap methods,” in IEEE Inter. Conf. on Robotics and Automation,
1998, pp. 630–637.

[14] D. Hsu, R. Kindel, J.-C. Latombe, and S. Rock, “Randomized kinody-
namic motion planning with moving obstacles,” International Journal

of Robotics Research, vol. 21, no. 3, pp. 233–255, 2002.
[15] L. E. Kavraki, P. Švestka, J.-C. Latombe, and M. H. Overmars, “Prob-

abilistic roadmaps for path planning in high-dimensional configuration
spaces,” IEEE Transactions on Robotics and Automation, vol. 12,
no. 4, pp. 566–580, 1996.

[16] M. Morales, L. Tapia, R. Pearce, S. Rodriguez, and N. M. Amato, “A
machine learning approach for feature-sensitive motion planning,” in
Workshop on Algo. Found. of Robot., Zeist, Netherlands, pp. 361–376.

[17] P. Cheng, E. Frazzoli, and S. M. LaValle, “Improving the performance
of sampling-based planners by using a symmetry-exploiting gap re-
duction algorithm,” in IEEE Inter. Conf. on Robotics and Automation,
2004, pp. 4362–4368.

[18] S. Brin, “Near neighbor search in large metric spaces,” in Inter. Conf.

Very Large Data Bases, 1995, pp. 574–584.
[19] E. Plaku and L. E. Kavraki, “Quantitative analysis of nearest-neighbors

search in high-dimensional sampling-based motion planning,” in Work-

shop on Algo. Found. of Robot., New York, NY, 2006.

WeB11.1

697

