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Abstract— Several recent works have combined discrete and
continuous motion planning methods for robot navigation and
control. The basic idea of some of these works is to plan a path,
by determining a sequence of neighboring discrete regions of
the configuration space, and to assign a vector field that drives
the robots through these regions. This paper addresses the
problem of efficiently computing vector fields over a sequence
of consecutive triangles. Differently from previous numerical
approaches, which were not able to compute fully continuous
fields in triangulated spaces, this paper presents an algorithm
that is able to compute guaranteed continuous vector fields over
a sequence of adjacent triangles.

I. INTRODUCTION

The mobile robot motion planning problem can be loosely
stated as the problem of finding and executing an obstacle
free path from an initial position to a pre-specified goal. In
the past years, several different solutions for this problem
have been proposed [1]. Among these, vector fields based
methodologies, such the ones based on the gradient of
artificial potential functions [2], have been extensively used,
mainly because they allow the combination of planning and
control in the same solution.

The main drawback of most potential field approaches is
the presence of local minima in the function that originated
the field, which may prevent the robot to reach the target.
Although, some free of local minima potential functions
can be determined [3], [4], [5], in order to improve effi-
ciency, some recent works have constructed vector fields
by combining discrete and continuous algorithms. Among
these works, [6], [7], [8], [9], [10] and [11] have proposed
similar solutions that are basically divided in three parts: (i) a
polygonal decomposition of the robot configuration space is
performed, resulting in finite number of cells; (ii) a sequence
of consecutive cells connecting initial and goal configuration
is selected using a discrete algorithm; (iii) a vector field is
assigned inside the selected cells.

In this context, the proposal of [9] is to triangulate the
configuration space and to determine the best sequence of
consecutive triangles that connects the triangle that contains
the robot initial configuration with the one that contains the
target. This is performed by searching for the shortest path
in the graph that has the barycenter of the triangles as nodes
and the segment that connect the nodes as edges. Using the
efficient methodology proposed in [6] the authors compute
a piecewise continuous vector field that is able to drive the
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Gerais, Av. Antônio Carlos 6627, 31270-901, Belo Horizonte, MG, Brazil.
{lucpim, gpereira, renato}@cpdee.ufmg.br

robot from the initial triangle to the last one. Bounds for the
robot velocity inside each triangular cell are automatically
imposed by the method. The same methodology was used to
compute vector fields in [8] and [11]. In [8], the authors
use a temporal logic algorithm to select the sequence of
triangles to be traversed by the robot, and in [11], a graph
search algorithm is used to find a minimum cost sequence
of triangles in a multi-terrain outdoor environment. In the
last one, a terrain metric is used during the vector field
computation to limit the robot velocity in each terrain.

Although it is well known that triangulation is, in most
cases, a better cell decomposition choice for complex config-
uration spaces, rectangular partitions followed by the assign-
ment of a vector field have been used in [7]. As proposed
in [6], a fully continuous vector field over a sequence of
rectangular cells can be computed very efficiently. Since the
methodology of the authors could not compute continuous
fields on triangular cells, it was necessary to use quadtree
representation to approximate the environment. Two recent
methodologies that may be able to handle this task are pre-
sented in [12] and [10]. The first one is based on the analytic
computation of harmonic functions, which are solutions to
the Laplace’s Equation, and the second one creates and
composes face vector fields using bump functions. However,
none of them seems to be as simple and efficient as the
methodology proposed in [6], although the fields are not
continuous in the latter one.

In order to allow the use of triangular decompositions
of the configuration space, this work presents a numeric
algorithm that computes fully continuous vector fields over
sequences of triangles. The methodology presented in this
paper is a natural extension of the ideas proposed by Belta
et al. in [6] and [9]. Thus, the works [8], [9], and [11] will
benefit from our results.

Next section formally defines the problem being consid-
ered. Section III presents the methodology proposed to com-
pute fully continuous vector fields. Proofs for the method-
ology are presented in Section IV. Section V present two
examples of fields and a brief comparison with a previous
methodology. Trajectories for holonomic robots are also
presented. Finally, conclusions and directions for future work
are presented in Section VI.

II. PROBLEM DEFINITION

Let a single robot R in the world W be represented by
the configuration q in its configuration space C, and consider
F ⊆ C to be the free configuration space for R. In this paper
we consider limited, two dimensional configuration spaces
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Fig. 1. A triangulated environment and sequence of triangles from f0 to
fg = f6 determined by a discrete algorithm.

such that C = {(x, y)|xmin ≤ x ≤ xmax; ymin ≤ y ≤
ymax}. At first, we also consider point holonomic robots
with dynamics given by q̇ = u(q), where u is the robot
control input.

In a standard motion planning problem it is desirable to
steer the robot from its initial configuration q0 ∈ F at time
t = t0 to the goal configuration qg ∈ F at some time t =
tf > t0, such that q ∈ F ∀t ∈ (t0, tf ].

Now, suppose that F is discretized in a small number
of triangular cells. This operation can be performed using
several triangulation algorithms, such as the Constrained
Delaunay Triangulation (CDT) [13], which were successfully
used for robot navigation in [11]. CDT maximizes the
internal angles of each triangle and maintains conformity
with the original boundaries of C. After the triangulation,
each cell fi is numbered from f0 to fn.

In order to plan a path in the triangulated configuration
space, which constitutes a sequence of consecutive cells
from the initial cell f0 (q0 ∈ f0) to the goal cell fg

(qg ∈ fg), several discrete algorithms can be used. For
instance, temporal logic is used in [8] and graph search
algorithms are used in [9], [10] and [11].

For illustration, in this paper we will describe the simple
algorithm used in our previous work [11]. First, we create
a weighted graph G(V, E), where the set of graph nodes V
is composed by the midpoints of each triangular edge and
points q0 and qg , and the segments linking the nodes at the
same cell constitute the edge set E . The weights associated
with the graph edges are the distances between them. Our
continuous problem is now transformed into a discrete one
stated as follows: find the path of minimum cost from q0

to qg in the graph G(V, E). This path searching can be
performed by well known algorithms such as A∗ or Dijkstra.
The latter one guarantees the optimal path for the given
graph.

In spite of the discrete algorithm used, the result of this
step is a sequence of neighboring triangular cells, as shown in
Figure 1. In order to control the robot from q0 to qg a vector
field with a single vanishing point at qg must be assigned
to the sequence f0 . . . fg . The computation of a guaranteed
continuous vector field is the main contribution of this work
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Fig. 2. The convex combination of vectors vqi , vqj , and vqk generates
a vector field u(q) as in Equation (1).

and is described in the next section.

III. VECTOR FIELD COMPUTATION

The idea used in this paper to efficiently compute a vector
field inside the sequence of triangles was first introduced
in [6] and [9]. Basically, a set of vectors at the triangles
vertices are interpolated to generate the vector field. Thus,
the methodology can be divided in two steps: (i) vector
interpolation, and (ii) vector determination. The contribution
of this paper is in step (ii), that was improved from [9]
in order to guarantee fully continuous fields in opposite to
piecewise continuous ones.

Let S = {f0, f1, f2, · · · , fn} be an ordered sequence of
n consecutive triangles, where fn = fg (see Fig. 1). The
edges at the boundary of this sequence constitute the set B.
The common edges between two triangles form the set X .
We want to build a continuous vector field u(q) that drives
a holonomic robot with kinematics q̇ = u(q) from q0 ∈ f0

to qg ∈ fn, that fulfills the following requirements:

(R1) for any time t, q(t) ∈ fi, and fi ∈ S,
(R2) i is monotonically crescent.

Suppose that each vertex of the triangles in S\fn has
an associated base vector, which satisfies the following
constraints:

(C1) its projection on the outward normal vector of an
incident edge is negative if the edge is in B, and
(C2) its projection on the outward normal vector of an
incident edge is positive if the edge is in X .

Call vqi
, vqj

and vqk
the base vectors at vertices (xi, yi),

(xj , yj) and (xk, yk) of fl, counterclockwise ordered. A
vector field, u(q), that simultaneously fulfills requirements
(R1) and (R2) can be computed by the convex combination
of these vectors given by:

u(q) =
Aivqi

+ Ajvqj
+ Akvqk

Ai + Aj + Ak
, (1)

where Ai, Aj , and Ak are the areas of the sub-triangles
formed between the original vertices of the triangles and the
point q as shown in Fig. 2.
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Fig. 3. Choice of the vector field base vectors. Dashed gray normal
vectors are constraints associated to the boundary edges (edges in B). These
constraints are used to guarantee that the robot never leaves the sequence
of triangles. Dashed black vectors are constraints associated to the output
edges of each triangle (edges in X ). These constraints are used to make sure
the robot will never move backwards. Black and gray continuous vectors
indicate the vectors that respect and violate the constraints, respectively.

Once constraints (C1) and (C2) are satisfied, it is easy to
prove that u(q) never drives the robot outside the corridor
(requirement (R1)) and always moves the robot to the next
triangle in the sequence (requirement (R2)). Observe that,
since two adjacent triangles share two vertices (with the same
associated vectors) at the common edge and the interpolation
is linear along this edge, the interpolated vector field is
continuous. Discontinuity only appears if a single vector
cannot be used in one of the common vertices, as it will
be shown next.

Differently from [9], where a linear programming tech-
nique is used to compute vqi

, vqj
and vqk

, in this paper
the direction of these vectors are only chosen based on the
geometry of the cells, and their magnitude are chosen by the
maximum desirable robot velocity inside the cell. Although
the algorithm in [9] yields a potentially better vector field
(in the sense of shorter robot paths) when it can guarantees
continuity, our method is more intuitive and less expensive.
Besides these aspects, both methods are apparently inter-
changeable and the algorithm in [9] can easily incorporate
the ideas proposed in this paper to guarantee continuity. We
will now proceed to explain our technique.

Initially, except for f0 and fn, each vector vl of fi is
chosen to be parallel to one of the incident edges of vertex l
that are in B, pointing towards the direction determined by
the sequence of triangles. Notice that we need to choose
between two vectors (see Fig. 3). The chosen one is the
vector that simultaneously satisfies constraints (C1) and (C2).
Except for collinear incident edges, just one vector may
satisfy both constraints. When none of the vectors satisfies
constraints (C1) and (C2) it can be proved that no other fixed
base vector can satisfy these constraints simultaneously [9].
This fact is inherent to the geometry of the problem. A
simple solution is to split the sequence of triangles into two
subsequences, resulting in a discontinuity in the vector field.

To avoid discontinuity, when no single vector at vertex qj

satisfies constraints (C1) and (C2) we subdivide the triangle
where the problem appears into two or three triangles and
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Fig. 4. Subdivision of triangle fr in two (a) and three (b) triangles.

consider a continuous set of vectors, or in another point
of view, a rotating base vector at qj . Figure 4(a) presents
the case where the robot must move from triangle fr−1 =
qiqaqj to fr = qiqjqk and we could subdivide fr into two
triangles T1 = qiqjqm and T2 = qmqjqk. Inside T1 we
use vqj

= α(qm − qj)/‖qm − qj‖, where α is a positive
constant related to the maximum desirable robot velocity.
Notice that qjqm is the extension of the edge of fr−1 that
is incident to qj (qaqj ∈ B in Figure 4). Inside T2 and inside
the next incident triangles fr+1 . . . fr+h to qj , we use the
rotating base vector α(q − qj)/‖q − qj‖, where q is the
robot configuration. At qm we use α(qm − qi)/‖qm − qi‖
just like in the triangles we do not have problem. Since at the
interface between T1 and T2,(q−qj) is parallel to (qm−qj)
we guarantee continuity.

Figure 4(b) shows the case where we subdivide fr into
three triangles. In this case, T1 is formed just like before,
and T2 and T3 are formed by the inclusion of a node qn

such that (qj − qn) is parallel to vqk
. The base vector at

qn is obviously equals to the one at qm, (vqn
= vqm

).
Inside triangles T2 and T3, and also inside the next incident
triangles to qj , fr+1 . . . fr+h, we use the rotating base vector
α(q−qj)/‖q−qj‖. The decision of splitting triangle fr into
two or three triangles is based on a simple test: if the unitary
vector in the direction of (−vqk

) can be written as a convex
combination of the unitary vectors in directions (qm − qj)
and (qk −qj), then we use three triangles; otherwise we use
two. The reason for is explained in the next section.

For triangle f0, one of the vertices is not shared by other
triangles (see Fig. 2). The vector at this vertex can be any
convex combination of the direction vectors of the incident
edges. For fn, since the robot must stop at qg , the vectors
at each vertex l are computed as β(qg − (xl, yl)), where β
is a positive constant which is explained next, (see Fig. 3).

So far, we have emphasized the direction of the base
vectors. The magnitude of the base vectors vql

, except for
the ones associated to the last triangle, is defined as the
maximum desirable velocity α. In this way, by Equation (1),
we guarantee that the maximum robot velocity inside each
triangle is smaller than or equal to α. It is important to
mention that we must maintain the proportion among the
magnitudes of vqi

, vqj
, and vqk

of fn, in order to guarantee
that the robot will reach the goal. This proportion can
be maintained by normalizing the base vectors of the last
triangle according to the magnitude of the largest one and
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multiplying such normalized vectors by α, determining then
the parameter β presented before.

Finally, one could claim that it is possible to have a
rotating base vector or even a discontinuity problem at the
last triangle, and then it would be impossible to assign the
correct base vectors in order to properly drive the robot to
the goal. If such situations occur, it is always possible to
subdivide the last triangle in such a way that the target is
isolated in a new triangle free of those problems.

IV. MATHEMATICAL ANALYSIS

As we said before, by the simple fact that two adjacent
triangles share two vertices (with the same associated vec-
tors) at the common edge, and the interpolation is linear
along this edge, the interpolated vector field is continuous.
More over, since q(t) changes continuously, it is obvious
that the inclusion of rotating vectors that points toward the
current robot configuration does not introduce discontinuity
to the vector field. Therefore, at this point it is already clear
that the objective of having a fully continuous vector field
is accomplished by our algorithm. In this section, we aim to
prove that our algorithm properly drives the robot to the goal.
This means that the robot must reach the last triangle without
moving outside the corridor (requirement (R1)) and always
moving to the next triangle in the sequence (requirement
(R2)). Also, once in the last triangle the robot must always
move towards the goal.

We start with a geometric property of triangles which will
be shown to be very useful. We are not going to present a
proof of this property, but we believe it is quite trivial to see
it is true, since triangles cannot have parallel and collinear
edges.

Property 1 Given any triangle qiqjqk, counterclockwise
ordered, it is possible to guarantee that (qj − qi) · ve > 0
and (qk − qi) · ve > 0, where ve⊥(qk − qj) and points
outward the triangle.

Proposition 1 Given a holonomic robot with kinematics
q̇ = u(q), the vector field u(q) computed by the algorithm
proposed in Section III attends the requirements (R1) and
(R2).

Proof: If no continuity problem appears in the se-
quence, our algorithm always choose base vectors which
attend constraints (C1) and (C2) (see last section). Therefore,
since the vector field inside the triangles is generated by
a convex combination of the incident base vectors (equa-
tion (1)), it is guaranteed the robot will stay inside the
corridor and will move to the next triangle. We still have
to prove this is also true when a continuity problem appears.

Since rotating vectors never point outwards the corridor, it
is clear that constraint (C1) is attended. Thus, to finish this
proof we only need to show that the robot always moves to
the next triangle when it is inside the triangles incident to
the vertices where these rotating vectors appear.

Suppose a continuity problem happened in a triangle
qiqjqk, the robot must move towards the edge qjqk, and

a rotating vector is assigned to qj . Assume this is the
case where 3 triangles are used to subdivide the original
problematic triangle (see Fig. 4(b)). So, inside T1 we can
write that vqi

= γλ(qj −qi) + γ(1− λ)(qk −qi), where γ
is a positive constant related to the magnitude of the vector
and λ ∈ [0; 1], vqm

= γ(qk − qi), and vqj
= γ(qm − qj).

By using Property 1 it is clear that vqi
·ve > 0, vqj

·ve = 0,
and vqm

· ve > 0. Therefore, constraint (C2) is attended. In
triangle T2, imagine there is a vector Vθ perpendicular to
the rotating vector pointing in direction of the rotation (see
Fig. 4(b)). If we prove u(q) · Vθ > 0 then it is proved
the robot will reach the next triangle. We can write that
vqn

= γ(qk − qi). Since it is possible to form triangles
inside T2 where Vθ = ve, by using Property 1, vqm

·Vθ > 0,
vqj

·Vθ = 0, and vqn
·Vθ > 0. Therefore u(q) ·Vθ > 0 as

desired. Now, we will use the same argument in T3. Since
vqk

= γ(qj − qn), by using Property 1, u(q) · Vθ > 0. It
is straight forward to check that this argument is also true
inside the next triangles incidents to qj .

Suppose now the case where 2 triangles are used to
subdivide the original problematic triangle (see Fig. 4(a)).
Obviously, except for T2 the analysis is the same as the
one developed in the last paragraph. Inside T2 we can write
vqk

= γλ(qj − qm) + γ(1− λ)(qk − qi), where λ ∈ [0; 1].
Since it is possible to form triangles inside T2 where Vθ =
ve, by using Property 1, vqk

· Vθ > 0, vqj
· Vθ = 0, and

vqm
·Vθ > 0. Therefore u(q) ·Vθ > 0 and the proof is now

complete.

Proposition 2 The vector field in the last triangle converges
to the goal.

Proof: This proposition can be proved by showing that
u(q) · (qg − q) ≥ 0, ∀q ∈ fn. If we replace the area
terms, Al, in equation (1) by the corresponding determinants,
replace the base vectors by β(qg − (xl, yl)), where β is a
positive constant related to the normalization of the vectors
(see Section III), and l = i, j, k, and perform some simple
algebra, then we can show that

u(q) = β(qg − q). (2)

Therefore, u(q) · (qg −q) = β‖qg −q‖2 ≥ 0. Notice that
u(q) is equal zero only at qg , which means the vector field
only vanishes at the goal.

In the next section we present some simulations to illus-
trate the effectiveness of our approach.

V. SIMULATIONS

In this section we illustrate the proposed methodology for
fully continuous vector field computation in two different
sequences of triangles. The first sequence fits in the case
explained in Section III where we propose to subdivide the
problematic triangle into two new triangles. On the other
hand, the second sequence fits in case where we propose to
subdivide it into three new triangles.

Figure 5(a) presents the referred first sequence where
the problematic triangle is marked with dashed horizontal
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Fig. 6. Velocity components for the trajectories shown in Figure 5.

lines. This sequence is quite similar to the one presented
in [9] since we aim to compare the resultant vector fields.
Actually, we compare the proposed fully continuous vector
field with a piecewise vector field generated by the algorithm
we presented in [11] which is an adaptation of the algorithm
in [9]. Both algorithms suffer from the same drawback
related to the discontinuity caused by the split of the original
sequence of triangles into two new sequences.

Figure 5(b) presents the vector field computed by the
the old algorithm (presented in [11]) and also a typical
holonomic trajectory. The vector field and the analogous
trajectory obtained by the novel approach is in Figure 5(c).
This figure also shows the two new triangles created by
the proposed subdivision of the problematic triangle. By
looking at these two figures, one can clearly visualize the
improvement in the smoothness with the new algorithm. This
improvement can also be verified in Figures 6(a) and (b)
which present the components of the velocity vectors along
the trajectories presented before. The discontinuity occurs
about the instant 13s where we notice the separation between
the corresponding curves.

The second sequence of triangles is in Figure 7(a).
The corresponding vector field computed by the proposed
methodology and a typical holonomic trajectory are in Fig-
ure 7(b). In Figure 7(b), it is also presented the three new
triangles created by the algorithm. As expected, by simple
inspection it is obvious that the vector field is continuous.
In the next section we present conclusions of this work and
also give some possible future directions.

VI. CONCLUSIONS AND FUTURE DIRECTIONS

This paper proposed a simple and efficient methodology
to create fully continuous, two dimensional vector fields on

sequences of discrete triangles. We present proofs showing,
that, besides continuous, the computed vector field keeps
the robot inside the sequence and drives it to the goal. The
methodology is complementary to the one proposed in [6]
and may be used to model other kinds of hybrid systems.

Next steps of this work include the extension to three
dimensions, where the configuration space is divided into
a set of tetrahedra. This will allow the hybrid control of
rotating and translating ground robots. Also, we are planning
to extend our ideas for controlling outdoor mobile robots
in [11] to include continuous vector fields. It is also important
to look at the discrete algorithms responsible to find the
optimal sequence of cells. For controlling non-holonomic
robots, besides designing a non-linear controller to follow
the vector field, it is also necessary to guarantee the robot
can make all the turns imposed by the field. We believe this
guarantees may be obtained by acting on the geometry of
the sequence and not on the vector field methodology itself.
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Fig. 5. (a) Sequence of triangles with a problematic triangle marked with horizontal dashed lines. (b) Trajectory overlayed on the resultant vector field
computed by the methodology that do not treats the discontinuity problem. (c) Trajectory overlayed on the fully continuous vector field computed by the
methodology proposed in this paper.
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Fig. 7. (a) Sequence of triangles with a problematic triangle marked with horizontal dashed lines. (b) Trajectory overlayed on the fully continuous vector
field computed by the methodology proposed in this paper.
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