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Abstract— This paper presents a novel approach to acquire
dynamic whole-body movements on humanoid robots focussed
on learning a control policy for the Center of Mass. A policy-
gradient method is used to acquire a CoM movement as a
control policy for achieving a desired dynamic task. A CoM-
Jacobian-based redundancy resolution is then used to compute
angular velocities for all joints in order to achieve a whole-body
movement consistent with the CoM movement acquired through
learning. To demonstrate the effectiveness of our method, we
apply it in simulation to the learning of a strong punching
movement on the Fujitsu humanoid robot, Hoap-2.

Index Terms— Reinforcement learning, Humanoid robot,
Whole-body movement, Policy-gradient method.

I. INTRODUCTION

Recently, there has been a growing interest in developing
humanoid robots and control methods to achieve dynamic
whole-body movements on humanoid robots [1], [2], [3],
[4]. Since humanoid robots have a similar physical structure
to humans, it is expected that humanoid robots will help
us in many tasks in our normal living spaces without any
additional environment-specific equipment. Especially for
the last decade, a number of methods for achieving various
tasks on a humanoid robot have been explored, mainly
to achieve biped walking and balancing [5], [6], [7], [8].
However, even though a number of real humanoid robots
have demonstrated dynamic whole-body movements based
on these methods, it is still infeasible to set up humanoid
robots in our own living spaces in order to help us because
they do not have an ability to adapt to a new environment
like humans and animals.

As one of the candidate solutions for granting humanoid
robots with such an ability, reinforcement learning (RL) is a
promising method compared with other learning frameworks.
Reinforcement learning is a framework for improving the
control rules of the agent, i.e., the robot, through interaction
with the environment according to a trial-and-error paradigm
unless using an explicit model of the environment [9], [10].
However, with an increase of dimensionality in state and
action space, RL often requires not only a large number of it-
erations, but also has a large computational cost, especially in
the case of learning a complex control policy. Although there
have been many attempts to apply reinforcement learning

methods for several robots in simulation and real hardware
systems in order to acquire a desired movement, most of the
robots to which learning has been applied so far have a small
number of degrees of freedom (DoFs) and not as many as
the 20 to 30 DoFs typically offered by humanoid robots [11],
[12], [13], [14], [15]. To the best of our knowledge, only one
attempt successfully achieved learning of desired movements
on a small humanoid robot [16]. The work was focused on
the learning of biped walking [16]. This paper focuses on
developing a general approach suitable for learning various
dynamic tasks on humanoid robots.

In this paper, we suggest a novel approach for acquiring
dynamic whole-body movements on humanoid robots, fo-
cused on learning a control policy for the Center of Mass
(CoM) in the robot rather than joint trajectories. Humanoid
robots cannot however, directly control their own CoM
through joint torques because they are not constrained by
the ground. Moreover, unreasonable target joint trajectories
are infeasible because they make the robot fall over due to
dynamic inconsistency. Thus, in order to achieve a desirable
CoM movement, it is promising to directly control the
ground reaction force [17]. Furthermore, if we keep the
Zero Moment Point (ZMP) [18] in the support polygon
during CoM control, it may be possible to prevent robots
from falling over due to moments on the edges of their
feet. A CoM-Jacobian-based redundancy resolution is used to
compute angular velocities for all joints to in order to achieve
a whole-body movement consistent with the desired CoM
movement [7]. The above framework makes the learning
problem for the whole-body movement a more reasonable
task.

We demonstrate the effectiveness of our proposed frame-
work by applying it to a ball-punching task in numerical
simulations using a commercial humanoid robot, Hoap-2.

The organization of this paper is as follows. In Section
II, we briefly introduce Zero Moment Point and the ZMP
equation. Next we describe how we can control the CoM
by manipulating the ZMP based on the ZMP equations in
Section III. In Section IV, we present the policy-gradient
method we use to learn an appropriate control policy for a
desired full-body movement on a humanoid robot. In section
V, we present a concrete example of the learning system for

2007 IEEE International Conference on
Robotics and Automation
Roma, Italy, 10-14 April 2007

ThC9.5

1-4244-0602-1/07/$20.00 ©2007 IEEE. 2688



Fig. 1. Approach for learning a desired whole-body movement on a humanoid robot

a ball-punching task on a humanoid robot. In section VI,
we describe the results achieved by applying the proposed
method in numerical simulations. Finally, we summarize this
paper and discuss our future work.

II. APPROACH FOR LEARNING A DESIRED WHOLE-BODY

MOVEMENT ON A HUMANOID ROBOT

In this section, we briefly describe our suggested approach
for learning a desired whole-body movement on a humanoid
robot. Figure 1 shows a rough sketch of our suggested ap-
proach. The approach focuses on learning a CoM movement
suitable for the achievement of the task on a humanoid robot.
The CoM is one of the most important features of humanoid
robots because it conveniently represents the whole motion
of the humanoid robot. Based on this insight, we propose
to focus on the learning the CoM in order to achieve a
desirable movement on humanoid robot, rather than learning
the movement in terms of all joints.

From a motor learning perspective, learning a CoM move-
ment is simpler and easier than learning all joint movements
directly. A CoM-Jacobian-based redundancy-resolution tech-
nique is used to compute angular velocities for all joints in
order to achieve a whole-body movement consistent with
the desired CoM movement [7]. We use a weighting matrix
in the weighted pseudo-inverse computation which has a
significant effect on the movement in joint space. We will
focus on generalizing this aspect in forthcoming research.
In this work, we use weights manually tuned in advance.
The following two sections describe the components of the
method: CoM control based on the ZMP, distribution of a
CoM movement into joint space, and reinforcement learning
of a CoM movement.

III. COM CONTROLLER BASED ON THE ZMP EQUATION

As we mentioned in Section I, for the last decade, many
humanoid robots have achieved various dynamic tasks such
as biped walking and balancing. Most proposed methods are
based on the ZMP -an equation representing the dynamics of
a humanoid robot’s CoM in an approximated manner. This

section describes a method for achieving control of the CoM
based on the ZMP.

A. ZMP Compensation control

According to Nagasaka [17] , assuming a mass-
concentrated model, the relationship between the moment
acting on the ZMP and the objective ZMP is given as

nZMP = nOZMP + (rOZMP − rZMP ) × fCoM , (1)

nOZMP = (rCoM − rOZMP ) × fCoM , (2)

where nZMP ∈ R3 and nOZMP ∈ R3 are ZMP and
objective ZMP moments respectively. r ∈ R3 is the position
vector and f ∈ R3 is the force acting on the CoM.

From the definition of the ZMP: the point such that
horizontal components of the moment acting at the point are
zero, we can derive a control law to compensate the ZMP to
the objective ZMP by kinematically manipulating the CoM
as follows:

∆rCoM
x,i+1 = K(rZMP

x − rOZMP
x ) + ∆rCoM

x,i

+(∆rCoM
x,i − ∆rCoM

x,i−1) + K∆rCoM
x,i , (3)

∆rCoM
y,i+1 = K(rZMP

y − rOZMP
y ) + ∆rCoM

y,i

+(∆rCoM
y,i − ∆rCoM

y,i−1) + K∆rCoM
y,i , (4)

where K = fCoM
z,i ∆t2/(rCoM

z,i − rOZMP
z,i ) and ∆t is a

discrete time step. ∆r is the deviation of position during ∆t.
It is straightforward to determine that the desired velocity of
the CoM is given as

ṙCoM
x = ∆rCoM

x,i+1/dt, (5)

ṙCoM
y = ∆rCoM

y,i+1/dt. (6)

Under such control, the robot can be regarded as an inverted
pendulum with its supporting point at the objective ZMP.
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B. Calculating the reference ZMP according to the inverted-
pendulum model

As we mentioned above, since the horizontal components
of the moment on the ZMP are zero, the mass-concentrated
model of the humanoid robot can be regarded as an inverted
pendulum. Based on this analogy, we can apply a simple
PID controller to control CoM by manipulating the ZMP as
described in [7].

The dynamics of the mass-concentrated model approxi-
mately linearized around an equilibrium point are given as

r̈CoM
x = ω2(rCoM

x − rZMP
x ), (7)

r̈CoM
y = ω2(rCoM

Y − rZMP
y ) (8)

where, ω =
√

r̈CoM
z +g

rCoM
z −rZMP

z
. The dynamics equations above

represent the horizontal movement of the CoM. Due to the
symmetry of the x and y components, we are able to focus
on the x component in following derivation without loss of
generality. By differentiating Equation (7) and ignoring the
change in ω, the following equation may be derived.

...
r CoM

x = ω2(ṙCoM
x − ṙZMP

x ). (9)

In order to control the CoM rCoM
x with the reference

rCoM
xref as a target, we can apply following simple controller.

ṙZMP
x = (KP +

KI

s
+ KDs)(ṙCoM

xref − ṙCoM
x ). (10)

ṙCoM
xref = KC(rCoM

xref − rCoM
x ). (11)

KP , KI , KD and KC are gains. By the final-value theorem,
it may easily be proven that rCoM

x converges to rCoM
xref with

appropriate settings for the gains.
By integrating the two components presented in this

section, the CoM can be controlled by manipulating the
ZMP. In the next section, we describe a CoM-Jacobian-based
redundancy-resolution technique used to achieve a whole-
body movement consistent with the desired CoM movement.

C. Distributing the CoM movement into joint space

In the previous section, we presented a ZMP manipulation
method based on the inverted-pendulum model in order
to control the CoM according to the desired trajectory. In
this section, we present a CoM-Jacobian-based redundancy-
resolution technique used to achieve a whole-body movement
consistent with the desired CoM movement [7]. We also
present the CoM controller used in our framework which
is based on the CoM Jacobian.

1) Whole body motion generation for balancing: Sugihara
et al. [7] proposed the concept of, and a calculation method
for the CoM Jacobian which relates the velocity of the CoM
with the angular velocities of all joints as

ṙCoM = JC(q)q̇. (12)

JC(q) ∈ R3×n is the CoM Jacobian. n is the the number
of DoFs in the robot. By using the CoM Jacobian and

the weighted pseudo-inverse calculation, we can distribute
the CoM velocity to the angular velocities of all the joints
according to a sum-squared minimization of all the joint
angular velocities as follows:

q̇ = J+
C ṙCoM + (I − J+

C JC)k, (13)

where,
J+

C = W−1JT
C (JCW−1JT

C )−1, (14)

W = diag{wi}(i = 1, · · · , n) and k ∈ Rn is an
arbitrary vector. I ∈ Rn×n is the identity matrix. The above
redundancy-resolution technique with a weighting matrix
determines a whole-body motion consistent with the desired
CoM movements at the velocity level.

2) CoM controller in the double support case: We com-
posed the following controller for the CoM assuming both
feet are contacting the ground:

q̇ = J+ṙ + (I − J+J)k, (15)

where, ṙ ∈ R6 = [ṙC − ṙrl, ṙC − ṙll]T and J(q) ∈ R6×n =
[JC(q) − Jrl(q), JC(q) − Jll(q)]T . k ∈ R6 is an arbitrary
vector. The variables are defined in Figure 2.

The desired ṙ to control the CoM according to the desired
trajectory is given by Equations (5), (6) and (10).

Fig. 2. The definition of the variables.

IV. REINFORCEMENT LEARNING FOR COM MOVEMENT

In this section, we present a reinforcement learning
method used for the proposed learning framework. Specifi-
cally, we use a policy-gradient method for learning CoM mo-
tion. The policy-gradient method is a kind of reinforcement
learning method which maximizes the average reward with
respect to parameters controlling action rules known as the
policy [19], [11], [20]. Compared with most standard value-
function-based reinforcement learning methods, this type of
method has particular features suited to robotic applications.
Firstly, the policy-gradient method is applicable to Partially
Observable Markov Decision Processes [21]. It is almost
impossible to consider all possible states of the robot because
even if it has a complete set of sensors there will be a
degree of noise. It is also possible to consider a partial set of
states as input for a reinforcement learning system. Secondly,
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the policy-gradient method is a stochastic gradient-descent
method. The policy can therefore be improved upon every
update. In this section, we briefly describe a framework for
reinforcement learning with the policy-gradient method.

A. Reinforcement Learning with a policy-gradient method

Assuming a Markov Decision Process, the average reward,
discounted cumulative reward and value functions are defined
as

η(θ) = lim
T→∞

E

[
1
T

T∑
t=0

r(xt)

]
, (16)

ηβ(θ) = lim
T→∞

E

[
1
T

T∑
t=0

βr(xt)

]
, (17)

V π
β (x) = E

[ ∞∑
k=0

βrt+k+1

∣∣∣xt = x

]
, (18)

Qπ
β(x, a) = E

[ ∞∑
k=0

βrt+k+1

∣∣∣xt = x, at = a

]
. (19)

η(θ) is the average reward and ηβ(θ) is the discounted
cumulative reward. V π

β (x) and Qπ
β(x, a) are state-value

function and action-value function, respectively [9]. x is the
state, a is the action and θ is the parameters of the stochastic
policy. β is a discounting factor. The goal of reinforcement
learning here is to maximize the average reward.

If we can calculate the gradient of η(θ) with respect to
policy parameters θ, it is possible to search for a (sub)optimal
policy in policy-parameter space by updating the parameters
to θ ← θ + α�η(θ). �η(θ) is the gradient of η(θ) with
respect to θ. Various derivations and algorithms have been
proposed in order to estimate the gradient based on sam-
pling, though interaction with the environment. According
to Kimura and Kobayashi [22], the gradient is given by

∇η = (1 − β)∇ηβ (20)

= (1 − β)
∫

d(x)
∫

π(a,x)
[
∇ log d(x)

+
1

1 − β
∇ log π(a,x)

]
Qπ

β(x, a)dadx (21)

=
∫

d(x)
∫

π(a,x)
[
(1 − β)∇ log d(x)

+∇ log π(a,x)
] {

Qπ
β(x, a) − V π

β (x)
}

dadx (22)

= lim
T→∞,β→1

1
T

T∑
t=0

∇ log π(at,xt)
T∑

s=t

βs−tδ(xs, as)

= lim
T→∞,β→1

1
T

T∑
t=0

δ(xt, at)
t∑

s=0

βt−s∇ log π(as,xs).

(23)

Where, π(x, a; θ) = P (a|x; θ) is the stochastic pol-
icy, which maps a state x to an action a stochasti-
cally. �π(x, a; θ) means the deviation of π(x, a; θ) with
respect to θ. d(x) is the stationary distribution of x.

δ(x, a) is TD-error defined as δ(xt, at) = r(xt) +
β

∫
p(xt+1|xt, at)V π

β (xt+1)dxt − V π
β (xt). Equation (20) is

presented in [23] as a Theorem.1, and Equation (21) is
derived in [24]. The derivation of Equation (22) is based on∫

�π(x, a)V π
β (x)da = 0. If we neglect V π

β (x), the algorithm
is exactly same as the GPOMDP algorithm developed in [20].
As pointed out in [20], the discounting factor β controls a
bias-variance trade-off in the policy-gradient estimated by
sampling.

In fact, we update the policy parameters according to the
following rule: θt+1 = θt + αDtδ (xt, at), where, D is
updated by Dt = βDt−1 +� log π(xt, at). However, to gain
TD-error δ (xt, at), we need the state-value function V π

β (x).
In this paper, we simultaneously approximate it by using
function approximator V̂ π

β (x;w) and a simple TD-learning

method presented as w = w + αδt
∂V̂ π

β (x;w)

∂w . TD-error
δ(xt, at) is then approximately calculated by δ(xt, at) =
r(xt)+βV̂ π

β (xt+1)− V̂ π
β (xt). Note that β should be satisfy

0 ≤ β < 1 in order to prevent the state-value function from
diverging.

V. APPLICATION TO LEARNING OF A DYNAMIC TASK:
BALL-PUNCHING

In order to demonstrate the effectiveness of our proposed
learning framework for learning whole-body movements
with a humanoid robot, we applied it to the learning of a
dynamic ball-punching motion. The goal was to make the
ball-punching stronger though the learning process focused
on the CoM motion. This section describes the implementa-
tion of a punching motion and the learning process.

A. Punching motion projected onto the null-space of the
CoM controller

A punching motion was straightforwardly implemented by
tracking a target trajectory in task space. In this study, we
achieve the tracking control in the null-space of the CoM
controller by introducing the following vector as the arbitrary
vector in Equation (15):

k = J̃+
ra(ṙra − JraJ+ṙ), (24)

where, Jra ∈ R3×n is the Jacobian relating the right hand
velocity in task space ṙra with q̇ as ṙra = Jraq̇, and J̃+

ra =
Jra(I −J+J). Introducing this vector yields target tracking
with the right hand in the null-space of the CoM controller
[25].

B. Learning the CoM movement for the dynamic punch

1) The Gaussian policy and function approximator for
the state-value function: We implemented the following
Gaussian policy as a stochastic policy for controlling the
CoM.

π(x, a; θ) =
1√
2πσ

exp
(−(a − µ(x; θ))2

2σ2

)
, (25)

where µ(x; θ) = θT φ(x). x is the state, a is the action. We
located the Gaussian basis functions φ(x) on a grid with
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even intervals in each dimension of the observation space as
in [10], [15]. The function approximator for the state-value
function is also modeled as V̂ π

β (x) = wT φ(x)
2) The reward function: The purpose of the ball-punching

task is to make the punching as strong as possible. We
designed the reward function according to this objective as

r = (t − 2.5)
√

vT
b vb (26)

because the velocity of the ball vb hit by punching is pro-
portional to the momentum of the ball. The term associated
with time t is incorporated in the reward function in order to
avoid local-minima motions which involve the robot falling
forwards and disregard the timing of the punch. The value
2.5 is a bias to achieve distribution of the reward to positive
and negative. The negative reward −5 is given when the both
feet leave the ground in order to avoid acquiring a punching
motion with jumping.

VI. SIMULATION SETTINGS AND RESULTS

We applied the proposed learning framework to the ac-
quisition of a strong punching movement on a Fujitsu Hoap-
2 humanoid robot (see Figure 3) in numerical simulation.
As a first step, in this simulation, we focused on learning
a policy controlling x-axis component of the CoM, i.e.,
the output from the policy is the target velocity of the x-
axis component of CoM ṙCoM

xref . The state-space was simply
defined as x =

(
rCoM
x , t

)
. We then allocated 100 (= 10×10)

basis functions φ(x) in the state-space (−1.0 < rCoM
x <

0.0, 0.5 < t < 4.0) to represent the mean of the policy µ(x).
The ball was modeled as a simple point mass (0.1kg) and
the impact calculation model was a spring-damper model. A
spring-damper model was also used to model the floor. The
integration time-step for the robot was 0.2ms, and the time
interval for learning was 50ms.

For the CoM and right-arm controllers, it is required to set
the weighting matrix suitable for this task to appropriately
achieve a whole-body motion. In order to avoid using the
DoFs in the right arm (which are used for the punching
motion) for the CoM controller, the weights in right arm
are set to smaller (0.01) than other joints (1.0) in the
CoM controller described in Equation (13). For the right-
arm controller described in Equation (24), to achieve a
punching motion mainly using the right arm, we set the
weights in body joint larger (3.0) than other joints (1.0).
The target trajectory for the right-arm controller in order
to achieve a punching motion was designed as rrax ref =
p sin (2πf (t − 3.5))+q (t ≥ 3.5), and we set the parameters
so that the amplitude p = −0.03m, the bias q = 0.21m
and the frequency f = 1.5 Hz by considering the Hoap2’s
physical model. During 0 < t < 3.5, rrax ref is the constant
p.

Figure 4 shows the reward at each episode according
to the policy-gradient method. The curve means that the
(sub)optimal punching motion with maximal reward was
acquired in around 3000 episodes. Figure 5 is an acquired
policy for controlling x-axis component of CoM, and Figure

Fig. 3. Fujitsu humanoid robot Hoap-2. 6DoF for the legs, 4DoF for the
arms and 1DoF for the waist. The total weight is about 7kg, and the height
is about 0.4m.

6 presents a whole-body punching motion acquired with the
control policy.

The punching motion with keeping the CoM at the initial
point yielded the ball momentum about 0.037 kgm/sec. The
acquired punching motion without any probabilistic factors
made the ball momentum about 0.085 kgm/sec in the average
(the standard deviation was 0.005) , which means the ball
momentum generated by the learned policy was about 2.3
times larger than initial performance.

0 500 1000 1500 2000 2500 3000
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1
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R
ew

ar
d

Fig. 4. The acquired reward at each episodes. The learning curve was
averaged by 5 experiments and smoothed out by taking a 50-moving
average.

VII. DISCUSSION

This paper presented an approach for acquiring dynamic
whole-body movements on humanoid robots focussed on
learning a control policy for the Center of Mass. We applied
the framework to the learning of a dynamic ball-punching
motion on Hoap-2 model in numerical simulations. As a
result, we demonstrated that it is possible to acquire dynamic
punching motions though learning using our approach. We
are currently working on implementing the acquired control
policy on the real humanoid robot (in Figure 3). The pro-
posed learning framework will be applied to the humanoid
robot in real environment in the near future.
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Fig. 6. An acquired whole-body punching movement. The snapshots are corresponding in 1.832 sec, 2.868 sec, 3.492 sec, 3.705 sec and 3.858 sec,
respectively. The red bar on the foot of the robot means the ground reaction force.
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Fig. 5. An acquired control policy for axis component of the CoM. The
dash-line is the trajectory corresponding to the punching motion in Figure
6
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