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Abstract— Flash LADAR cameras based on continuous-wave,
time-of-flight range measurement deliver fast 3D imaging for
robot applications including mapping, localization, obstacle
detection and object recognition. The accuracy of the range
values produced depends on characteristics of the scene as well
as dynamically adjustable operating parameters of the cameras.
In order to optimally set these parameters during camera
operation we have devised and implemented an optimization
algorithm in a modular, extensible architecture for real-time
applications including robot control. The approach uses two
components: offline nonlinear optimization to minimize the
range error for a training set of simple scenes followed by an
online, real-time algorithm to reference the training data and
set camera parameters. We quantify the effectiveness of our
approach and highlight topics of interest for future research.

I. INTRODUCTION

In the last few years, flash LADAR cameras have be-
come available as highly integrated cameras connecting to a
computer over USB or Firewire. At the National Institute of
Standards and Technology (NIST) we have been studying the
performance and applicability of these solid-state cameras,
which in newer models produce range images of up to
176x144 pixels at frame rates approaching 50 Hz without
the use of scanning mirrors found in other LADAR technolo-
gies. Flash LADAR cameras provide their own illumination
for indoor and some outdoor environments, with a non-
ambiguous range of 7.5 to 30 meters in the models we
tested. The technology has a large number of potential
applications, including robot navigation, object recognition
and manipulation, robot safety and general surveillance [1].

In this paper we describe a method for maintaining optimal
camera settings during operation so range images are as
accurate as possible. Flash LADAR cameras have several
parameters that can be adjusted during operation, including
the integration time of the demodulation pixels on the CMOS
sensor and the modulation frequency of the illumination
source. The range cameras produce both systematic and
random range errors that depend on these parameters. We
perform off-line training to minimize range errors for a
variety of scenes, and store the results for each individual
model. Afterwards, the results are loaded into a regression
tree and accessed during normal use. We standardized the
process and used it to control commercially-available models
from three manufacturers.

Standardizing an approach to setting range camera param-
eters supports our objective of developing protocols for eval-

uating flash LADAR technology. A number of researchers
have undertaken the evaluation of LADAR technologies [2],
[3], [4], [5], while others have studied how to find and
remove noise artifacts in flash LADAR range data [6]. A
unified solution would use knowledge of the sensor’s noise
behavior to continuously monitor and optimize performance.

II. BACKGROUND: FLASH LADAR

It is helpful to understand the operation and error mecha-
nisms of these cameras in order to maximize their effective-
ness. We will review how flash LADAR works, the primary
causes of range measurement errors, and the meaning of the
adjustable settings in currently available cameras. Then we
will summarize our approach for minimizing these errors in
unsupervised use.

We purchased and tested flash LADARs from CSEM
SA, PMDTec GmbH, and Canesta, Inc.1 All three models
use near-infrared LEDs for illumination and rely on the
same type of CMOS image sensor. The specifications of the
cameras are summarized in Table I.

Manufacturer CSEM Canesta PMDTec
Model SR2 DP205 PMDvision 19k
Resolution 160x124 64x64 160x120
Interface USB USB Firewire or TCP/IP
Light power (W) 1 1 3
FOV (deg) 46x42 55x55 40x30
Max. range (m) 7.5 11.5 30

TABLE I
SPECIFICATIONS OF SHORT-RANGE LADARS USED AT NIST.

A. Continuous-wave range measurement

Flash LADARs measure the distance to an object by
measuring the time needed for light to travel from the
instrument to the object and back. Radiated light (usually
near infrared) is amplitude modulated at several MHz, so
the modulation of the reflected light has a noticeable phase
shift. The phase angle is measured by integrating the product
of the two signals. Lange [7] provides the fundamentals in
his thesis.

1NIST does not endorse products discussed within this paper nor man-
ufacturers of those products. Products mentioned are for information only,
and are not expressed as an endorsement for them or their manufacturer.
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Fig. 1. Example flash LADAR cameras

This method gives a unique result only for phase angles
between 0 and 180 degrees. For objects more than 1

2 wave-
length away from the camera, such as 7.5 m at 20 MHz,
the range measurement is the true range modulo 7.5 m. This
limits the useful range of the camera.

Finally, the distance to the object is computed from the
phase angle and the modulation frequency. A higher modula-
tion frequency might provide better measurement resolution,
but a shorter effective range (for example, 3.75 m at 40
MHz).

B. Error mechanisms

The time-of-flight measurement process is inherently noisy
since it can be photon limited with few returns from a
distant or dark object using eye-safe illumination sources.
Figure 2 shows how the theoretical range accuracy worsens
with decreasing illumination [7]. Each individual phase angle
measurement, computed from one cycle of the light mod-
ulation, can be noisy. To mitigate this problem, the range
values returned by the cameras come from measurements
averaged over many thousands of cycles of the illumination
signal. This measurement period is called the integration
time, equivalent to the exposure time of a still camera.

As with film cameras, lengthening the integration time
too much causes problems. Besides compromising frame
rate in the interest of range error reduction, long integration
times allow too much light to arrive at brightly illuminated
pixels, saturating the amplifier circuitry. When this happens,
the range values develop large errors and the data is often
rendered useless. The phenomenon is intensified when the
camera’s illumination is very directional or very powerful.

C. Settings

Several settings define the operation of each camera. They
also form the search space for our optimization procedure,
and the dependent variables for regression lookup. Each
camera exposes a different set of parameters through its
internal logic and driver software. See Table II for a summary
of the settings and their adjustment ranges for the CSEM,
PMD and Canesta cameras.

Fig. 2. Theoretical best-case measurement accuracy derived from shot
noise and thermal noise [7].

Parameter Unit Min Max Default
CSEM SR2
Integration time µs 256 65280 10200
Distance offset m 0 7.5 0
Amplitude threshold - 0 65535 192
Canesta DP205
Integration time 1 ms 1 500 13
Integration time 2 ms 1 500 30
CMR 1 - 0 100 3
CMR 2 - 0 100 0
Modulation frequency MHz 13 104 26
Light power mW 0 1000 1000
PMDvision 19k
Integration time µs 0 65535 15000
Modulation frequency MHz 5 30 15

TABLE II
ADJUSTABLE SETTINGS FOR THREE FLASH LADAR CAMERAS

Keeping in mind that the adjustability varies from camera
to camera, we summarize the most important parameters
here:

1) Integration time: how long each pixel accumulates
light. A typical range is from 1 to 64 ms. Adjustment
is supported by all unit tested. Lower integration times
enable faster frame rates but result in noisier data,
especially toward the edges of an image or distant
targets. The Canesta cameras can use two different
integration times and produce a final range map by
merging the most accurate pixels from each time.

2) Modulation frequency: controls the non-ambiguous
range and, to a lesser extent, range resolution. The
CSEM SR2 has a frequency of 20 MHz, with a 7.5 m
range limit. The PMD cameras allow adjustments in 5
MHz intervals from 5 to 30 MHz; Canesta includes
4 choices between 13 and 104 MHz. This should
be adjusted based on the maximum target distance;
reflective objects beyond the non-ambiguous range are
frequently aliased.

3) CMR (common mode rejection): subtracts out a
specified amount of background radiation. Canesta
exposes CMR through its API, and PMD implements
it in firmware. Outdoor operation in sunlight requires
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strong CMR.
4) Illumination power: controls the signal radiated by

the camera’s LEDs. The best setting depends on the
distance and reflectivity of the primary targets.

5) Amplitude thresholds: the SR2 can automatically
eliminate pixels where the returned light signal is out-
side a defined band. This filtering is used to eliminate
outliers caused either by too low or too high of a
returned signal. Image processing accomplishes the
same thing, but onboard filtering may be useful for
increasing frame rates under nonideal conditions.

III. TRAINING AND OPTIMIZATION

Camera setting optimization is too slow to run on-the-fly,
so we split the problem into two steps. An offline training
process finds the optimum settings for a training set of typical
scenes characterized by range and intensity statistics, and a
regression system matches the current scene statistics to the
training set to return the best settings. The procedure applies
to all continuous-wave flash LADARs.

A. Overview

Ideally, one could map a broad range of imaging situations
into a reasonable space of “external” parameters, and attach
each situation to the best settings – “internal” parameters.
Characterizing external parameters would be helped if the
training could be performed with a more accurate range
camera. Unfortunately, we do not have access to higher
performance flash LADARs, so we currently train the camera
with a planar target at a known distance and orientation.

We mount the camera on a movable test apparatus looking
at a solid, consistent target: a wall. The apparatus has
two degrees of freedom, both electronically measured: the
distance from the target, and a horizontal rotation angle.
By varying these degrees of freedom, we try to simulate a
wide variety of situations: different target distances, multiple
targets at different distances, and so on. A SICK line scanner
(LMS 200) scans across the field of view of the LADAR; the
distance and angle to the plane are estimated from its range
measurements. We can then generate a reference range image
corresponding to the actual target for use as the “ground
truth” for error calculations and optimization.

The following sections introduce the relevant variables,
then define the training (offline) and lookup (online) func-
tions.

B. Variables

The camera settings are dependent variables of an opti-
mum control function. Choosing the independent variables
is tricky. For the purpose of controlling settings, we will
describe an image by the mean and variance of its range
and amplitude data (whether or not the data is normally
distributed). These four statistics are reasonable features for
describing the differences between images (see Figure 3).

We categorize settings and image statistics into three
general vectors, so that the selection of specific variables

Fig. 3. Typical range image with range and amplitude histograms.

Input x Output y Auxiliary z
Range mean µr Settings vector s Error mean µe

Range variance σ2
r Error variance σ2

e
Amplitude mean µa

Amplitude variance σ2
a

Situation vector q = [x y z]
Training set array of situation vectors q[i]

TABLE III
VARIABLES AND VECTOR NOTATION FOR LADAR OPTIMIZATION

SCHEME.

can be expanded or revised within the same framework, as
shown in Table III.

Each range imaging scene is described by the input vector
x, and the best settings for capturing an image are in the
output vector y. The auxiliary vector z allows a range
offset to be subtracted out, and provides an estimate of
the measurement uncertainty. A set of situation vectors q[i]
is created during offline training and then referenced for
live parameter control. In section IV we will show that the
situation vectors produced by training on a simple planar
target map effectively to arbitrary scenes.

C. Offline training

In the training process, we subtract the reference (“ground
truth”) range values from each LADAR range image, and
evaluate a cost function on the resulting error image. An
unconstrained nonlinear optimizer minimizes this cost by
searching through the camera settings:

yopt = arg min
y

(σ2
e + Aµ2

e)

where µe and σ2
e are the mean and variance of the range

error in meters, taken from the auxiliary data z. Then a
new situation vector q[i] is formed by attaching yopt to the
corresponding x and z vectors, which are image statistics.
The training set is the array of all optimized situation vectors
for a particular LADAR.

FrA9.3

3410



The quadratic mean error term prevents extreme results
such as complete saturation of the sensor; otherwise it is
unimportant, because the mean error can be stored and
subtracted from future measurements. In practice, a value
of A = 0.1 works well, and the µe term is relatively small.
It does not cause a noticeable deviation from the true optimal
result.

LADAR camera range data is noisy and dependent on the
scene and target material, so the cost function computed from
individual frames is also noisy. There is no practical way to
solve or approximate this type of function analytically. To
accomodate this, the optimizer is based on the Nelder-Mead
simplex algorithm [8], which is slow but does not require
derivatives of the error function. To help the algorithm deal
with the inherent noise in the process, we incorporated modi-
fied termination criteria and adjusted the shrinking coefficient
σ from 0.5 to 0.9 as suggested in [9]. The simplex, a convex
volume in the search space, is initialized to include the most
commonly used settings as a starting point. Trade-offs in
accuracy can be made by revising the termination condition.

This is an interactive process, with the Nelder-Mead
algorithm providing new settings for the camera to use with
each successive frame. To build up sufficient information
for general-purpose control, we move and rotate the train-
ing apparatus as new situation vectors are generated. This
spreads the data points across the search space formed by
the image statistics in x. At large measurement distances, it
may be impractical to fill the field of view with the target, so
we use a manually specified region of interest for the error
calculations.

Any number of points may be used; a typical training set
of 100 points is stored in a 6 KB text file. Cameras with
more adjustable settings (such as the Canesta DP205) require
more points for the adjustments to be equally effective. The
training must be performed separately for each LADAR
camera, as we have found their performance can vary even
among cameras of the same model.

D. Lookup

“Live” control of a LADAR camera can be accomplished
by matching an input xnew to the most similar situation
encountered during training, then returning the optimized
settings yopt from that situation. The returned settings are
in the vector y[i], which comes from q[i] – the nearest
neighbor among the situation vectors in the training set. The
distance metric is based only on the initial image statistics
(x[i] component):

ynew = y

[
arg min

i
(||x[i] − xnew||)

]
If the training set is dense, ynew will be very close to

a true minimum found by optimization; it can be computed
very quickly.

We use a binary regression tree [10] to quickly search
through a large amount of training data. Let the training set
be a list of scene vectors q[i], where i = 0, 1, . . . , n − 1,

loaded from a file. Each leaf of the tree is a list of scene
vectors q[j], where j is a unique subset of i. These are points
in the search space defined by x.

The tree expands automatically to keep a small leaf size
(such as 16 points). Each branch splits the points into two
categories, based on the input variable xk with the highest
normalized variance over j. As the camera collects images,
the amplitude and range statistics contained in x provide the
independent variables for regression lookup. Because of the
small number of training points, the memory usage of the
regression tree is insignificant – less than 32 KB for up to
1,000 points.

The tree may contain points very close to each other,
and changing the settings can cause noticeable delays (as
with CSEM and Canesta LADARs). We use mild hysteresis,
allowing updates only if the Euclidean distance ||xnew −
xopt|| exceeds a fixed tolerance, to prevent unnecessarily
rapid changes and oscillations.

IV. EXPERIMENTS

We built software for LADAR data collection, analysis,
and viewing based on the NIST 4D/RCS control system
framework [11]. In that framework, software is implemented
as independent modules communicating through messages,
either between processes on one CPU or transmitted over
an Ethernet network in device-independent format. The op-
timizer functionality is in a separate module, so it can easily
be added to data collection or real-time robot control appli-
cations that also operate without it. The software accepts new
camera types easily, since camera characteristics are stored
in an XML-style configuration file and read in at run time.
Extending the software to a new camera model would require
only a new configuration file and a program to convert
device driver output into RCS messages. We present here
preliminary results for the SR2, followed by measurements
quantifying the optimizer’s choice of integration time.

The optimizer software performs both a steady state
calibration (since the correct mean range was known dur-
ing training) and range error reduction, without the need
for detailed information from the LADAR manufacturer or
expensive measurement equipment. Figure 4 illustrates the
action of the optimizer in setting the depth offset and integra-
tion time vs. defaults. The image collected using optimized
settings has less noise and better absolute accuracy.

To verify whether the choices of camera settings made
by the optimizer were reasonable, we tested the software
performance on two scenes. Scene 1 was very basic and
emulated the training cases, with a flat planar target covered
with white photographic paper. Scene 2 consisted of several
objects, including planar surfaces of different reflectances
and a clothed mannequin (Figure 5). We focused in these
experiments on range error reduction with the intention of
comparing the camera setting returned by the optimizer
with the true optimal value found by directly exploring the
parameter space.

For scene 1, we pointed the camera directly at the target
and measured the distance with the SICK laser scanner,
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Fig. 4. Images collected with initial and optimized settings

Fig. 5. Scene 2 with mannequin and planar targets: photograph (left) and
LADAR range data viewed from a different angle (right).

which provided ground truth. We conducted this test at
distances of 2, 3 and 4 meters. At each distance we took
10 images at 25 integration times between 4 and 62 mil-
liseconds. Since the target was a planar surface, we could
directly measure the deviation from the known range.

For scene 2, we conducted similar tests but did not have
ground truth. We imaged the scene from three locations
differing in distance and orientation, and collected the same
10 images at 25 integration times. In this case we used two
measurements: a local standard deviation of range values in
5 by 5 neighborhoods, and the standard deviation from indi-
vidual planar fits to five locally planar, uniform reflectance
surface patches extracted by manually drawn masks. An
image of the five masks is shown in Figure 6.

Fig. 6. Scene 2 (left) and masks for locally planar surfaces (right).

For both scenes we can compute a graph of integration

time vs. an error measurement and then compare the setting
chosen by our optimizer to the true minimum of the error
curve. The results of four different tests were consistent.
For scene 1, Figure 7 presents the range error statistic σe

averaged over 10 images at 25 different integration time
settings between 4 and 62 ms. The automatically selected
integration time, and the corresponding σe, are plotted as
solid dots. The top graph in Figure 7 shows a bathtub curve
at 2 meters, where at low integration times (below 10 ms) the
weak light return causes large errors, and at high integration
times the light return saturates the sensor. The results at 3 m
and 4 m appear similar, without saturation at high integration
times. For all three distances there is a relatively wide region
of similar near-minimum error dispersal.
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Fig. 7. Scene 1: Test of integration time versus range uncertainty, including
optimized settings annotated as filled circles.

Table IV compares the σe at optimizer-chosen integration
times with the true minimum σe across all integration times.
The optimizer-chosen integration times are near the left side
of a wide region of similar error; they provide sufficiently
low error (within 1 cm of the minimum value), trading some
error performance for frame rate. This is a consequence of
the Nelder-Mead implementation described in section III-C.

For scene 2, the measurements of local and planar error
were similar. Figure 8 shows two representative graphs,
the first one illustrating the local σe and the second one
illustrating the masked planar σe separately graphed for each
planar region (numbered 1 through 5). The value of σe varies
close to 2.5-fold between the regions, influenced by the
reflectance of the surface and its distance from the center
of the image (where illumination is strongest).

Table V compares the error measurements for the three
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Min. error Minimum Optimized Optimized
Dist. int. time (ms) σe (cm) int. time (ms) σe (cm)
2 m 33 9.67 18 9.78
3 m 55 8.08 27 8.48
4 m 60 9.68 41 9.97

TABLE IV
SCENE 1: UNCERTAINTY PERFORMANCE (σe) OF OPTIMIZED

INTEGRATION TIME SETTINGS.
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Fig. 8. Scene 2: Test of integration time versus range uncertainty, including
the optimized setting of of 22.5 ms annotated as filled circle (top) and as a
line (bottom).

views of scene 2 at optimizer-chosen integration times with
the minimum local σe across all integration times. Again,
the optimizer-chosen integration times are near the left side
of the region of minimum error, although in this case the
difference is as much as 1.8 cm. However, in Table VI (which
gives the same results for all five locally planar regions
shown in Figure 6), the optimizer-chosen integration time
yields a σe very close to the global minimum. The value of
σe varies over 2-fold over the five regions, suggesting that
optimization focusing on particular ROIs may be productive.

V. CONCLUSION

In this paper we suggested a robust, simple procedure for
the control of LADAR camera settings using standardized
structures, applied a nonlinear optimizer to find optimal set-
tings in an offline training environment, and incorporated this

Min. error Minimum Optimized Optimized
View int. time (ms) σe (cm) int. time (ms) σe (cm)
1 62 7.13 23 8.63
2 62 7.64 32 8.31
3 50 8.11 16 9.96

TABLE V
SCENE 2: UNCERTAINTY PERFORMANCE (σe)OF OPTIMIZED

INTEGRATION TIME SETTING

Min. error Minimum Optimized Optimized
Plane int. time (ms) σe (cm) int. time (ms) σe (cm)
1 35 1.89 23 1.97
2 23 2.80 23 2.80
3 20 3.35 23 3.36
4 40 4.78 23 4.80
5 35 2.08 23 2.13

TABLE VI
SCENE 2: UNCERTAINTY PERFORMANCE (PLANAR σe)OF OPTIMIZED

INTEGRATION TIME SETTINGS.

knowledge in range imaging software. Finally, we conducted
preliminary experiments to train and test this control scheme
with a flash LADAR camera.

There are alternatives and extensions to our approach that
we hope to explore. With the aid of more accurate cameras
to use as “ground truth,” or other local measures of error,
the algorithm may be trained on more complex scenes, or
incorporate continuous training in arbitrary scenes. A simple
feedback loop maximizing the dynamic range of the intensity
image may provide more reliable control of the integration
time, which is the most important parameter we encountered,
but this algorithm is more general and we believe it can
help users improve the performance of highly customizable
LADARs. We look forward to investigating these ideas as
the technology evolves.
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