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Abstract— This paper addresses the problem of computing
pathways for a ligand to exit from the active site of a protein.
Such problem can be formulated as a mechanical disassembly
problem for two articulated objects. Its solution requires search-
ing paths in a constrained high-dimensional configuration-
space. Indeed, the ligand passageway inside the protein is often
extremely cluttered so that current path planning techniques
are unable to solve the disassembly problem in reasonable
computing time. The techniques presented in this paper are
based on the RRT algorithm. First we discuss some simple and
general modifications of the basic algorithm that significantly
improve its performance. Then we describe a new variant of
the planner that treats ligand and protein degrees of freedom
separately. This new algorithm outperforms the basic RRT,
particularly for very constrained problems, and is able to
handle models with hundreds of degrees of freedom. We analyze
the effects of each RRT variant via several examples of different
complexity. Although discussions and results of this paper focus
on molecular models, the ideas behind the algorithms are
general and can be applied to path planners for disassembling
articulated mechanical parts.

I. INTRODUCTION

The computational analysis of molecular interactions in

biological systems is a key instrument for the understanding

of life. In this framework, the present paper focuses on the

study of protein-ligand interactions [4]. Most of the com-

putational approaches to this problem address a static view

of the molecular recognition. However, several studies tend

to show that the ligand access/exit to the protein active site

can be very important for the understanding of the biological

mechanism [20], [13]. The difficulty is that computing the

pathway of a ligand to go out from a deep active site to the

surface of a protein (or vice versa) with “classic” molecular

modeling methods [24] is too computationally expensive.

For facing the complexity of computing molecular mo-

tions, molecules can be modeled as articulated mechanisms

[21], [27] and efficient path planning algorithms can be used

to explore their conformational changes [3], [2], [8], [10].

In this paper, the protein-ligand exit problem is formulated

as a mechanical disassembly problem for articulated objects

(see Section II) and an RRT-like algorithm is proposed for

finding solution pathways.

The RRT algorithm, introduced in [17], has been widely

studied and applied to different types of problems in the last

years (see http://msl.cs.uiuc.edu/rrt/ for a general

survey). Numerous variants have been proposed to improve

its performance in general cases (e.g. [18], [5], [25], [19],

[26], [15]) or for particular applications (e.g. [12], [16],

[11]). Section III reminds the principle of the RRT algorithm,
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Fig. 1. Model of a ligand (red-colored) in the active site of a protein. The
passageway from the active site to the surface of the protein is very narrow.
Protein side-chain motions are necessary to permit the ligand exit.

discusses some basic improvements and analyzes their effect

in the constrained high-dimensional problems addressed in

this paper. These basic RRT variants perform reasonably

well for moderately complex instances of the protein-ligand

disassembly problem. However, they fail in more difficult

cases such as the one illustrated in Fig. 1. In this example,

the ligand is extremely cluttered in the protein active site

and significant motions of flexible parts of the protein are

necessary to extract the ligand.

We propose a new RRT variant, called Manhattan-like

RRT (ML-RRT), for disassembly path planning of articulated

objects. The particularity of this algorithm is that the motions

of the different parts are decoupled. Indeed, for the present

application, ligand and protein degrees of freedom are treated

at different levels. The ligand motion is privileged, while

flexible parts of the protein only move if they hinder the lig-

and progression. This new algorithm presents two advantages

with respect to the basic RRT. First, the computing time and

its variance are notably reduced. And second, but not less

important, the flexible parts that have to move for finding a

solution path are automatically identified. Thus, the planner

is able to handle models involving hundreds of potential

degrees of freedom, avoiding user intervention to select

the important ones. The ML-RRT algorithm is presented

in Section IV. This section also shows results that reflect

the performance gain with respect to the improved RRT

discussed in Section III. Several directions for extending ML-

RRT to more complex instances of the disassembly problem

are mentioned in the concluding section (Section V).
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II. MECHANISTIC MODEL AND PROBLEM FORMULATION

Within our molecular path planning approach [8],

molecules are modeled as articulated mechanisms. Groups of

rigidly bonded atoms form the bodies and the articulations

between bodies correspond to bond torsions. These torsions

are the molecular degrees of freedom. The atoms are rep-

resented by spheres. Considering a geometric interpretation

of the van der Waals repulsive force, which is the most

important contributor (at short distance) to the molecular

interaction energy, the spheres associated with non-bonded

atoms cannot overlap. Such constraint is a powerful filter

usually applied in conformational search methods [9]. This

collision-avoidance restriction is the motion constraint im-

posed to the mechanistic molecular model. Using such a sim-

plified model of molecules, one can formulate the problem

of computing the pathway to dissociate a molecular complex

as a disassembly problem for articulated mechanisms.

The work presented in this paper focuses on protein-ligand

complexes. A protein is a biological macromolecule com-

posed by one or several long polypeptide chains, generally

folded in a globular manner1. The mechanical model of

a polypeptide is composed by a set of kinematic chains,

which match the bonds of the chemical representation: the

main-chain, or backbone, and the side-chains of the amino

acid residues. In the present work, the protein backbone is

considered as a rigid body with (possibly hundreds of) artic-

ulated side-chains. The ligand is a relatively small molecule,

containing in general a few tens of atoms. We consider fully

flexible ligands, which are modeled as free-flying articulated

objects.

Figure 2 illustrates the mechanical disassembly problem

treated in this paper. By analogy to the molecular disassem-

bly problem, the small moving object is the ligand and the

big object is the protein. The articulated parts in the big

object are the protein side-chains.

1See molecular modeling textbooks (e.g. [24]) for a detailed structural
description of proteins.

Fig. 2. Disassembly problem for two articulated objects. The problem
consists in finding a path to extract the small (red) object from the big one.
Both objects have articulated parts.

III. THE RRT ALGORITHM AND

SOME BASIC IMPROVEMENTS

The techniques presented in this paper are based on the

RRT algorithm. This section first reminds the basic RRT

principle and discusses some issues. Then we propose simple

modifications and show how they improve the performance

of the algorithm through the examples at the end of the

section.

A. Basic RRT Algorithm

The basic principle of the RRT algorithm [17] is to

incrementally grow a random tree rooted at the initial config-

uration qinit to explore the reachable configuration-space and

find a feasible path connecting qinit to a goal configuration

qgoal. At each iteration, the tree is expanded toward a

randomly sampled configuration qrand. This random sample

is used to simultaneously determine the tree node to be

expanded and the direction in which it is expanded. Given a

distance metric in the configuration-space, the nearest node

qnear in the tree to the sample qrand is selected and an

attempt is made to expand qnear in the direction of qrand.

For holonomic systems, the expansion procedure can be

simply performed by moving on the straight-line segment

between qnear and qrand. If the expansion succeeds, a

new node qnew and a feasible local path from qnear are

generated. The key idea of this expansion strategy is to

bias the exploration toward unexplored regions of the space.

Hence, the probability that a node will be chosen for an

expansion is proportional to the volume of its Voronoi region

(i.e. the set of points closer to this node than to the others).

Therefore RRTs are biased by large Voronoi regions to

rapidly explore before uniformly covering the space.

Different strategies can be adopted for the design of path

planners based on the RRT algorithm [18]. One can choose

between an unidirectional or a bidirectional exploration

strategy. An unidirectional planner develops a single tree

from one of the two given configurations, qinit or qgoal,

until the other configuration is reached, while a bidirectional

technique constructs one tree from qinit and another from

qgoal until the two trees meet at a point. One can also choose

a more or less greedy strategy for the expansion procedure.

In the basic RRT algorithm, a single expansion step of

fixed distance is performed. In the more greedy RRT-Connect

variant, the expansion step is iterated while feasibility con-

straints (e.g. collision avoidance) are satisfied. The strategy

selection depends on the nature of the path planning problem

to be solved. For the disassembly problems treated in this

paper, we use the unidirectional RRT-Connect variant. The

choice of a unidirectional exploration seems obvious, since

the initial configuration is highly constrained while the goal

is in an unconstrained region and can be fuzzily defined (e.g.

ligand outside the protein). RRT-Connect is in general more

efficient than the single-step version for systems without

differential constraints [18].
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Fig. 3. Illustration of an RRT with exhausted nodes. The (red-colored)
nodes in the small side corridor will be frequently selected for expansion,
thus hindering the tree development.

B. Metric Sensitivity: A Well-Known Drawback

The weakness of the RRT algorithm is its high sensitivity

to the distance metric used to select the nearest neighbor

to qrand, qnear. Since qnear is the node to be extended,

the performance of the algorithm strongly depends on the

metric. The ideal metric should consider motion constraints

(kinematic constraints, obstacles, ...). However, devising such

an ideal metric is at least as difficult as solving the path

planning problem itself. Therefore, an Euclidean metric in

the configuration-space is normally used. The use of this

simple distance metric can however lead to an undesired

behavior of the planner, as illustrated in Fig. 3. Some nodes

that are close to the border between feasible and unfeasible

regions of the configuration-space (i.e. the border of the C-

obstacles) are repeatedly selected for futile expansion. We

call such nodes exhausted nodes, in reference to [5]. The

issue of exhausted nodes is particularly important when using

the RRT-Connect variant, which tends to generate nodes

close to the border.

Another concern related to the use of a simple Euclidean

metric in the configuration-space is that, in some cases, par-

ticularly for articulated mobile systems, the distance metric

is not representative of the path planning problem. Consider

for example the manipulator in Fig. 4. Two significantly

different robot configurations are at the same distance than

two more similar ones (i.e. inducing a smaller motion).

Several approaches (see [1] for example) have been proposed

to design more sophisticated metrics aiming to find a solution

to this issue, usually applying weights to balance the different

influence of the degrees of freedom in the system configura-

tion. However, in high-dimensional spaces, it is difficult to

find the adequate metric showing a good trade-off between

computational complexity and accuracy.

a) b)

α

α

Fig. 4. Two configurations of a 2-DOF manipulator. Considering an
Euclidean metric in the configuration-space, both configurations are at the
same distance to the reference configuration (white drawings). However, the
induced motion is much smaller for (a) than for (b).

Next we discuss simple improvements of the basic RRT

algorithm that notably limit the pathological behaviors due

to the Euclidean metric.

C. Avoiding Exhausted Nodes

We first describe two different strategies to circumvent

the undesired behavior of the RRT algorithm occasioned by

exhausted nodes. The first consists in removing from the

search tree nodes that are considered as exhausted, as initially

proposed in [5]. For each node, the number of consecutive

times that its expansion fails is counted. When the counter

reaches a given limit number l, the node is considered to

be exhausted and it is no longer selected. A similar strategy

discussed in [16] uses an expansion failure counter to devise

a weighted metric for the nearest node selection.

The second strategy consists in selecting qnear at random

among the k nearest neighbors. In this way, a chance for

expansion is given to nodes that are not in the tree boundary,

and which, in the basic algorithm, will be selected for

refining the space coverage rather than to explore uncovered

regions. This idea has been applied in other works (e.g. [25]).

The results presented below (see Section III-E) show that

the two above strategies improve the performance of the

basic RRT against the exhausted-node issue. Since both

strategies have a very low computational cost, they can be

applied simultaneously.

D. Using a Simplified Task-Adapted Metric

For path planning problems involving many degrees of

freedom, we propose to use a simplified distance metric that

only considers the subset of the most significant degrees

of freedom with respect to the task. The most significant

parameters for the disassembly of two articulated objects are

generally those defining the relative location of the objects.

Thus, if one of the objects is considered to be static, a

simplified metric can be designed by only measuring the

distance in SE(3) for a reference frame associated with the

center of mass of the mobile object (the ligand in our case).

The degrees of freedom of the articulated parts in the static

object (i.e. the protein side-chains) and the internal degrees

of freedom of the mobile object (i.e. the ligand torsions) are

neglected within this distance metric.

The interest of considering approximate metrics for

nearest-neighbor search in the framework of sampling-based

path planning has been recently shown in [22]. It has been

empirically demonstrated that, in high-dimensional spaces,

the use of a simplified metric provides a considerable compu-

tational gain without a significant loss of accuracy. Besides,

the results presented below show that an adequate selection

of the parameters involved in the metric yields a much better

performance of the planner.

E. Empirical Performance Analysis

Figure 5 shows numerical results obtained with the basic

RRT algorithm and the different enhancements discusses

above. We call l-RRT the variant that removes nodes after l
consecutive expansion failures and k-RRT the variant choos-

ing qnear at random among the k nearest neighbors; lk-RRT
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combines both improvements. The variant m-RRT is a basic

RRT algorithm using the simplified task-adapted metric.

Finally, lkm-RRT incorporates the three improvements. In

our implementation, the values of the parameters l and k are

currently assigned empirically: l is a constant and its default

value is 10, and k is a variable that is computed as the nearest

integer greater than or equal to nnodes/100, where nnodes is

the current number of nodes in the tree.

The algorithms were tested on three molecular disassem-

bly problems, similar to the one illustrated in Fig. 1, with

increasing difficulty that we refer to as ExA, ExB and ExC.

These problems involve 68 degrees of freedom, which reflect

the flexibility of the ligand and of the 18 side-chains in the

active site and the access corridor. The increasing complexity

of the problems comes from the geometric encumbering of

the passage. Numerical results are averaged over 50 runs

on an AMD Opteron 148 processor at 2.6 GHz. The values

displayed in the table are the following: avrT is the average

computing time, SN is its variance, Nn is the average number

of nodes in the computed search trees and Ns is the average

number of samples required for their construction.

Several conclusions can be extracted from the analysis

of the numerical results in Fig. 5. First, concerning the

exhausted-node avoidance, both variants l-RRT and k-RRT

significantly reduce the number of required samples Ns in

comparison to the basic RRT. Reducing Ns implies reducing

the number of operations such as nearest-neighbor search and

local path validation. A side effect of these variants is that

the number of nodes in the tree increases, resulting in more

expensive elementary nearest-neighbor searches. The overall

gain ranges between 5 and 7, and the results show that k-RRT

is more efficient that l-RRT, particularly when the problem

difficulty increases. The results obtained with lk-RRT show

ExB ExC ExA 
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881.2

4534
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733
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5.1
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3862.1
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24478

150.4

325.7
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82160

1.7

1.4

1059

234

Fig. 5. Numerical results for the RRT algorithm with basic improvements.

that the combination of both strategies further improves the

performance of the planner, particularly for the most difficult

problem. RRT, l-RRT and k-RRT performed very poorly

on ExC (results are not reported because most of the runs

exceeded a fixed time limit) while lk-RRT got solutions in ac-

ceptable computing time. The better performance of m-RRT

shows the importance of using an adequate distance metric.

Compared to the basic RRT (that considers all the degrees of

freedom within the metric) the number of samples is reduced

while the number of nodes remains similar. Another reason

for the decrease of the computing time with m-RRT is that

using a simplified metric reduces the cost of the nearest-

neighbor search. When the three variants are combined,

the performance of the planner improves remarkably. The

computing time is reduced by two orders of magnitude for

the moderately complex problem ExB and the gain is still

higher for ExC. Finally note that an important benefit of the

lkm-RRT variant is to reduce the performance variability,

which is an issue for randomized algorithms [14].

IV. DECOUPLING PART MOTIONS

A. Motivation and Overview

In the examples presented in Section III-E, only a few side-

chains that may be directly involved in the ligand access are

considered to be flexible. Selecting these side-chains without

a priori knowledge about the ligand passageway is not a

straightforward task that has to be made manually. The main

motivation for the development of the algorithm presented

in this section is to avoid this kind of user intervention.

The basic principle of this new algorithm is to treat ligand

and protein degrees of freedom separately. These two sets

of parameters are referred to as qlig and qprot respectively.

The ligand is treated as an active robot while the side-chains

are considered as passive robots that only move when they

obstruct the progression of the ligand. Because the paths

computed by the algorithm look like Manhattan paths over

these two sets of parameters that change alternatively, we

call it Manhattan-like RRT (ML-RRT).

B. Manhattan-like RRT

The ML-RRT algorithm is schematized in Algorithm 1. At

each iteration, the ligand motion is computed first. Following

the basic RRT principle, a configuration of the ligand q
lig
rand

is randomly sampled. The function SampleLigConf gen-

erates uniform samples considering that the ligand can freely

translate and rotate in a box enveloping the active site, and

allowing (by default) full rotation of all bond torsions. A

near neighbor qnear is selected in the current tree, based

on a distance metric in the ligand configuration parameters.

We use a simplified metric only involving the ligand’s

center of mass, as discussed in Section III-D. Note that

the function BestNeighbor also integrates the other basic

improvements discussed in Section III-C. ExpandLigConf

performs the expansion of the ligand configuration using

the greedy strategy of RRT-Connect. This function returns

a configuration qnew corresponding to the last valid point

in the straight-line segment from qnear toward q
lig
rand. If
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Algorithm 1: Construct ML-RRT

input : the search-space S, the root qinit

output : the tree τ

begin
τ ← InitTree(qinit);
while not StopCondition(τ ) do

q
lig
rand ← SampleLigConf(S);

qnear ← BestNeighbor(τ , q
lig
rand);

(qnew,LC)← ExpandLigConf(qnear,q
lig
rand);

if not TooSimilar(qnear, qnew) then
AddNewNode(τ , qnew);
AddNewEdge(τ , qnear, qnew);
qnear ← qnew;

if LC 6= ∅ then
q

prot
rand←PerturbProtConf(qnear,S,LC);

qnew ← ExpandProtConf(qnear,q
prot
rand);

if not TooSimilar(qnear, qnew) then
AddNewNode(τ , qnew);
AddNewEdge(τ , qnear, qnew);

end

the expansion is not negligible, a new node and a new

edge are added to the tree. The function ExpandLigConf

also analyzes the collision pairs yielding the stop of the

expansion process. If ligand atoms collide with side-chain

atoms, the list of the involved side-chains LC is returned.

Such information is efficiently obtained by BioCD [23], a

collision checker tailored to molecular models, thanks to the

use of spatially-adapted hierarchical data structures matching

the biochemical structure. The list LC is used in the second

part of the algorithm, which performs the protein motion. A

configuration of the protein q
prot
rand is generated by randomly

sampling the configuration of the involved side-chains in a

ball around their current configuration. An attempt is then

made to generate a new node by expanding qnear toward

q
prot
rand. Note that, if the previous call to ExpandLigConf

has been successful, qnear has been updated in order to

contain the new ligand configuration.

The goal of the second part the ML-RRT algorithm is to

move the side-chains surrounding the ligand aiming to gain

clearance for its passage. Note than, in some cases, the mo-

tion of some side-chains close to the ligand can be hindered

by other farther side-chains. In such situations, a possible

solution is to extend the function ExpandProtConf to

return the list of side-chains in contact with the moving ones,

and to operate in an iterative manner. The implementation of

this idea remains for future work.

ExA+ 

2.6

1.1

142

244

ExD 

38965

159.4

83.1

4428

avrT

SN

Nn

Ns

ML−RRT
1104

5382

ExA ExB ExC 

9.6

9.0

1.7

0.9

217

732

1.2

0.4

176

355

Fig. 6. Numerical results for the ML-RRT algorithm.

C. Results

The performance of ML-RRT has been analyzed using

the same examples and in the same conditions than for

the basic RRT variants (see Section III-E). Comparing the

values in Fig. 6 with those in Fig. 5, one can observe that

ML-RRT significantly outperforms the basic RRT variants2.

The computing time is reduced for all the examples, the

improvement rate increasing with the problem difficulty.

Besides, the variance of the computing time is reduced,

even for the more complex examples. Figure 6 also reports

results obtained with ML-RRT on two other examples, ExA+

and ExD, which could not be solved by the previous RRT

variants.

ExA+ concerns the same protein-ligand complex than

ExA. However, in this case, all 127 side-chains of the

protein model are considered to be flexible (instead of 17 for

ExA). Consequently, ExA+ involves 332 potential degrees

of freedom. Comparing results for ExA and ExA+, one can

observe that the average number of samples and nodes in the

trees required to solve the problems are analogous, indicating

that the performance of the exploration is not affected by

the high number of articulated side-chains. The limited slow

down of the computing time for ExA+ is due to the higher

cost of operations such as spatial position updating, collision

detection and memory management.

ExD corresponds to an even more difficult problem. The

protein model also contains a high number of articulated

side-chains (more than 600), but the exit pathway is much

more constrained and requires an important motion of some

of these side-chains to let the ligand exit from the deep active

site. The image in Fig. 1 corresponds to this example and

shows the initial configuration of the ligand inside the protein

active site. Among all the side-chains, the ML-RRT algo-

rithm only made 9 of them move for finding the solution path

illustrated in Fig. 7. Note the considerable motion of the side-

chain located at the middle-top of the image. This side-chain

motion, which is known to be biologically important for

the protein-ligand interaction, was automatically identified

by the algorithm. Finally, mention that although the ligand

and the side-chains move alternately in the path obtained by

the ML-RRT algorithm, a randomized path smoothing post-

processing is performed in the composite configuration-space

of the protein and the ligand, so that simultaneous motions

are obtained in the final path.

V. CONCLUSIONS AND FUTURE WORK

We have presented a new RRT-like algorithm, called ML-

RRT, for disassembly path planning of articulated objects.

Although the paper focuses on molecular disassembly ap-

plications, the ideas behind ML-RRT are general and the

algorithm can be used in robotic applications [6]. Note that

results obtained in [6] for solving the mechanical disassem-

bly problem represented in Fig. 2 show a performance gain

of two orders of magnitude in relation to RRT.

2Because of the algorithmic design of ML-RRT, the values of Ns in Fig. 6
only take into account samples of the ligand configuration.
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Fig. 7. Solution path for ExD (the initial configuration is shown in Fig. 1).
The image shows a transversal cut of the protein active site and the trace
of the ligand path. The ligand and the 9 residues with moving side-chains
are displayed in stick representation. The configurations of the ligand and
the moving side-chains at different moments along the path are colored in
red scale and blue scale respectively.

ML-RRT handles models containing hundreds of potential

degrees of freedom and only changes the configuration of

parts that have to move in the solution path. In the current

implementation, a protein side-chain moves if it hinders

the progression of the ligand. However, this side-chain mo-

tion is not propagated to other surrounding side-chains. As

mentioned in Section IV-B, extending ML-RRT to perform

such propagation would be rather simple. Although we have

still not found a protein-ligand disassembly problem (only

involving side-chain motions) making ML-RRT fail, cases

involving a concerted motion of several side-chains may

exist. Besides, the above mentioned extension may be inter-

esting for other applications. A further extension of ML-RRT

involves considering the flexibility of the protein backbone.

A first step toward a completely general approach may be to

consider protein loop motions. We expect to integrate ML-

RRT into the combined molecular-modeling/path-planning

approach described in [7], [8].
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[6] J. Cortés and T. Siméon, “Disassembly Path Planning for Objects
with Articulated Parts”, IFAC Workshop on Intelligent Assembly and
Disassembly, 2007, submitted.
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