
Faster Motion Planning Using Learned Local Viability Models

Maciej Kalisiak
Dept. of Computer Science, University of Toronto

mac@dgp.toronto.edu

Michiel van de Panne
Dept. of Computer Science, University of British Columbia

van@cs.ubc.ca

Abstract— Current motion planners, in general, can neither
“see” the world around them, nor learn from experience. That
is, their reliance on collision tests as the only means of sensing
the environment yields a tactile, myopic perception of the
world. Such short-sightedness greatly limits any potential for
detection, learning, or reasoning about frequently encountered
situations. As a result, it is common for current planners
to solve and re-solve the same general scenarios over and
over, each time none the wiser. We thus propose a general
approach for motion planning, as well as a specific illustrative
algorithm, in which local sensory information, in conjunction
with prior accumulated experience, are exploited to improve
planner performance. Our approach relies on learning viability
models for the agent’s “perceptual space”, and the use thereof to
direct planning effort. Experiments with three test agents show
significant speedups and skill-transfer between environments.

I. INTRODUCTION

In general, current motion planners rely solely on collision
detection for sensing the surrounding environment, which
leads to very tactile and myopic perception. As a result, such
planners cannot detect, learn, nor reason about commonly
occurring patterns or scenarios, and instead end up solving
such problems “from scratch” each time. For example, there
is usually no substantial difference between the first and the
hundredth time that a typical planner solves a general parallel
parking problem. In contrast, the ideal motion planner would
notice general patterns in the problem space, and through
observing its own solutions, it would learn corresponding
general motion strategies. These could be employed in sub-
sequent queries, leading to motion planning in higher and
more macroscopic terms.

This paper is only the first step towards that ideal. We
propose a weaker version of this lofty goal, in which the
planner in effect learns what nonviable scenarios look like,
and then avoids them in subsequent planning. Three compo-
nents make up our approach. First, we give the planner the
ability to “see” by instrumenting the agents with rangefinder-
like virtual sensors (see Figure 1). This allows one to describe
the agent’s state in more local, “perceptual” terms. Second, a
large body of successful, perceptually-parameterized motions
is accumulated, either from the planner’s own previous
solutions, or from an external source. Finally, this knowledge
is then exploited in further queries, whereby the planner’s
search is limited to motions resembling previous exemplars
of successful motions. Sections III through V describe these
three parts further.

The benefit of this approach, which we call planning with
“viability filtering”, is reduced planning time, resulting from

Fig. 1. Agents used in experiments. Lines indicate (virtual) agent-mounted
range sensors used in planning. They are discussed in §VII.

forestalling planner exploration in nonviable regions of the
search space. That is, by in effect preemptively culling the
planner’s search space of regions which cannot possibly lead
to a solution (or are very unlikely to do so), we ensure that all
planner effort is spent more productively. Nonviable regions
represent wasted effort since a nonviable agent state, if not
already in collision, must then unavoidably lead to failure,
yet no valid solution will ever entail a collision prior to
reaching the goal.

The approach presented in this paper should integrate
well with many existing planners. In general, our approach
is applicable to any iterative planner for actuated agents
in which exploration proceeds by repeated choosing of a
control action to apply next, from among some finite set
of control actions, and thus where such preemptive pruning
makes sense. This paper, for example, demonstrates the use
of this method with the RRT-Blossom [1] planner; section VI
gives the implementation details, while section VII outlines
achieved results.

II. PREVIOUS WORK

Motion planning has many real world applications, and is
thus an active area of research. Comprehensive overviews are
provided by Latombe [2], and more recently by LaValle [3],
while Dean and Wellman [4] provide a more unified view of
motion planning and control.

A milestone in the history of motion planning is the
introduction of (stochastic) sampling-based planners. An
early example is the Randomized Path Planner (RPP) [5],
which performs gradient descent down a potential field that
spans the environment’s free-space, and backtracks when
local minima are encountered. A more robust and current
alternative is proposed in [6], [7], in the form of Rapidly-
exploring Random Trees (RRTs). These planners work by

2007 IEEE International Conference on
Robotics and Automation
Roma, Italy, 10-14 April 2007

ThC10.2

1-4244-0602-1/07/$20.00 ©2007 IEEE. 2700

quickly exploring the free-space with tree structures; com-
monly two trees are used, one rooted at the starting state,
the other at the goal, and a solution is found when the trees
meet. Probabilistic Roadmaps (PRMs) [8], on the other hand,
build graphs of reachable configurations. This is achieved by
stochastically picking random “milestones” and connecting
them together using a local planner, or in the case of simple
agents, using straight lines. Queries are solved by connecting
the start and goal to the roadmap and finding the shortest path
through the resultant graph.

The bulk of these planners concern themselves with the
agent’s kinematics. Kinodynamic motion planning, on the
other hand, takes also into account the agent’s dynamics.
In practical terms, the former planners work with the agent’s
configuration q, whereas kinodynamic ones use the agent’s
state x, where usually x = (q, q′). Aside from the larger
search space, the planner’s task is often made more difficult
by an abundance of deep “dead-ends” in this space1, the
result of the “cross product” of the agent’s laws of motion
and the imposed constraints (e.g., environment geometry).
The approach introduced in this paper is particularly well
suited to these types of problems. The first such kinodynamic
planner, presented in [10], uses a deterministic, brute force
search over a grid-discretized state space, and hence is feasi-
ble only for trivial systems. RRT is extended to kinodynamic
planning in [9], and proves to be a more scalable solution.
Further work addresses some of its remaining limitations:
RRT with Collision Tendencies (RRT-CT) in [11] aims to
mitigate RRT’s sensitivity to the distance metric used in
growing the trees, while RRT-Blossom [1] addresses the
planner’s poor performance in highly constrained environ-
ments.

We are unaware of motion planners that, in an
environment-independent fashion, learn from observing their
own operation. Some planners do accumulate experience,
[12] for example, but it is then applied to queries in the
same environment.

Viability is a key underlying concept in our work. Briefly,
a viable or controllable state is one from which the subject
can, through application of appropriate control actions, re-
main indefinitely free of collision or failure. Conversely, a
nonviable state is one in which the subject has passed the
“point of no return”, where failure is no longer avoidable,
even though it may be postponable for some finite time.
Figure 2 illustrates these concepts, while a more thorough
treatment can be found in [13], [14]. Our work also deals
with reachability, a complementary concept to viability; a
comprehensive overview of the topic can be found in [15].
There has been recent interest in applying viability to control,
such as [13], [16], but we are not aware of any such work
in the general area of motion planning.

1Previous work, such as [9], refers to these as regions of inevitable
collision, Xric . These dead-ends hinder tree-based planners in much the
same way that local minima hinder potential field planners.

dz
dt

nonviable & unreachable

viable
unreachable

nonviable
reachable

impossible

crashed

crash
reachable

viable

unavoidable

Fig. 2. An example of viability and reachability, using lunar lander; z is
altitude. The “crash unavoidable” region is nonviable since the downward
velocity exceeds the braking power of the lander’s bounded thrust. The
“impossible” region is unreachable since the upward velocity exceeds what
can be achieved, even if maximal thrust is applied from altitude z = 0.

III. SENSING & SITUATION ENCODING

Traditionally, motion planners treat x, the state of the
agent, and e, that of the environment2, as separate entities,
and only bring them together during collision checks. In the
following it is useful to define the combined, full system
state, x+ = (x, e). The corresponding state spaces are
analogously combined: if x ∈ X and e ∈ E then x+ ∈
X+, X+ = X × E .

Global descriptors such as x+ provide poor generalization
potential since any acquired knowledge so parameterized
does not transfer well to other, even very similar environ-
ments. A more local projection of the agent’s state will
generally be more suitable. The latter can be attained by
equipping the agent with virtual sensors (e.g., Figure 1), and
combining the resultant synthetic local information with a
subset of x+.

More formally, a sensor σ is a function which maps the
subject’s state and the environment geometry to a scalar
value:

σ(x+) : X+→ R

For a particular system state x+∈ X+, one can compute all
the sensor values and concatenate them into a single vector,

s =
(
σ1(x+), σ2(x+), . . .

)
, s ∈ S

which we refer to as the sensory state. The set of all possible
sensory states forms the sensory space S.

We can finally define the locally situated state of the agent

λ = (s, x̂), λ ∈ Λ

where Λ is the locally situated state space, and x̂ ⊂ x are
the relevant “internal” state variables of the agent that are
independent from information contained in the sensory state
s. At most, x̂ is the position- and orientation-independent
portion of x, but often smaller.3

2We construe e to contain enough information about the environment’s
geometry that, together with x, it is sufficient to decide a collision check.
In dynamic environments e is a function of time.

3For some agents it is useful to post-process x̂, such that λ = (s, f(x̂)),
in order to reduce its dimensionality or make it more amenable to learning.

ThC10.2

2701

IV. DISCOVERY & MODELING OF LOCAL VIABILITY

The second component of our approach entails building
up a large pool of experience. Specifically, we are interested
in collecting samples of locally situated states λ which are
known to be viable, so that we can then derive, through
suitable machine learning methods, a viability classifier Ωv ,
or oracle, such that

Ωv(λ) : Λ→ {viable, nonviable}

This oracle is then used to guide planning effort.
Viability data can be collected from prior runs, or can

be provided by an external source. Naturally, if an adequate
external model of the agent’s viability is available, one can
completely forego this accumulation stage and use the model
directly; unfortunately most nontrivial dynamical systems do
not have easily obtainable analytical viability kernels, nor
prior empirically derived ones, thus necessitating this step.

It’s worth noting that the oracle will have two sources
of prediction error: modeling error, and limitations in the
sensors’ ability to disambiguate states. The first is a result of
either insufficient training samples or poor choice in training
procedure parameters, and is easily corrected. The second
type of error is inherent in the collected data, and much
harder to fix. The problem stems from the agent’s set of
sensors being unable to disambiguate between some pairs
of system states, x+

1 and x+
2, where one is viable and

the other nonviable, and as a result mapping them both
to the same locally situated state λ. Since the oracle will
always return the same label for λ, whether it is derived from
x+

1 or x+
2, then one of these system states will always be

misclassified. Section VIII discusses further these errors and
their consequences.

V. EXPLOITING LOCAL VIABILITY

The final component of our approach is the exploitation
of the acquired experience. The key idea is that, since by
definition it is impossible for a nonviable state to lead to a
viable one, then exploring nonviable states is wasteful since
they cannot help to reach the goal.4 By avoiding exploration
of such states we can thus expedite the planning process.

Given a trained viability oracle, it is trivial to instrument
an arbitrary planner for viability filtering: one merely re-
places the default call to a collision or failure checking
routine, named is collision() here, with a call to
is nonviable():

1: function IS NONVIABLE(x+)
2: if is collision(x+) then
3: return True
4: s← σ1(x+), σ2(x+), . . .
5: x̂←extract internal state(x+)
6: λ← (s, x̂)
7: return ¬ Ωv(λ)

4This assumes that xgoal is viable; the special case where xgoal is
nonviable is discussed later on.

complex rooms-525

rooms-IKEA

Fig. 3. Examples of problem environments and queries tested. The queries
require the agent to traverse from the X on the left to the one on the right
in each environment.

is nonviable() still consults is collision()
since usually the viability model will not be perfect, and
thus if used unaided, could occasionally allow an in-collision
state.

VI. IMPLEMENTATION DETAILS

To validate the above ideas we have outfitted the RRT-
Blossom [1] planner with viability filtering, and tested it on
three agents in a number of environments (see Figures 1, 3).

A. Sensing & situation encoding

This section describes only the agent’s forward-time sen-
sors; for the reverse-time sensors (i.e., those used in xgoal

trees, as explained later in VI-C) the logical analogues are
used (see dotted lines in Figure 1). In the following, p refers
to the subject’s 2D position in the environment, while U
refers to the subject’s control input space, the set of discrete
control actions allowed.

The “inertial point” agent is a point-mass with four
constant-force thrusters mounted in the four cardinal direc-
tions. During operation the agent is required to have at all
times one, and only one of these thrusters on. The agent has
upper and lower bounds on its velocity.5 The subject’s state,
control actions, sensory state, and locally situated state are:

x = (p, p′) s = σp′

U = {N ,S, E ,W} λ = (s, ‖p′‖)

where σp′ measures the distance from agent to the nearest
obstacle along the velocity vector p′.

The non-holonomic car used is very similar to that in [1],
but less maneuverable, with a smaller maximum steering

5A small lower bound was found useful since otherwise most exploration
occurs at near-zero velocities due to the ease with which antagonistic thruster
pairs can cancel out each other’s progress.

ThC10.2

2702

angle ψmax . The relevant variables are:

x = (p, θ) s = (σLwh
, σF , σRwh

)
U = {−ψmax , 0, ψmax} λ = s

where θ is the car’s orientation, σF is a forward-facing
rangefinder, while σLwh

and σRwh
are the left and right

“whiskers”. A whisker returns the distance to the environ-
ment along a particular path. It can be useful to consider
curved whisker-paths for robots when this reflects the nature
of their motion. In practice, we approximate such curved
paths using a small set (n = 8) of straight line segments for
computational efficiency. The car’s whiskers correspond to
the two extremal steering actions applied for the duration of
a 180◦ turn, as shown in Figure 1.

The last and most complex subject is the dynamic bike
model from [1], with the following parametrization:

x = (p, θ, φ, φ′) s = (σL, σF , σR) λ = (s, φ, φ′)

U = {−ψmax ,−ψmax

2 , 0, ψmax

2 , ψmax}

where θ is the bike’s orientation, φ its lean angle, σF
is again the forward-facing rangefinder, while σL and σR
are rangefinders deflected off-center by 30◦, left and right,
respectively.

B. Discovery & modeling

The preferred way to accumulate viability samples is
through “bootstrapping”, whereby the planner progressively
builds up Ωv from scratch using self-observation, since this
makes the planner self-contained. However, bootstrapping is
currently problematic, as discussed in section VIII-C; instead
we collect samples of viable states from very long random-
walk trajectories, created by applying random control actions
at each time step, and backtracking upon failure.

The above method yields only viable samples since to
prove a state is viable it is sufficient to show a single viable
outbound trajectory, yet to prove nonviability one must show
that all possible trajectories out of the state end in failure.
Alas, even proving the former requires a concession since a
viable trajectory is one that can continue indefinitely, which
is not always easy to show. We thus adopt a time horizon,
th, in our viability assessments (we use th = 10s); that is,
any state which supports a collision-free trajectory longer
than this duration is deemed viable. This assumes that the
failure modes of the subject are confined to durations shorter
than th; in our experience, any error introduced with this
approximation (i.e., contamination of the experience pool
with nonviable states) is insignificant when compared to
other sources of error in our approach. In this way then, any
search tree or trajectory in the training datasets is readily
converted to a collection of sample viable states by simply
discarding th worth of motion from their tail ends.

Once a sufficient number of samples have been collected,
the oracle can be trained. Since the collected samples all
belong to the same class (i.e., “viable” set), this is naturally
a one-class classification problem. We use the one-class
classifier in the libSVM [17] library. The SVM learning
process is straight-forward: prior to learning, the training

samples λ ∈ Λ are first column-standardized6, and then
additionally scaled further in some of the dimensions to
give those features more “resolution”. Radial Basis Function
(RBF) is used for the kernels, with γ ∈ {0.5, 1, 2}, while
ν ∈ {0.005, 0.01}.

C. Dual-tree considerations

In dual-tree planners, the xgoal tree is usually built using
reverse-time simulation of system dynamics. Such trees
require some obvious modifications to our filtering approach.
Since the subject generally moves “backwards” in reverse-
time, it is necessary to flip the sensor orientation front-to-
back; see dotted lines in Figure 1. This further implies that
reverse-time trees need to build and use their own oracle,
Ωvrev

, based on sensory data from this “flipped” sensor
set. The resulting oracle models viability in reverse-time,
which is equivalent to modeling reachability for a forward-
simulation setting (see Figure 2), thus requiring that training
trajectories be th-trimmed from the front rather than the tail.

A nonviable xgoal poses a problem for single-tree planners
because the viability filtering component will directly deter
the planner from completing the last leg of the solution.
Fortunately the dual-tree approach completely sidesteps this
problem because a solution requires only a tree-tree connec-
tion, not a tree-node one. That is, the xinit tree, Tinit , no
longer needs to reach xgoal ; it only needs to reach any node
in the xgoal tree, Tgoal , a much larger target. Similarly, xinit

does not have to lie in reachable space since Tgoal needs
only to reach any node in Tinit . The only consequence of
this is that the two trees may only meet in space which is
both, viable and reachable, but this does not seem to have
any noteworthy repercussions.

VII. RESULTS

The testing platform was implemented in Python 2.4, on
a Pentium IV 2.4GHz Linux machine (kernel 2.6). The base
planning algorithm used was the dual-tree RRT-Blossom
presented in [1]. To partially offset the slower speed of an
interpreted language a number of optimized modules were
used: “psyco”, the C-implemented libSVM library (through
the accompanying Python bindings), “scipy”, and other
C-implemented modules of mathematical nature. Collision
checking was done using a naive Python implementation.

Table I summarizes the numerical findings. The labels
“CT”, “Blossom”, and “BlossomVF” refer respectively to
RRT-CT [11], RRT-Blossom [1] and our present algorithm,
RRT-Blossom with Viability Filtering. The values are aver-
ages over 20 runs for RRT-Blossom and RRT-Blossom/VF,
and over 10 runs for RRT-CT. Figure 4 illustrates the effect
that the viability filtering has on tree structure.

It is important to note that each agent uses the same
viability and reachability models for all three environments.
These models were all trained on data from the “complex”
environment, which largely explains why the gains in that
environment are the most dramatic (shaded row in Table I).

6λi ← (λi − µi)/σi, where λi is the i’th coordinate of vector λ, while
µi and σi are the corresponding mean and standard deviation, respectively.

ThC10.2

2703

TABLE I
PERFORMANCE COMPARISON

INERTIAL POINT CAR BIKE

environment algorithm time (s) # iter. # nodes time (s) # iter. # nodes time (s) # iter. # nodes
CT 1448.4 20,064.0 21,468.5 301.8 9408.2 9969.4 1088.7 29,775.6 17,070.5
Blossom 1033.6 10,033.7 12,007.4 186.8 6187.0 6439.3 72.4 4137.1 4019.1complex
BlossomVF 171.1 2401.0 4208.9 12.2 478.7 720.9 15.9 651.3 805.5

rooms-525
CT 488.5 14,157.2 12,088.3 204.3 6404.2 7892.0 943.4 23,521.1 14,245.4
Blossom 1287.2 10,027.3 13,711.2 1428.5 19,308.5 19,895.9 193.3 6904.0 6695.1
BlossomVF 326.0 3232.5 5682.9 63.4 1954.5 2503.2 89.6 2669.8 2773.4

rooms-IKEA
CT 1403.7 26,018.4 20,114.4 1142.6 22,044.1 20,086.9 409.8 19,146.4 9765.1
Blossom 1062.4 9839.0 12,241.0 1425.5 19,040.0 19,605.0 105.7 4910.3 4750.3
BlossomVF 481.2 4578.1 7113.6 685.0 7144.6 9617.9 40.8 1066.1 1291.8

At the same time, it is encouraging to see that the mod-
els are still effective when applied to other environments.
The diminished gains in “non-native” environments are a
consequence of the sensors’ perceptual limits introducing
environment-specific artifacts into the learned model, and
such artifacts are not generally transferrable.

VIII. DISCUSSION

A. Choice of sensors

The gains of viability filtering are directly tied to the
net balance of work saved (skipping exploration of futile
branches) minus extra work incurred (computing sensor
values and consulting the oracle). It is thus important to find
sensors that are relatively cheap to compute, yet at the same
time ones that capture the viability-relevant aspects of the
agent state particularly well. Excessive emphasis on reduced
computational cost can be counterproductive, however: for
many dynamical systems the increased computational cost of
more perceptive sensors is far outweighed by the resultant
heavier pruning of the search space. For example, even
though it is far cheaper to compute the sensory state of
a car outfitted with three linear rangefinders, rather than
the whiskers, this produces poorer results, despite the much
reduced sensor computation time.

B. Consequences of oracle error

Modeling error in the viability oracle can be either un-
derinclusive (false negatives; viable states labeled as non-
viable) or overinclusive (false positives; nonviable states
labeled as viable). An underinclusive model restricts planner

exploration more than it should. This results in a smaller
search space, and consequently shorter planning times, but
it is detrimental in highly constrained environments since
essential bottlenecks are easily made impassable when mis-
classified as nonviable. Overinclusive models, on the other
hand, diminish the amount of filtering of the search space,
causing the planner to gradually regress into the host plan-
ning algorithm (i.e., the form without filtering) as this error
increases. In general, the amount of viability filtering is a
function of model error, and spans a continuous spectrum as
illustrated in Figure 5.

C. Scarcity of samples & bootstrapping

There are two key issues with bootstrapping. The primary
is that viability filtering directly prevents the discovery of
novel viable samples: any such sample would be necessarily
misclassified by the current oracle, and thus filtered from
exploration. In short, a planner with full viability filtering
cannot extend its viability model using self-observation. Sec-
ondly, even if this were not so, the initial dearth of samples
during bootstrapping would lead to heavily underinclusive
models, which would in turn lead to frequent inability to find
solutions to queries, thus again restricting the availability of
fresh training data.

Both problems can likely be overcome by stochastically
phasing-in the viability filtering. That is, filtering could be
applied only to iterations in which r > Φ, where r ∈
[0, 1] is a random variable, and Φ ∈ [0, 1] is a phase-in
parameter that increases as the viability model fills out. The
model’s “fullness” could perhaps be gauged by the inverse

RRT-CT RRT-Blossom RRT-Blossom w/VF RRT-Blossom RRT-Blossom w/VF

Fig. 4. The effect of viability filtering on tree structure and density (bike results shown). On the left are the three compared algorithms; the filtering
planner (rightmost) achieves a solution with noticeably less effort. On the right is a magnified view of tree structures for the bike. The filtering planner
(on right) conspicuously avoids probing the corners and instead relies almost exclusively on viable trajectories.

ThC10.2

2704

Fig. 5. Amount of viability filtering as a function of model error.

of the rate at which novel samples are encountered. The
general problem is similar to that of exploration-exploitation
tradeoffs encountered in reinforcement learning.

It is hard to characterize the number of samples required
to adequately capture the viable region. In general, the model
grows in proportion to the rate at which novel samples are
encountered, ones that lie outside current model bounds,
and the degree of their novelty. A practical characterization
might be to claim an adequate model when this rate of novel
samples fall below some predetermined, sensible threshold.7

D. Oracle transferability

As the results show, a viability model can be effective in
environments other than the one that was used in training.
How well a model transfers is dependent on the degree to
which the environments are similar in character and structure.
For example, a model trained in a constrained environment
will do poorly in wide open areas (and vice versa) since
the model will be mostly limited to Λ’s origin, whereas the
new environment will generally keep agent operation in more
distant, unexplored regions of Λ. The obvious remedy to
counter such over-specialization is to train the oracles on
samples from a variety of dissimilar environments. Initial
experiments (conducted only on the car so far) have yielded
good results.

E. Expected reduction in planning effort

Our approach hinges on preventing the exploration of
branches which are very unlikely to lead to a solution,
hence the reduction in planning effort is proportional to the
prevalence of such branches, which are usually the result of
the interaction of system dynamics with imposed constraints
(e.g., environment geometry). Such branches will typically
be more numerous when the agent is generally unstable,
has a very limited range of motion, or the environment is
relatively constraining. The speedup will further depend on
how conservative a viability model the oracle derives from
training data (see §VIII-B). Finally, results will deteriorate
if the target environment significantly differs in structure
from those used in training, or when the sensors used do
not sufficiently capture the local context of the agent.

7This is still not very general since it assumes that the training samples
are drawn uniformly from Λ; this is usually not the case.

IX. CONCLUSION

This paper proposes the use of locally situated state
information as a means to give motion planners “sight”,
which then aids in the detecting and learning nonviable
scenarios. This learned viability data can then be exploited
to expedite planning by barring the planner from wasting
effort on exploring nonviable regions of space. Results are
shown for three types of agents and demonstrate significant
speedups and generalization across environments.

Many interesting research directions remain. Annotating
the viable state samples with their corresponding control
actions, as found in the training data, could lead to more
powerful models. The oracle could adjudicate viability based
on λ histories, rather than just a single situated state, thus
opening up many possibilities. Combined with the collected
control action data, this may lead to automatic identification
of macroscopic motion primitives for the agent using pattern
matching and clustering of the λ histories. This could also
substantially compensate for perceptual limitations of the
agent’s sensors. The discovery of effective sensors could
perhaps be automated. Finally, bootstrapping of the viability
oracle and the compositing of training data from multiple
environments could be further explored.

REFERENCES

[1] M. Kalisiak and M. van de Panne, “RRT-Blossom: RRT with a local
flood-fill behavior,” in IEEE Int. Conf. Robotics & Automation, 2006.

[2] J.-C. Latombe, Robot Motion Planning. Kluwer Academic Press,
1991.

[3] S. M. LaValle, Planning Algorithms. Cambridge, 2006.
[4] T. L. Dean and M. P. Wellman, Planning and Control. Morgan

Kauffman, 1991.
[5] J. Barraquand and J.-C. Latombe, “Robot motion planning: A

distributed representation approach,” The International Journal of
Robotics Research, vol. 10(6), pp. 628–649, 1991.

[6] S. M. LaValle, “Rapidly-exploring random trees: A new tool for path
planning,” Computer Science Dept., Iowa State University, technical
report TR 98-11, 1998.

[7] S. M. LaValle and J. J. Kuffner, Jr., “Rapidly-exploring random trees:
Progress and prospects,” in Workshop on Algorithmic Foundations of
Robotics, 2000.

[8] M. H. Overmars and P. Svestka, “A probabilistic learning approach
to motion planning,” in Workshop on the Algorithmic Foundations of
Robotics, 1995.

[9] S. M. LaValle and J. J. Kuffner, Jr., “Randomized kinodynamic
planning,” in IEEE Int. Conf. Robotics & Automation, 1999.

[10] B. R. Donald, P. G. Xavier, J. F. Canny, and J. H. Reif, “Kinodynamic
motion planning,” Journal of the ACM, vol. 40, no. 5, pp. 1048–1066,
1993.

[11] P. Cheng and S. M. LaValle, “Reducing metric sensitivity in random-
ized trajectory design,” in IEEE/RSJ Int. Conf. Intelligent Robots and
Systems, 2001.

[12] S. Caselli and M. Reggiani, “ERPP: An experience-based randomized
path planner,” in IEEE Int. Conf. Robotics & Automation, 2000, pp.
1002–1008.

[13] M. Kalisiak and M. van de Panne, “Approximate safety enforcement
using computed viability envelopes,” in IEEE Int. Conf. Robotics &
Automation, vol. 5, 2004, pp. 4289–4294.

[14] J.-P. Aubin, Viability Theory, ser. Systems & Control: Foundations &
Applications, C. I. Byrnes, Ed. Birkhäuser, 1991.

[15] I. Mitchell, “Application of level set methods to control and reacha-
bility problems in continuous and hybrid systems,” Ph.D. dissertation,
Stanford, 2002.

[16] L. Chapel and G. Deffuant, “SVM viability controller active learning,”
Kernel machines for reinforcement learning workshop, 2006.

[17] C.-C. Chang and C.-J. Lin, LIBSVM: a library for support vector
machines, 2001, http://www.csie.ntu.edu.tw/∼cjlin/libsvm,.

ThC10.2

2705

