
 

 

 

  

Abstract— This paper describes the extraction of visual 

landmarks from outdoor images for mobile robot applications. 

The concept of group of landmarks, called landmark-view, is 

introduced, aggregating the most relevant landmarks present in 

each scene. The relevance of the landmarks is determined by 

their relative visual saliency. Thus, landmark co-occurrence and 

spatial and saliency relationships between them are added to the 

single landmark descriptors, which are based on saliency and 

color distribution in chromaticity space. A suitable framework 

to compare landmark-views is developed, and it is shown how 

this remarkably enhances the recognition performance, 

compared against the single landmark recognition. A view-

matching model is constructed using logistic regression. 

Experimentation using 45 views, acquired outdoors, containing 

273 landmarks, yielded good recognition results. Of the 42 

corresponding view pairs, 30 were recognized correctly, 

resulting in 71.4% of correct classification of similar views. Of 

the 948 non-corresponding view pairs, 768 were recognized 

correctly, resulting in 81.0% of correct classification in non-

similar views. The overall percentage of correct view 

classification obtained was 80.6%, indicating the convenience of 

the approach. 

I. INTRODUCTION 

HE extraction of reliable visual landmarks for mobile 

robot localization in unknown outdoor unstructured 

environments is still an open research problem. One of the 

key factors that makes the detection and recognition of visual 

landmarks in outdoor environments a challenging task is that 

acquired visual information is strongly dependent on lighting 

geometry (direction and intensity of light source) and 

illuminant color (spectral power distribution), which change 

with sun position and atmospheric conditions. 

Most feature extraction approaches are not adequate for 

this type of environments, since they rely on either structured 

information from non-deformable objects [5], or on a priori 

knowledge about the landmarks [2]. There are recent works 

about using SIFT features to match pairs of images [11, 10] 

with interesting results. Since mobile robot navigation tasks 

require real-time execution, some efforts have been made to 

reduce the considerable computational effort necessary to 

evaluate SIFT features for a whole image [9].  

In the present work we propose the concept of landmark-
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view, aggregating the most salient landmarks present in each 

image. A suitable framework to compare views is developed, 

and it is shown how this remarkably enhances the recognition 

performance. 

II. LOOKING FOR LANDMARKS IN THE SCENES 

The first step to recognize visual landmarks is to locate the 

candidate landmarks in the color images (512 x 512 pixels, 

24 bits/pixel) acquired by the mobile robot. The candidate 

landmarks are image regions selected according to their 

visual saliency, inspired on a biological model of visual 

attention [8]. The color-ratios saliency algorithm [15] 

embeds color constancy within the saliency computation, 

counterbalancing the intrinsic variations of illumination 

outdoors, which could affect the color perception and, 

subsequently, the saliency results. In the following, this 

saliency algorithm is described shortly. 

A region in an image is considered salient if it ranks high 

in a given feature and its surround ranks high in the opposite 

feature. Here, the features considered are the opponent 

colors (red-green and blue-yellow), because they are the 

most stable features of the original visual saliency model 

(color, intensity and orientation) when the scenes are subject 

to illumination changes. From the input image, two Gaussian 

pyramids, corresponding to each feature in logarithmic 

space, are constructed. In each pyramid, a pixel at a fine 

scale corresponds to a center region, whereas the respective 

pixel at a coarser scale corresponds to its surround. The 

ratios between features at different pyramid levels 

correspond to the computation of the center-surround 

saliencies and give the corresponding partial saliency maps. 

The pyramid levels used to compute each partial saliency 

map define the spatial scale of the salient elements detected. 

Two sets of partial saliency maps are constructed, 

corresponding to the color features at several spatial center-

surround scales.  

Finally, the partial saliency maps are combined, taking 

into account their information content, to compose a global 

saliency map. 

III. DELIMITING LANDMARK REGIONS 

Since the extracted salient regions are not necessarily 

bounded by well-defined contours, nor associated to single 

elements in the scenes, a refinement step is necessary in the 

process of determining the boundaries of landmark 

candidates. 
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As an initial approximation (Fig. 1), a minimal rectangular 

bounding box is computed for each segmented saliency spot. 

Very small bounding boxes (in the current implementation, 

the minimum size is fixed to 64 pixels) are discarded, 

because the low pixel count does not allow making reliable 

assumptions about the detected saliency. The bounding 

boxes correspond to the first representation of the landmarks 

detected with the visual saliency method. Due to the 

sensitivity of saliency to the surrounding information and 

shadowing, the spatial distribution of saliency can change 

significantly in images taken from the same scene under 

different conditions. The objective of the next two 

processing steps is to adjust the bounding box size and 

position, getting a better fitting to the detected salient 

elements. 

In the next step, for each bounding box a chromaticity 

histogram is computed and the image is submitted a 

histogram backprojection processing [13], emphasizing 

where the same colors appear in the whole image. 

After this, the size and position of all bounding boxes are 

adjusted, taking into account the color spatial distribution 

obtained with backprojection. This is achieved using the 

continuously adaptive mean shift algorithm [4]. This is a 

non-parametric technique that climbs the gradient of a 

probability distribution to find the nearest dominant mode, 

with the capability to adapt the window size. To increase the 

amount of information associated with the bounding boxes, 

their immediate surrounding region is also analyzed (Fig. 1), 

giving additional context information to the recognition. 

IV. LANDMARK CHARACTERIZATION AND MATCHING 

After the determination of the bounding boxes, the 

following region descriptors are extracted: 

1. Normalized chromaticity histogram of salient region 

inside bounding box. 

2. Normalized chromaticity histogram of fitted bounding 

box. 

3. Normalized chromaticity histogram of expanded 

bounding box. 

4. Mean saliency of fitted bounding box. 

The similarity between the histogram descriptors (1,2 and 

3 above) of two image regions i and j is measured by the 

distance between their corresponding points hi and hj in 

histogram space [13]. The quadratic form metric [7] is used: 

 
2

( , ) ( ) ( )
T

hist i j i j i j
d h h h h h h= − −A  (1) 

where hi and hj are n-dimensional color histograms, and A is 

the similarity matrix, whose elements akl denote similarity 

between bins k and l. This metric was selected because it 

allows for similarity matching between different colors, 

while other histogram metrics, like histogram intersection, 

just evaluate exact color matching. 

    The distances corresponding to the four descriptors are 

combined using the root of the sum of the squared distances, 

resulting in a single distance value between two landmarks. 

V. GROUPING LANDMARKS AND DEFINING VIEWS 

The results of experiments about single landmark 

recognition, using the algorithms described in the preceding 

sections [16], indicate that the color and saliency descriptors 

defined don't have enough information content to ensure 

unambiguous recognition of single landmarks. In the 

following it is described how the recognition process can be 

improved with the concept of landmark-view. 

The landmarks detected in the same scene are grouped, 

constituting landmark-views, and these views are compared 

with other views to recognize places already visited by the 

mobile robot, instead of comparing single landmarks. The 

grouping of landmarks combines the individual recognition 

evidences of the single landmarks detected in each 

observation, and adds the information on the relationship 

between landmarks. 

A landmark-view is defined as the set of landmarks 

observed in one image captured by the robot in a specific 

spatial location and orientation. Thus, at each observation, 

instead of just trying to recognize isolated landmarks, their 

mutual spatial and saliency relationships are also taken into 

account, adding context information to the landmark 

recognition task. Consequently, the problem of landmark 

recognition is handled as a component of a higher-level 

problem, namely view recognition. In order to be able to 

recognize views, it is necessary to establish a distance metric 

to compare pairs of views. 

VI. VIEW MATCHING 

Since views are defined as sets of landmarks, their 

similarity can be assessed by finding the optimal matching 

between the respective landmark sets. The idea is that 

corresponding views (images taken from similar robot 

location and orientation) should match better than non-

corresponding views. The relative visual saliency of each 

landmark is used to select the most relevant landmarks and 

also is used as a feature in the matching process. 

A powerful tool to model objects and relationships between 

them are graphs. They have been widely used in the fields of 

image analysis and image processing [4, 16]. In the 

following it is explained how a graph-matching algorithm 

can be applied to the view recognition problem [1]. A graph 

( , )G V E=  consists of a set of vertices { }
i

V v=  and edges 

{ }
i

E e= . The edges are connections between vertices. 

Vertex vj is adjacent to vi if there is an edge ( , )
i j

e v v=  

between them. Two edges are adjacent if they have a 

common vertex. A matching is generally defined as a subset 

of the edges of a given graph such no two edges are adjacent. 

A particular case of matching is defined between two distinct 

vertex sets { }
i

U u=  and { }
j

V v= , thus assuming a bipartite 

graph ( , , )G U V E= , where E U V⊆ × . 
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Fig. 1. The process of delimiting the landmark regions. From the source image a saliency map is computed, then this map is segmented, generating the seeds 

of the landmark regions. These seeds are enclosed by bounding boxes, which are fitted to the salient elements in the image using color histogram 

backprojection and mean-shift algorithms. Finally, the landmark bounding boxes are expanded, encompassing the immediate surrounding regions. 

 

 

Disregarding the adjacency constraint, in a bipartite graph 

a match is any subset of edges of it: 

 { }
i

M m E= ⊆  (2) 

The set of unmatched vertices is defined as:  

{ | , : ( , ) } { | , : ( , ) }S s s U v s v M s s V u u s M= ∈ ∈ ∈ ∈Uó ó    (3) 

There are several ways to match the vertices of U to those 

of V. A matching is maximal if the number of matched 

vertices is maximum. In the classical problem of bipartite 

matching, the objective is to find a maximal one-to-one 

matching. In a one-to-one matching, 

 ( , ) , ( , ) : ( ) ( )
i j k l

u v M u v M i k j l∀ ∈ ∀ ∈ = ⇔ =  (4) 

The bipartite matching problem can involve the 

minimization of a cost function, taking into account the cost 

of the matching and penalizing for the unmatched vertices: 

 cost( , ) ( ) '( )
m M s S

M S c m c s
∈ ∈

= +∑ ∑  (5) 

where c(m) with m=(u,v) is the cost of matching u to v, and 

c’(s) is the cost of leaving a vertex s unmatched. 

The cost of matching two vertices can be defined through 

a metric distance between attributes of the respective 

vertices. Weights of the vertices, denoted by w, can be 

considered in addition to attributes, meaning the strength, 

activity, probability or significance of each vertex. When the 

costs and/or weights of the matching are considered, the 

problem is called weighted bipartite matching [1]. 

In a bipartite graph, the matching is done between two 

separate vertex sets, which have no internal structure. Both 

bipartite matching and weighted bipartite matching can be 

reduced to the more general maximum flow problem, which 

can be solved in polynomial time. The set U of vertices 

corresponds to the set of landmarks in one view, and the set 

V corresponds to the set of landmarks in the other view. The 

weight of each edge represents the similarity distance 

between the individual landmarks. The solution of the 

weighted bipartite matching defined by U and V gives the 

best matching between the landmarks and thus provides a 

measure of view similarity. 

Among the several available algorithms to solve the 
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bipartite matching problem, the relaxation algorithm [3] was 

adopted because of its broad use, simplicity, and existence of 

successful reported experiences in the image-matching field. 

The algorithm consists of the following steps: 

1. Initially, the matching restriction is relaxed, allowing 

any vertex in V to be assigned more than one vertex in 

U. Each vertex ui in U is assigned to the vertex in V 

with the minimum matching cost among all edges. 

2. The algorithm then iteratively selects an overassigned 

vertex vk in V, obtains the shortest path from vertex vk 

to all other unassigned vertices in V, considering each 

matching cost c(ui,vj) reduced by the minimum 

matching cost from ui to any 
z

v V∈ , updates the 

assignments using the shortest path found, until there 

are no more overassigned vertices in V. The algorithm 

reaches optimality by executing a maximum of N 

iterations. 

 

With a naive implementation of shortest path, the resulting 

computation complexity is O(N
3
), but it can be reduced using 

optimized shortest path search algorithms, for example, to 

O(N
2(1+logN

)) using the Fibonacci heap method [1]. 

Thus, we compute the distance between two landmark-

views according to the following steps: 

1. In each view the k-most salient landmarks are 

selected. 

2. A k x k matrix with the quadratic-form distances 

between all pairs of landmarks, one taken from each 

view, is computed. Note that, in addition to the four 

descriptors listed in the preceding section, the 

distance of each individual landmark to the centroid 

of the set of landmarks is considered as an additional 

descriptor. 

3. The k landmarks of the two views are paired using the 

weighted bipartite matching algorithm, based on the 

quadratic-form distances between the landmarks. 

4. The minimum assignment cost resulting from the 

weighted bipartite matching is taken as the distance 

between the two views. 

 

The view with the lowest distance to a newly acquired 

view is considered the matching view. If no view has a 

distance to the query view below some threshold, then it is 

assumed that the query view is a new view in the system. 

VII. A STATISTICAL MODEL FOR VIEW-MATCHING 

In the landmark-view matching algorithm presented in the 

preceding section, the distances obtained from each 

descriptor (color histograms, mean saliency, distance to 

centroid) of the landmarks were just combined with a root 

mean of squares. 

Here, we propose to use logistic regression [6] to evaluate 

the significance of each landmark descriptor and to build a 

statistical model for view and landmark recognition.  

Logistic regression analysis evaluates the significance of 

each variable in a multivariable model whose output is a 

single binary variable. This variable has the semantics of a 

binary classifier based on the values of the input variables. 

We define a binary variable, named view match and denoted 

VM, which takes the value 0 when two landmark-views 

match, and 1 otherwise. 

The input variables considered are the following: 

� X1:Salient region chromaticity histogram. 

� X2:Fitted salient region chromaticity histogram. 

� X3:Expanded salient region chromaticity histogram. 

� X4:Landmark saliency. 

� X5:Landmark distance to the centroid of the set of 

landmarks in the view. 

� X6:Combined sum of squares of the previous features. 

� X7, X8:Non-assigned nodes in the weighted bipartite 

view matching. 

 

The resulting model has the form: 

 

1 1 2 2 3 3 4 4 5 5 6 6 7 7 8 8

1 1 2 2 3 3 4 4 5 5 6 6 7 7 8 81

A B X B X B X B X B X B X B X B X

A B X B X B X B X B X B X B X B X
VM

e

e

+ + + + + + + +

+ + + + + + + +
=

+
 (6) 

 

where A is a constant term, and Bi are the beta coefficients 

(see Table 1), outputs of the logistic regression carried out 

with a training set of data. Xi are the input variables. The 

training set of data consisted of a sample of outdoor images 

with 68 landmarks and 78 cases of possible view pairs 

[14].Table 1 presents the logistic regression results using 

these sample images. The regression was carried out in five 

steps, each one constituting a new model aggregating a new 

group of variables. 

In the first step, just the color descriptors of the landmarks 

(salient region, fitted salient region and expanded salient 

region chromaticity histograms) were used. These variables 

explained 43.3% of the model variance (Nagelkerke R2 

0.433). The model was able to classify correctly 82.4% of 

the matching view pairs and 75.4% of the non-matching view 

pairs (overall correct classification 76.9%). The significant 

color variable was the expanded salient region color 

(p<0.05). 

It turned out that the saliency variable does not contribute 

to the model quality. Its introduction in step 2 did not 

improve the variance explained by the model, neither the  
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Table 1 Logistic regression of the "view match" variable 

Independent variables Step 1 Step 2 Step 3 Step 4 Step 5 

 beta sig. beta sig. beta sig. beta sig. beta sig. 

Salient Region Color 1.566 0.055 1.566 0.056 1.366 0.110 1.333 0.207 0.297 0.790 

Fitted Salient Region Color 0.042 0.988 -0.024 0.993 0.809 0.792 0.748 0.819 3.867 0.300 

Expanded Salient Region Color 13.981 0.001 13.693 0.001 15.952 0.001 15.937 0.001 18.775 0.001 

Saliency   -1.738 0.836 -4.689 0.615 -4.700 0.614 -11.965 0.296 

Distance to Centroid     -1.537 0.008 -1.593 0.184 -1.310 0.317 

Combined Sum of Squares       0.159 0.958 1.905 0.561 

NA1         1.177 0.003 

NA2         1.177 0.003 

Constant A -1.491 0.004 -1.441 0.011 -0.787 0.204 -0.800 0.231 -3.488 0.002 

% explained (Nagelkerke R2) 0.433  0.433  0.485  0.485  0.567  

% correct classification same view 82.4  82.4  76.5  76.5  82.4  

% correct classif. on different view 75.4  75.4  82.0  82.0  83.6  

Overall % correct classification 76.9  76.9  80.8  80.8  83.3  

 

classification scores. However, it is important to consider 

that the saliency was used to select the landmarks to be taken 

into account in the view-comparison process, thus it has an 

important indirect contribution to the classification result. 

In step 3, the variable distance to landmark centroid was 

introduced. It improved the variance explained by the model 

and the classification scores. These variables together 

explained 48.5% of the model variance. The model was able 

to classify correctly 76.5% of the matching view pairs and 

82.0% of the non-matching view pairs (overall correct 

classification 80.8%). The significant variables were the 

expanded salient region color (p<0.01) and distance to 

centroid (p<0.1). 

In step 4, a root mean square of the previous features was 

considered. The model already included the variables 

involved in the computation of this variable, and so there 

were no changes in the model prediction performance. 

In the last step, the variables NA1 and NA2, corresponding 

to the cost of non-assigned nodes in the bipartite graph 

matching of the landmarks in the two views, were 

introduced. They improved considerably the variance 

explained by the model and the classification scores. These 

variables explained 56.7% of the model variance. The model 

was able to classify correctly 82.4% of the matching view 

pairs and 83.6% of the non-matching view pairs. The 

significant variables were the expanded salient region color 

(p<0.01), and the non-assigned nodes NA1 and NA2 

(p<0.05). The overall correct prediction of matching was 

83.3%. The NA1 and NA2 variables have the same 

significance, because they have the same semantics, i.e., the 

count of non-matched landmarks in each view. Since NA1 

and NA2 carry implicit a direction of matching, in the 

regression analysis each pair of views was considered two 

times, inverting the query and database roles. 

It is important to observe that the effect of introducing the 

variables in the regression model is not necessarily 

cumulative, regarding the significance of variables. The 

significance of a variable could be affected with the 

introduction of a new variable in the model, because the 

significance is computed in the context of that model. 

The constant term A in equation (6) appears as significant 

because it is related to the part of the model that is not 

explained by the variables. All regression models were 

statistically significant, with p<0.01 in all steps. It can be 

observed that the most significant variables in the complete 

model were the expanded salient region color and the non-

assigned nodes, which constitute a combination of color and 

spatial information. The initial model parameters were 

computed off-line, using the SPSS package [12], based on a 

sample image set, and the match score function was 

developed ad hoc and embedded in the view recognition 

system. 

VIII. EXPERIMENTAL RESULTS 

To validate the landmark-based view recognition system, a 

university campus was chosen (PUCRS, Brazil) as a real 

outdoor environment. A set of 990 view pairs from 45 

different views, with 273 landmarks, was analyzed (Fig. 2). 

An example of weighted bipartite matching for two similar 

views is shown in Fig. 3. 

 
Fig. 2 Some images taken in the outdoor experiment. 
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Of the 42 corresponding view pairs, 30 were recognized 

correctly, resulting in 71.4% of correct classification of 

similar views. Of the 948 non-corresponding view pairs, 768 

were recognized correctly, resulting in 81.0% of correct 

classification of non-similar views. The overall percentage of 

correct view classification was 80.6%. 

Using a standard low-performance PC computer (Pentium 

III 900MHz, 256Mb DRAM, Microsoft Windows XP) the 

view matching was performed in 0.69 seconds. 

 

 
Fig. 3 Landmark matching at similar views. The arrows indicate the 

solution of the weighted bipartite matching 

IX. DISCUSSION 

A noticeable increase of performance in correct 

classification was observed with the introduction of 

landmark-views in the landmark recognition process. The 

results were good, even in a real outdoors experiment subject 

to illumination effects, like highlights, shadows, and 

illumination changes present in this experimental sample. 

This work contributes to the robot localization field by  

proposing a new procedure for visual saliency detection and 

characterization of candidate landmarks in scenes, as well as 

an application of logistic regression analysis to determine a 

suitable matching model. A binary function to compare a 

query view with each view in a database of previous views 

and to decide about the similarity between them was 

developed with the aid of logistic regression. Very good 

view discrimination ability was observed, with scores of 

correct classification that validate the concept of landmark-

view, and the proposed view recognition procedure. 

Logistic regression proved to be a powerful tool to build 

the matching model. Without it, on a trial-and-error basis, it 

was extremely difficult to compose the available information 

to decide the matching of views. The resulting model is 

simple and allows for the future incorporation of 

reinforcement mechanisms, through the continuous tuning of 

the model parameters as a background task. 

The use of view descriptors aggregating co-occurrence 

and spatial relationships of landmarks significantly improved 

the recognition process, preserving the simplicity and low 

quantity of stored information. 

Some lines of future research are envisaged. The first one 

is to reduce the search space for view matching by taking 

into account the recent history within a probabilistic 

approach. And the second, as mentioned above, is to endow 

views with a reinforcement strategy that would tune the 

descriptors each time a view is recognized. Finally, it could 

be interesting to use our saliency-based approach together 

with a SIFT-based engine, combining the good properties of 

both techniques. 
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