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Abstract—This paper presents an architecture for
building remote access laboratories (or Web Labs)
following the service-oriented computing approach. In
this architecture the application’s building blocks are
services that can be recursively composed resulting in
more comprehensive services. Remote access labora-
tories can benefit of this approach. Every lab resource
(physical or logical) is modeled and implemented as a
service (in our case, a Web service) and lab exper-
iments are assembled by composing these services.
A Web Lab built according to this architecture is
presented with examples of remote experiments in the
field of mobile robotics.

I. Introduction

Remote Access Laboratories or Web Labs have been
proposed as powerful tools for the sharing of expen-
sive equipment and for bringing experimentation into
distance learning. The challenge regarding Web Labs
implementations is to provide an infrastructure where
remote experiments are easily assembled and modified.

This paper proposes a service-oriented computing ap-
proach for building Web Labs. Considered as an evo-
lution of distributed computing, service-oriented com-
puting is defined as ”the approach that uses services as
fundamental elements in application development” [1].
Using composition mechanisms (or orchestration), more
comprehensive services can be built from existing ones.
Since the composed service is itself a service, it can take
part in further compositions [2].

Implementing Web Labs according to service-oriented
computing brings some remarkable benefits. Firstly, lab
resources (physical and logical) are modeled and im-
plemented as services, for instance, a robot exports a
set of services, each one performing an specific function
(sensing, navigation, and so on). Secondly, experiments
can be synthesized as a composition of services. In this
way, new experiments may use existing ones as units
of composition, and the updating of an experiment is
restricted to its composition’s logic. Finally, the concept
of federation of services allows Web Labs to use resources
maintained by other Web Labs located in different ad-
ministrative domains.

This paper describes an architecture based on compo-
sition and federation of services for building Web Labs.
A complete implementation of this architecture using
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the Web services technology and a Web Lab in mobile
robotics built according to the architecture are presented
as well. The paper is organized as follows. Section II
presents some related work; Section III presents a service-
oriented architecture for Web Labs; Section IV provides
an implementation of this architecture; Section V de-
scribes a Web Lab in mobile robotics developed according
to the implemented architecture; and Section VI closes
the paper with conclusions and future work.

II. Related Work

Web Labs were initially developed with well known
Web technologies, such as Java applets on the client
side [3] and server-side extensions based on CGI (Com-
mon Gateway Interface), ASP (Active Server Pages),
or JSP (Java Server Pages) [4][5]. Distributed objects
approaches based on Java RMI (Remote Method Invo-
cation) and CORBA (Common Object Request Broker
Architecture) were proposed as well [6]. Other implemen-
tations require platform dependent software in the client
terminal [7]. All of these approaches have in common
the limited software reuse, customization, and interoper-
ability. These limitations are due to the low granularity
of software artifacts and the adoption of interaction
protocols that are usually blocked by network firewalls.

More recently, Web Lab architectures based on soft-
ware components were proposed [8]. Although com-
ponents increase software reuse and customization,
component-based architectures still lack interoperability
among different platforms and administrative domains.
Architectures based on Web services are an attempt to
build Web Labs that fulfill the requirements of software
reuse, customization, and interoperability [9][10].

The related work closer to the described in this pa-
per is the iLAB project [11]. iLAB identifies a set of
administrative functionalities such as user subscription,
authorization and authentication, group management,
and access control. Such tasks are common to all Web
Labs and are decoupled from the domain specific func-
tionalities the Web Labs support. The administrative
tasks are managed by a Service Broker that mediates the
access to the associated Web Labs. The Service Broker
supports in some way the federated operation of Web
Labs. The architecture proposed in this paper shares
some similarities with iLAB, for instance:

• decoupling between use and management of Web
Labs;
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• use of Web services for management and access to
Web Labs;

• federated operation of Web Labs.

iLAB makes no restriction about the implementation
of the Web Labs, except the interfaces for attaching to
the Service Broker.

The architecture proposed in this paper differs from
iLAB in three important aspects:

1) the scope of the federation of Web Labs is enlarged
by allowing Web Labs to share resources (not only
subscribed users);

2) instead of rely on a centralized access control (Ser-
vice Broker), each federated Web Lab sets its own
access policies;

3) the federation imposes that each federated Web
Lab must implement a minimum security infras-
tructure.

Composition plays a key role in this proposed archi-
tecture for Web Labs. Intra-domain composition allows
a Web Lab to combine its resources within experiments.
Inter-domain composition allows a Web Lab to combine
its own resources with resources offered by other Web
Labs. Inter-domain composition enlarges the range of
experiments a Web Lab can offer and constitutes the
truly motivation for a federated operation of Web Labs.

The architecture also gives each Web Lab the freedom
to set its owns access rules. Policies is a flexible way to
set the condition upon which users can access the Web
Lab. For instance, a policy must require that foreign
users be authenticated, present credentials issued by the
Web Lab he/she was subscribed, and has a time slot
already reserved to perform experiments. The flexibility
of policies allows a Web Lab to take part of multiple
federations by defining a policy set for each federation it
takes part.

Finally, the federation imposes a minimum set of secu-
rity constraints to its federated Web Labs. For instance,
each Web Lab must support an infrastructure for authen-
ticating users and services. This infrastructure is domain-
independent and can be supplied by the federation and
integrated into existing Web Labs.

III. A Service-oriented Architecture for Web

Labs

The service-oriented architecture for building Web
Labs defines a reference model for Web Labs and a family
of services for supporting the model elements.

The reference model for Web Labs is shown in Fig. 1.
The UML concept diagram shows the main elements of
the model as well as the relationships among them. The
two central elements are Participant and Web Lab. A
participant can be an individual (User) or a Group. A
group is a collection of participants formed by users or
(sub)groups. The line connecting participants to Web
Labs represents the usage relationship. To use a Web Lab
a participant must have assigned the proper Credentials
and establish one or more Sessions with the Web Lab.

Notice that credentials and sessions refer to a specific
participant accessing a specific Web Lab. Examples of
credentials include the user’s identification, roles (e.g.,
student, instructor), permissions (e.g., usage, manage-
ment), and privileges (e.g., group leader).

Sessions are responsible for managing the interaction
between a participant and a Web Lab. Sessions maintain
state information related to the interaction such as the
identification of the participant, the remaining access
time, and the actions the participant has performed.

Web Labs publish the services they offer. Services are
units of composition on interaction with the Web Lab
employed for purposes such as access, interaction, com-
munication, and management. Experiments offered by
Web Labs are modeled as a composition of services. For
instance, an experiment in environmental mapping can
compose a service of locomotion (e.g., random walk) with
a service of telemetry (e.g., sonar readings). A Web Lab
maintains a set of Resources, both physical such as robots
and cameras, and logical such as robot simulators and
navigation maps. Resources are manipulated remotely
through services. A Web Lab has a self-relationship
that models a federation of Web Labs. The model does
not impose a particular mechanism for building such a
federation.

offers

uses

federates

manipulates

publish

composes

maintains

Experiment

Credential

UserGroup Participant

Session

ServiceResource

Web Lab

Fig. 1. A reference model for Web Labs.

Looking at the reference model presented in Fig. 1 it
is possible to aggregate the concepts around the partic-
ipant (user, group, credential), the Web Lab (resource,
experiment), and the usage of the Web Lab by a given
participant (session). This suggests a need for services
for managing participants, Web Labs, and sessions.

The service in charge for managing participants offers
functionalities for the management of users and groups.
User management functions include subscription and un-
subscription, and assignment of credentials with proper
roles, permissions, and privileges. Group management
functions include the creation, updating, and removing
of groups.

The service in charge for managing Web Labs offers
functionalities for the management of resources and ex-
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periments available in the Web Lab. Resource manage-
ment functions include resource registration and usage
restrictions such as periods of availability. Experiment
management functions include activation of experiments
and assignment of restrictions to experiments such as
reservation restrictions (e.g., maximum reservation time)
and accessing restrictions (e.g., minimum set of creden-
tials).

The participant and lab management services hold
long-term information and provide both programatic and
human-operated interfaces. The use of services provided
by these interfaces are subject to authentication and
authorization.

The services in charge for managing sessions expose
interfaces for the management of interactions between a
participant and the Web Lab. The architecture identifies
three basic session types: access, interaction, and commu-
nication sessions. Access sessions manage the access of a
participant to the Web Lab according to its credentials.
Interaction sessions manage the remote execution of ex-
periments maintained by the Web Lab. Communication
sessions manage the exchange of information between the
users and the Web Lab.

Access management functions include authentication
and authorization. Authentication establishes the iden-
tity and credentials of the user while authorization de-
cides if the credentials suffice for granting access to the
Web Lab resources. A set of usage policies define the rules
for accessing the Web Lab resources and experiments as
a function of the user’s credentials.

Interaction sessions provide the correct flow of service
invocation demanded by an experiment. This flow is
specified as a composition of services supported by the
Web Lab. Interaction management functions include the
initiation and termination of communication sessions,
and logging functions. Interaction sessions are subjected
to the existence of a previously established and valid
access session.

Communication management functions include config-
uration and connection of producers and consumers of
information, management of quality of service for mul-
timedia communication, support for person-to-person
communication, and logging of information.

Figure 2 illustrates the major components of the ar-
chitecture in a UML package diagram. The five packages
represent the general components for supporting Web
Labs and offer a hint for aggregation of services according
to the reference model described above.

IV. Architecture Implementation

The five service classes shown in Fig. 2 were im-
plemented using the Web services technology. Partici-
pant and Web Lab Management Services are traditional
database-centric services and will not be detailed. Access
Management and Communication Services are domain
independent services and are detailed in the sequence.

<<uses>> <<uses>>

Management

Interaction

Management

Communication

Management

Web LabParticipant

Management

Access

Management

Fig. 2. Major components of a service-oriented architecture for
managing Web Labs.

Interaction Management Services are domain dependent
services and will be detailed in Section V.

A. Access Management Service

The access management service implements policy-
based access control according to the Extensible Ac-
cess Control Markup Language (XACML) [12]. XACML
allows a Web Lab to define access policies for each
experiment it supports. When a user attempts to access
an experiment, the access management service is invoked.
The service requests user authentication and invoke the
participant and Web Lab management services in order
to get the user’s credentials and experiment restrictions
such as credentials necessary for execution and current
reservation data (reserving user, reserved time slot, etc.).
User and experiment information is then submitted to
the XACML engine for evaluation. XACML policies
typically check if the credentials suffice for accessing the
experiment, and if the user holds a valid reservation for
executing it. If the checking succeeds, the user is allowed
to execute the experiment.

SunXACML, a public domain implementation of
XACML from Sun Microsystems was employed as
XACML engine [13].

B. Communication Management Services

The Communication Management Service is imple-
mented as a information diffusion service according to the
publish/subscribe model. The service propagates XML
documents generated by producers to the subscribed
consumers. The service offers a Web service management
interface for subscribing and unsubscribing producers
and consumers, and for submitting XML documents for
diffusion.

During the subscription, a consumer may supply a
XPath expression that is evaluated when documents are
submitted. The result of this evaluation is propagated
to the consumers if it results in a valid document (the
submitted one or part of it). If a consumer supplies a
notification interface, the service invokes the operation
push in this interface in order to transfer the document
as soon as it was processed (push style). Alternatively,
the consumer may inquire the service for new submitted
documents (pull style).
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If a producer states a lifetime for a submitted XML
document, the document persists on the service during
this lifetime, otherwise, the service discards the docu-
ment after it was delivered. The kind of information
present in these documents can serve several purposes,
for instance, notification (e.g., alarms); configuration
(e.g., formats and sizes of audio and video); user gener-
ated information (e.g., chat messages); synchronization
messages (e.g., whiteboard updates); and logging infor-
mation (e.g., session-related data).

A media streaming service was implemented above the
diffusion service. Media producers publish their capa-
bilities, media ports, and negotiation interfaces. Media
consumers access these informations and, if the case,
negotiate a proper media quality and format through the
producer’s negotiation interface. The media flow is not
transferred through the diffusion service.

Other Web Lab implementations may choose different
approaches for supporting communication. Both com-
mercial and open source products supporting media
streaming, conferencing, and messaging are available
from many sources and can serve as a basis for the
Communication Management Service. In this case, a
Web service wrapper to control these products must be
implemented.

V. GigaBOT Web Lab

GigaBOT is a Web Lab for mobile robotics education
implemented following the architecture described above.
Being domain independent, access and communication
services don’t need any adaptation to the mobile robotics
domain. The interaction services, otherwise, have been
developed for this specific domain and will be described
next.

A. Lab Infrastructure

The GigaBOT Web Lab operates two ActivMedia’s
Pioneer P3-DX robots with sixteen sonars and protection
bumpers. One robot is fitted with on-board processor,
wireless network interface (802.11g), and a Canon VC-
C4 on-board camera with PTZ (pan/tilt/zoom) and con-
nected to framegrabber. The second robot does not have
on-board processor, being controlled via serial port by an
HP IPaq H5555 handheld with 802.11b wireless network.
The handheld runs the Familiar Linux v0.8.1 operating
system. This robot is fitted with an Axis 206W wireless
network camera. An Axis 213 PTZ network camera is
available to allow a panoramic view of the execution of
experiments.

The software infrastructure at the lab’s side is com-
posed of a Web service container (Apache Axis Java),
a JSP/Servlet container (Apache Tomcat), a UDDI
(Universal Description Discovery Integration) server
(jUDDI), and a relational database (MySQL). Axis,
Tomcat, and jUDDI are supplied by the Apache Software
Foundation [14]. Containers and databases execute on a

dual-Xeon processors running the GNU/Linux operat-
ing system. The infrastructure is complemented by the
robots’ application programming interface (API).

Figure 3 illustrates the infrastructure components and
the interaction protocols on the server side. The compo-
nents on the client side consist of common Web browsers,
Java clients (Java processes that run on the client
desktop) loaded from the Java Web Start application
launcher, and MPEG-4 media players such as MPlayer
or Windows Media Player. Java clients discover Web
services by querying the UDDI service and invoke them
through the SOAP (Simple Object Access Protocol)
protocol.

Panoramic Camera

(Axis 213 PTZ)

JSP/Servlet

Container

(Tomcat)

Container

Web Services

(Axis)

Web Browser

Java Client

Client Side

SOAP

HTTP

SOAP

Media Player

MPEG−4

HTTP

Framegrabber

Robot API

(Java)

JPEG

Fig. 3. GigaBOT Web Lab Infrastructure.

B. Interaction Services

Interaction services are services supporting the inter-
action with the Web Lab domain-specific resources. The
GigaBOT Web Lab provides six interaction services: lo-
comotion, telemetry, vision, panoramic camera, actions,
and code submission services.

The locomotion service exports operations for moving
and turning the robot to a relative or absolute position
and for adjusting and limiting the speed and acceleration
of the robot. Operations supporting robot locomotion
can be synchronous (blocking while the movement com-
pletes) or asynchronous.

The telemetry service allows the obtaining of telemetry
data such as current robot position, sonars readings,
robot physical dimensions, and voltage supplied by the
battery.

The vision service allows to control the robot’s on-
board camera. The control parameters includes the ab-
solute and relative values of pan (horizontal movement),
tilt (vertical movement), zoom, and focus. The service
also allows the capture of a static image in JPEG format.

The panoramic camera service provides access to the
Axis 213 PTZ resource. The service supports the same
operations as the vision service plus operations for video
recording.

The action service wraps some of the built-in robot
actions into Web services. An action establishes a set of
basic operations which, together, perform a specific task.
Each action added to the robot is inserted into a queue
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with a given priority. Actions are performed in a sequence
given by their priorities. Nine actions are available: six
related to prevention and recover from collisions (e.g.,
moving with frontal and lateral obstacle avoidance), and
three actions related to locomotion (e.g., moving the
robot to a giving point).

Finally, the code submission service allows users to
submit and execute C++, Java, or Python code on a
server connected to the robot. The submitted code must
control the robot by calling the methods supplied in the
robot’s application programming interface (API). This
service also provides methods for controlling the execu-
tion of the submitted program, for instance, retrieving its
process identifier (pid) and standard output printouts,
and controlling its state of execution (suspend, resume,
kill).

C. Lab Experiments

The experiments provided by the GigaBOT Web Lab
are programmed using the composition of the interaction,
access, and communication services. The level of diffi-
culty of a proposed experiment can vary from the entire
coding of a robot navigation algorithm to the adjusting of
parameters of a supplied algorithm. Intermediate levels
include the coding of a new action. An experiment can
be executed on the user’s computer or on a server located
at the Web Lab and connected to the robot.

Six experiment classes were developed for the Web
Lab:

1) Basic Telemetry: experiments that allow to control
the robot as well as to inspect the sonar readings.
Control can be performed

• by issuing basic commands (move and turn) via
a graphical user interface;

• by drawing a route with the mouse on a navi-
gation map;

• by combining a set of pre-programmed actions
(e.g., random walking with obstacle avoid-
ance).

2) Navigation on Structured Environments: experi-
ments that allow the mapping of the robot’s en-
vironment and navigation based on environmental
maps.

3) Navigation on Non Structured Environments: ex-
periments that allow navigation and environmental
mapping simultaneously.

4) Vision-based Navigation: experiments that allow
navigation using the robot’s vision system.

5) Code Submission: allows the user to write naviga-
tion code and submit it directly to the robot.

6) Cooperative Robotics: experiments employing two
robots developing cooperative tasks.

Figure 4 shows the interface for the Basic Telemetry
experiments. The interface consists of two panels with
images from the on-board and panoramic cameras (left);
a navigation map (top right) with the actual robot po-
sition, the sonar readings represented as lines emanating

from the robot, and the already detected obstacles; and
a tabbed panel for navigation (bottom right).

Fig. 4. Interface for the basic telemetry experiments.

Experiments are built by composing the six interactive
services. The composition logic can be coded in general
purpose programming languages such as Java or C++,
or expressed in specialized composition languages such
as BPEL (Business Process Execution Language) [15].
BPEL allows the specification of workflows of service
calls in XML. The advantage of BPEL is the availability
of sophisticated engines supporting graphical edition as
well as execution and debugging of BPEL scripts.

As an example of composition with BPEL consider an
experiment in the Vision-based Navigation class where
the robot must follow a colored strip on the floor using
solely its on-board camera. This experiment composes
the vision, motion, and communication services with
a image processing algorithm written using the Java
Advanced Imaging (JAI) system [16]. Figure 5 illustrates
the interface of this experiment. The image on the left
shows the image captured from the on-board camera
(highlighted in black). The image on the center shows
the detected borders of the strip, and the image on
the right shows the trajectory computed from the other
two images. The interface allows the user to adjust the
maximum speed in which the robot follows the strip
as well as some parameters of the image processing
algorithm. A movie of the experiment is recorded from
the panoramic camera.

The composition logic employs a cycle with the follow-
ing steps:

1) invoke the communication service to start the
movie recording from the panoramic camera;

2) invoke the vision service to acquire an image from
the robot’s on-board camera;

3) invoke the image processing algorithm to identify
the strip. If no strip is identified do: (i) invoke the
locomotion service to stop the robot; (ii) invoke the
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Fig. 5. Navigation using the robot vision.

communication service to stop recording; (iii) end
of experiment.

4) invoke an heuristic to compute a movement that
will position the strip in the center of the image;

5) invoke the locomotion service to perform the move-
ment synchronously;

6) go to step 2.

Since this experiment runs on the client side, the
network bandwidth and delay strongly impacts on the
performance of the experiment. In order to assess the
bandwidth and delay demanded by the Web Lab, the
vision-based navigation experiment was performed from
four different access networks: local area, campus, res-
idential ADSL (Asymmetric Digital Subscriber Line),
and virtual private networks. Local area and campus
networks are Ethernet-based networks; ADSL service is
limited to 2 Mbit/s; and virtual private network (VPN) is
a dedicated network with Gigabit Ethernet links. Table I
shows the maximum speed the robot is still able to follow
the strip and the network bandwidth consumed by the
experiment for these four networks.

Access Network Max. Speed (mm/s) Bandwidth (Kbps)

Local Ethernet 170 23,500.00
Campus Ethernet 90 1,250.00

ADSL 30 970.00
VPN 200 23,700.00

TABLE I

Experiment performance in different access networks.

VI. Conclusions

A reference model for Web Labs was introduced in this
paper with the objective of identifying the major compo-
nents a Web Lab must implement. A domain independent
service-oriented architecture adhering to this model was
also detailed. In this architecture, lab experiments are
designed as a composition of services offered by the
Web Lab. This approach favors coarse-grained reusability
when building new experiments or adapting existing ones
to new contexts. The sophisticated composition engines
available today reduce drastically the effort for deploying
remote accessible experiments.

The architecture also supports the federated operation
of Web Labs. The federation relies on inter-domain au-
thentication for both users and service calls. A policy-
based authorization scheme provides flexibility on the ac-
cess control of Web Labs. These schemes take advantage

of XML-based standards for identity control (SAML) and
policy-based access control (XACML).

Finally, the next step in Web Lab design and operation
is to devise novel federation mechanisms. The proposed
architecture is an step towards this goal. Currently we are
building a federation of Web Labs in the field of Control
Systems and Robotics.
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