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Abstract— This paper presents a system which combines
single-camera SLAM (Simultaneous Localization and Mapping)
with established methods for feature recognition. Besides using
standard salient image features to build an on-line map of the
camera’s environment, this system is capable of identifying and
localizing known planar objects in the scene, and incorporating
their geometry into the world map. Continued measurement of
these mapped objects improves both the accuracy of estimated
maps and the robustness of the tracking system. In the context
of hand-held or wearable vision, the system’s ability to enhance
generated maps with known objects increases the map’s value
to human operators, and also enables meaningful automatic
annotation of the user’s surroundings. The presented solution
lies between the high order enriching of maps such as scene
classification, and the efforts to introduce higher geometric
primitives such as lines into probabilistic maps.

I. INTRODUCTION

Much of the groundwork in wearable vision has focused

on where and how to place cameras on the wearer’s body,

and how to supply graphically augmented video to the

wearer and a remote assistant if present. Cameras have been

attached to the torso to recover ambient information [1]; to

the head [2], [3] and wrists [4] to provide more specialized

task oriented views; and have been mounted onto inertially

and visually controlled platforms to afford some degree of

independence from the wearer’s motion [5], [6]. Providing

the wearer and remote assistant with enhanced views is a

valuable application, as indeed is the use of wearable cameras

for visual memory augmentation [7], [8]. However, visual

sensing can and should operate at a more profound level,

providing the wearer with autonomous advice as to what is

where, where to go next, and so on. There are many shared

problems here with robot navigation; but there are also

sharp contrasts: principally, these are that a camera’s human

“carrier” is highly intelligent, but geometrically sloppy, and

not amenable to precise or timely control.

Despite these contrasts, the two basic preconditions for

autonomous wearable vision are similar to those in robot

navigation [9]. The first is that the camera must be able to

establish its location in an initially unknown environment,

and later be able to re-address areas of the scene. In the wear-

able domain, some work has used special fiducial markers

[10] and pre-mapped targets [11]. A more general approach

was taken by Mayol et al. [9], [12], who adapted Davison’s

monocular method of simultaneous localization and mapping

(SLAM) [13], and demonstrated that their active wearable
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Fig. 1. A 3D view of the SLAM map with the identified objects.

was able to fixate upon successive locations or landmarks

while continuing to accumulate scene structure and motion.

The second requirement, and the focus of this paper, is

that at least some of those landmarks be tagged with higher-

level meaning, permitting a dialogue between the vision

system and its wearer. The method introduced here, of which

exemplar results are shown in Fig. 1, builds on the single

camera SLAM approach by inserting into the map features

from objects of known size which have been recognized in

the scene. Here the objects are planar — a book cover, a

picture, or similar — but this is not a fundamental restriction.

We suggest how objects can be incorporated into the state

with minimal disruption, and used to advantage not only in

visualisation, but also in improving the accuracy and overall

scale of the map.

The problem being addressed is of wider relavance. In

general, when SLAM is used either with traditional range

sensors or with cameras, the maps themselves are represented

as a sparse set of feature point locations. These maps are

sufficient for a robot to perform tasks such as (semi-)

autonomous navigation, or to infer some metric information

about its surrounds. However, for the method to progress into

large scale field environments and become more ubiquitously

applicable, a richer map is required: one that incorporates

more than just point features, and can more easily be

interpreted by a human observer.

There are several current active research directions which

aim to augment or interpret robot maps in some way. One

such approach uses methods from machine learning and

attempts to divide a map into a small number of given

classes such as office, corridor, or doorway (e.g. [14]). More

ambitious work attempts to determine these labels automati-
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cally. For example, in [15] recorded images are analysed and

categorized into distinctive categories, which are then used

to characterise areas of the map. At a slightly lower level

is geometric map augmentation: one recent approach used

geometric primitive fitting combined with model selection

to produce a reduced representation of a map [16].

However, these approaches perform post-processing, run-

ning apart from the SLAM itself. In this work, by using the

same point representation for both localization and recogni-

tion, we have a method where both can progress in tandem.

Section II describes the method of object identification

using Lowe’s Scale Invariant Feature Transform (SIFT), and

the nature of the objects used in this work. Section III

explains the method of object location using single view

geometry and Section IV briefly reviews monocular SLAM

before explaining how the additional 3D object locations

are inserted into the SLAM map. An initial experimental

evaluation is described in Section V and the paper closes

with some directions for future work.

II. DETECTION AND IDENTIFICATION FROM POINT

FEATURES

Our first aims are (i) to detect and identify known planar

objects in the scene and (ii) to determine their location in

the world frame from just a single image. The location will

serve as a measurement for the SLAM process.

To unify recognition, localization and SLAM, we adopt

a point-based representation throughout, and use features

which exhibit scale and rotation invariance, allowing an

object to be detected and re-detected over wide fields of

view. Mikolajczyk and Schmid’s evaluation of descriptors

[17] identified Lowe’s SIFT descriptor [18] as being the most

resistant to common image deformations. The reader familiar

with SIFT might skip to subsection II-B below.

A. Detection using SIFT

Object detection is a four stage process. In the first step

a scale space pyramid is created by successive convolutions

with a Gaussian. A quasi-Laplacian operator is applied at

each scale by computing difference of Gaussians (DoG) in

adjacent images in the scale pyramid. The second stage

computes extrema in the output by searching the octaves

of the DoG pyramid, with each pixel compared against its

spatial neighbours at the same scale and its scale neighbours

above and below. If the current pixel is the largest or the

smallest it is recorded as an extremum. Location to subpixel

accuracy follows by fitting a 3D quadratic function around

the extrema. The extrema are filtered for contrast and edge

response, the latter using the ratio of principal curvatures.

The third stage creates the descriptors. Each keypoint

is assigned an orientation by forming a histogram of the

orientations of the pixels at the extremum’s scale around

the extremum, and selecting the dominant orientation. The

descriptor is formed from the orientations and magnitudes

of the pixels around the keypoint by sampling over a 16×16

array aligned to the keypoint’s orientation. This array is

broken down into 4×4 subregions, and within each subregion
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Fig. 2. The object database contains planar objects (here pictures), the list
of SIFT descriptors and their locations Xo, (crosses), and the locations of
boundary points, three of which are marked for use in the SLAM map.

the orientations are used to fill an orientation histogram

of eight bins weighted by the magnitudes of the pixels

and a Gaussian to give pixels nearer the extrema more

weight than those further away. The combination of these

orientation histograms from these subregions gives the 128-

long descriptor. The descriptor is then normalised to provide

invariance to illumination change.

The final stage of SIFT is to match the keypoints. Lowe

[18] uses both the first and second nearest neighbours to

identify matches. Each keypoint in the database image is

compared to each keypoint in the scene image by calculating

the Euclidean distance from one to the other. A record is kept

of which two scene keypoints are the nearest to the database

image keypoint. Their distance ratio is calculated, and if less

than a threshold the nearest neighbour is considered a match

to the database keypoint. A correlation of keypoints on the

database image to the keypoints on the scene image is now

known and any unmatched keypoints are discarded.

B. The object database

In our work we build a database of planar objects. To

construct an entry, an image of the object is captured and,

after correcting for radial distortion, SIFT descriptors are

computed and stored along with their image positions xo.

The image need not be fronto-parallel, and so it is also

necessary to compute and store the homography Ho between

the scene and image by choosing n ≥ 4 image points whose

corresponding scene points can be located in a Euclidean

coordinate frame. In 2D homogeneous coordinates, points in
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the object plane are Xo = [Xo, Yo, 1]⊤, and up to scale

Xo = Ho
−1xo . (1)

As illustrated in Fig. 2, the database entry contains the list of

SIFT descriptors and their scene locations Xo. In addition

we store the locations of boundary points to define the object

extent, and, as explained later, flag three of them for use in

the SLAM map. The image of the object is rectified by the

homography so that it appears as a fronto-parallel view.

C. Object detection

SIFT is run at regular intervals on the current video frame

after removing radial distortion, and the detected features

are matched to the stored keypoints of the known objects.

As noted earlier Lowe’s second nearest neighbour method is

used to generate a set of candidate matching descriptors [18].

If the number of matched points from any given object’s

database entry to the current image is greater than a threshold

(in our case eight) we regard that object as a candidate.

Because of repeated structure or other scene confusion, some

of the features may be incorrectly matched. However, as the

database objects are known to be planar, the database scene

points Xo and currently observed image points xi are related

by a plane-to-plane homography

xi = HiXo . (2)

RANSAC is used to estimate the homography Hi and, if a

sufficiently large consensus set is found, we infer that the

database object is visible in the current frame.

III. SINGLE VIEW LOCALIZATION

Having determined an object is visible we recover its

location by decomposing the homography between scene and

current image.

In the Euclidean object-centred coordinate frame, the

object lies in the plane Zo = 0, and 3D homogeneous points

on the object are X
(4×1)
o = [Xo, Yo, 0, 1]⊤. In any view i,

the projection can therefore be written in terms of extrinsic

and intrinsic parameters as xi = Ki[Ri|ti]X
(4×1)
o . Hence

xi = KiAiXo , (3)

where Ai = [ri1 ri2 ti] contains the translation ti and the

first two columns of the rotation matrix Ri, all modulo

a scaling factor. Using the homography already computed

as the output of RANSAC and assuming known camera

calibration Ki,
[

ri1 ri2 ti

]

= K
−1
i

Hi , (4)

again up to scale. Because the estimate Hi is noisy, there is no

guarantee that r1 and r2 found as above will be orthogonal

(which they are required to be as they are columns of a

rotation matrix). We determine the closest rotation matrix,

and hence the overall scale for the translation, using singular

value decomposition.

The rotation matrix and translation vector calculated in this

way specify the transformation of the camera from the frame

of reference of an object’s canonical database image. We

can apply this transformation in reverse to place the object

in the frame of reference of the camera; and then apply a

further transformation determined by the camera’s current

position relative to the world coordinate frame defined by

the SLAM map to determine the position of the object in

world coordinates.

IV. SINGLE CAMERA SLAM AND WEARABLES

Single camera SLAM in which the camera is allowed

to move generally in 3D is a challenge because neither

single nor multiple views of a single point yield depth

when the motion is unknown. Information comes from points

collectively, but as processing has to be completed in a fixed

time a limit must be imposed on the feature map size1. As

explained below, we use the object’s location to inject a set

of 3D measurements into the map.

In the extended Kalman Filter formulation of Davison

[13], the state χ comprises two parts, Xi, the fixed 3D

locations of map features, and ct = (t, q, v, ω), the time-

dependent camera position, orientation, translational velocity

and angular velocity, all defined in a fixed world frame. The

associated covariance P is fully populated:

χ =











ct

X1

...

Xn











P =











Pcc PcX1
· · · PcXn

PX1c PX1X1
· · · PX1Xn

...
...

. . .
...

PXnc PXnX1
· · · PXnXn











.

(5)

The state prediction, measurement process, and update cycle

are quite standard, and assume constant translational and

angular velocities in the world frame. In our implementation

the Xi will come from objects and from “standard” features.

A. The choice of “standard” features for SLAM

The need for robustness against viewpoint changes during

SLAM is no less than that during recognition, and ideally

the same feature detector would be used throughout. Se

et al. [19] have implemented trinocular visual SLAM using

SIFT, but the time required to locate and match even the

few features needed in our work would be well in excess of

the inter-frame time. While object detection does not need

to occur every frame, in order to maintain correct matching

the underlying localization process really must.

In Section VI we note that a number of detectors which

are faster than SIFT might be considered for deployment

throughout. However, for this implementation, “standard”

features for (potential) insertion into the 3D map are detected

with the Shi-Tomasi saliency operator [20], and features

that are eventually inserted are stored with an 11×11 pixel

appearance template. Given a predicted camera position, each

feature Xi is projected into the new image along with its

associated uncertainty region derived at the 3σ limit from

the prior covariance projected into the image. Searches are

made within the region for correspondence using normalised

sum-of-squared difference correlation.

1For some applications of wearables, such a constraint is quite compatible
with a restricted workspace around a user.
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B. Adding and managing “standard” features

For standard features, i.e. those not derived from recogni-

tion, Davison’s original method of feature initialization [13]

has been used in experiments reported here. The more recent

method [21] can initialize features over much wider depth

ranges than the particle method, by using inverse depth in the

state, effectively adopting a disparity-based representation.

The map management criteria aim to restrict the number

of features observable in any one view to be compatible with

both the desired localization accuracy and maintaining video

frame-rate on portable CPUs. A feature is predicted to be

observable from some particular viewpoint if its projection

into a model of the camera lies well within the image, and

if both angular and range differences between the viewpoint

and the feature’s initial viewpoint are not so great as to make

the image template valueless. New features are added if the

number of those actually observable falls to five or less, and a

feature is deleted if its long-term ratio of actual observability

after search to predicted observability falls below 1:2.

C. Adding recognized object locations to the SLAM map

We now turn to the key aspect of the paper: adding

recognized objects to the SLAM map. A number of methods

for achieving this can be envisaged. In this work we choose

the straightforward but effective approach of using the re-

covered 3D position of the planar object to define 3D point

measurements.

However, we do not use the feature positions themselves.

Instead we use points on the object’s boundary — and use

the minimum of three to define the plane whilst avoiding

overburdening the SLAM process. For example, for the

rectangular pictures used in experiments, three of the four

corners are used, as indicated in Fig. 2.

There are several benefits in this approach. First, no

additional mechanism is required in the SLAM process.

Provided reasonable values are supplied for the (typically

much lower) 3D error in these points, constraints on the

scene will propagate properly through the covariance matrix.

Secondly, and perhaps most importantly, is that we do not

rely on any particular SIFT features being re-measured over

time. In effect, the underlying planar structure is allowing

implicit measurement of the chosen three boundary points,

much reducing the likelihood of mismatching which would

otherwise damage the map. Thirdly, for graphical augmenta-

tion, the boundary points provide a convenient representation

of the extent of the object.

V. IMPLEMENTATION AND EXPERIMENTAL EVALUATION

The detection, localization and SLAM methods have been

implemented in C++ and run on a single 3.2 GHz Pentium

4 CPU. Including operating system overheads, monocular

SLAM with around 20 point features takes approximately

10 ms on a 320× 240 image, leaving some 20 ms per frame

to pursue detection. SIFT detects around 300 keypoints and

takes some 500 ms per frame to complete on average, and

matching one object takes on average 70 ms. While SLAM

runs at 30 Hz this unoptimized detection can run at around

Fig. 3. From top to bottom (the camera view is shown on the left and
the map on the right): The initial image with calibration plate visible in the
map; The first object is detected; More objects are detected and added to
the map; All objects have been detected and successfully localized.

1 Hz at best. These timings will of course vary with the

number of objects in the database. With larger databases a

faster searching method such as KD-trees would be required.

To allow the storing of the results, the experiments reported

here were run on a pre-recorded sequence, where the SIFT

processing and matching was run only every 30th frame.

In the tests of the system reported here, a database of

five planar objects was used. The database was created by

running SIFT on each object image to generate the keypoints

and measuring the metric sizes of the objects. The size of

the images and the number of keypoints generated for each

object in the database is given in Table I.

Fig. 3 shows the evolution of processing, from initial

calibration of the SLAM system to a time when there are five

recognized planar objects in the SLAM map. The 2D views

show overlaid identities and extents of the objects, typical

of that which would be useful to the user of a wearable or

hand-held camera. The views on the right show the evolution

of the 3D map with textures marking the recognized areas.

Fig. 4 shows various views around a particular 3D map

FrC7.3

4105



TABLE I

DATABASE OBJECTS, KEYPOINTS, AND THE SIZES

Object label No. of keypoints Image size Metric Size (m)

Bluebells 761 320 × 256 0.248 × 0.198

Durdle Door 981 320 × 227 0.264 × 0.198

Grasshopper 469 320 × 256 0.248 × 0.198

Pansy 676 320 × 256 0.248 × 0.198

Poster 1240 320 × 240 0.841 × 0.594

Total 4127

(a) Perspective view (b) Along the x-axis

(c) Along the y-axis (d) Two of the objects

Fig. 4. (a) View of the whole 3D map. (b,c) Individually recognized and
located planar objects on the XY wall are recovered as coplanar to within
map error, and (d) the right angles between two walls and the floor are also
recovered faithfully. See Table II.

in which there are five picture objects, three of which

(poster, bluebells, grasshopper) should be coplanar with the

calibration plate (and hence in the XY -plane), and the other

two (pansy, Durdle Door) are mutually orthogonal in the ZY

and XZ planes respectively. It can be seen that all of the

objects are in their respective planes to within experimental

error. Table II shows the angles between the planes recovered

from the SLAM map.

Object points localized via object detection and local-

ization benefit map building because they can be inserted

into the map with a higher level of accuracy using just a

single measurement. This same level of accuracy is only

achieved with “standard” interest point features when ob-

served multiple times from different angles. To illustrate this

assertion, the leftmost image in Fig. 5 shows an interest

point feature which has just been initialised on the surface

of an object which has also just been detected. The highly

elongated ellipse clearly shows that it is not well localized in

depth, compared with the object points’ uncertainty ellipses.

The middle and rightmost images show the scene 30 and

90 frames later. The detected object points have just been

measured for a second and fourth time, respectively, whereas

the interest point has been measured in every intermediate

frame. Only by the 90th frame is the interest feature point

as well localized in depth as the object points.

Over time, with enough observations, the difference in the

uncertainty of interest points compared to those of objects is

TABLE II

ANGLES BETWEEN THE CALIBRATION PLATE AND THE OBJECTS

Object label Actual angle Measured angle Error

Bluebells 0 5.9 ±10

Durdle Door 90 95.2 ±10

Grasshopper 0 5.0 ±5

Pansy 90 92.7 ±4

Poster 0 4.7 ±5

(a) Frame 0 (b) Frame 30 (c) Frame 90

Fig. 5. A “standard” interest feature point on the surface of an object. The
3σ ellipse lengths are 138cm and 12cm respectively when first initialized
(a). By frame 90, (c), they are both as well localized in depth (9.2cm).

small. The advantage of using object measurements occurs

when only a limited number of measurements are made or

the view does not change enough for features to become well

localized – a common occurance for wearable cameras.

The monocular SLAM system takes time to initialise new

features. If during this time features that are being tracked

fail to be measured, for example due to occulsion or moving

out of shot, the system can loose track of its position.

Being able to measure objects as well as interest points also

makes the system more robust to such tracking failure, as

demonstrated in the accompanying video.

Although the map looks well-formed in terms of copla-

narity and angles, the error covariance for the 3D measure-

ments is not fully characterized. It depends, of course, on the

image covariance and its tortuous propagation through the

estimation of homographies and their decomposition, and a

subsequent Euclidean transformation. Here, as an expedient,

we have assumed that the error covariance is diagonal and

have examined the effect of inserting a single 3D feature on

the performance of the EKF when already running “standard”

monocular SLAM. Tuning the performance to the size of the

covariance suggest that the lateral and depth errors are of

order 10 mm and 20 mm respectively.

VI. DISCUSSION

This paper has presented the combination of methods of

point-based recognition and localization with those of point-

based monocular visual SLAM to identify and to recover

the 3D geometry of objects, and then insert them as 3D

measurements into the map for updating by an extended

Kalman filter. The method has been demonstrated using

planar objects. By fitting a higher geometrical entity to visual

data, the measurements entered into the SLAM map are

sparse, robust to partial occlusion, less likely to be incorrect

through mismatching, and more accurate.

There are a number of ways the approach can be devel-

oped. On the more geometrical side, provided care is taken
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when specifying allowed acceleration noise in the EKF, it is

possible to initialize the monocular SLAM (particularly that

using inverse depth [21]) without calibrating the scale, and

then to allow identified objects to provide resolution of the

depth/speed scaling ambiguity.

Using salient features for wide-view matching has been

used in SLAM to assist in loop closure [22], [23]. In large

scale problems, establishing a graph of identified objects with

additional sparse geometrical information about them (for

example, a single point location and surface normal for a

planar object) would allow a more rapid search for potential

locations for detailed matching. Much the same approach can

be taken after mid-loop tracking failure.

Another area for development is the addition of objects

to the database during motion, determining their size from

what is known about the world already. Here a more unified

and faster approach to feature detection would be useful. The

very fast detector based on randomised trees [24] is able to

detect features at video rates in 640 × 480 images, and in

our experience is able to handle large out-of-plane rotation.

Its scalability to multiple objects is however unexplored.

Another very recent detector of promise is the “speeded up

robust feature” (SURF) detector [25]. However, when the

database is of a realistic size, it seems unlikely that any object

identifier will be able to run sufficiently quickly, particularly

if it wastes time re-identifying areas of the image already

examined. This can be offset by searching for further objects

intelligently by only searching unchecked areas. Re-detecting

an object is also quicker since only the area of the image

where it is expected needs checking.

The focus of the work has been on the geometrical benefits

of recognition, and little has been said of availability of

meaningful labels. In [9] map features were hand-labelled

to allow a remote operator to command an active wearable

to fixate on successive objects while continuing to map. By

adding auditory feedback to the present system we intend to

explore the control of the wearer of an active camera, of the

sort alluded to earlier in the paper.
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