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Abstract— To avoid deteriorating the mechanism’s perfor-
mance, joint clearance can be eliminated by preloading the
pairing elements of the joint. However, this paper proves
rigorously that in the real world, the unavoidable assembly
and manufacturing errors will cause overconstrained parallel
manipulators to lose degree of freedoms, or even unable to
be assembled if they are composed of purely clearance-free
pairs(e.g., preloaded pairs). Introducing joint clearance is an
essential and efficient way for the correct functioning and easy
assembly of overconstrained parallel manipulators.

I. INTRODUCTION

Introducing extra degree of freedoms(DoFs) to the pairing
elements of joints, joint clearance deteriorates the mecha-
nism’s performance by generating pose(position and orien-
tation) errors of the moving platform, impacts of the pairing
elements, quicker wear of the pairs, etc ([1],[2]). Because of
these negative effects, many designers try to eliminate joint
clearance, or equivalently, the extra DoFs of the joints by
preloading the pairing elements. However, parallel mecha-
nisms with preloaded joints only is difficult to assemble, re-
quire very precise tolerances and consequently much higher
manufacturing costs ([2]). More seriously, as we can show
rigorously in the next section, the unavoidable assembly
and manufacturing errors will cause overconstrained parallel
manipulators to lose DoFs or even unable to be assembled
if they are composed of purely clearance-free pairs(e.g.,
preloaded pairs). This is called the assembly problem of
overconstrained parallel manipulators. We also show that
introducing joint clearance is an essential and convenient
way for the correct functioning and easy assembly of this
kind of parallel manipulators.

Many literatures, e.g., [3] and [1], have pointed out that
overconstrained parallel manipulators can not function well
if all the pairs are clearance-free. The typical features of
this kind of parallel manipulators in reality are the loss of
mobility(DoFs), and the possibility of preventing assembly.
However, to the author’s knowledge, there lacks a rigorous
and precise account for this common realistic phenomenon.
This paper is probably the first time to attempt to verify
this scenario using the precise mathematical tools. Using the
tools from the Morse theory and differential topology, we
differentiate the non-overconstrained parallel manipulators
from the overconstrained ones, since the the former has a
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Fig. 1. Clearance-free Revolute Joint without and with Assembly and
Manufacturing Error at the Home Configuration

Fig. 2. A Subchain Composed by Clearance-free Revolute Joints without
Assembly and Manufacturing Errors at the Home Configuration

transversal subchains configuration spaces, while the lat-
ter does not. We prove that in the presence of inevitable
assembly and manufacturing errors, parallel manipulators
having clearance-free joints only in practice are all non-
overconstrained, even if they are theoretically designed to
be over-constrained ones. This implies that overconstrained
parallel manipulators in practice will decrease DoFs or even
can not be assembled, because originally designed dependent
constraint forces are change to independent ones now by
the assembly and manufacturing errors. Several examples are
used to show the application of the proposed approach.

II. ASSEMBLY PROBLEM OF OVERCONSTRAINED AND

CLEARANCE-FREE PARALLEL MANIPULATORS

It is well-known that a revolute (R) joint is composed of
two pairing elements : a bearing and a shaft. For a clearance-
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Fig. 3. A Subchain Composed by Clearance-free Revolute Joints with
Assembly Errors at the Home Configuration

free R joint, the joint clearance between the pairing two
elements has been eliminated, for example, by preloading the
joint. Thus only one DoF rotations about an axis are allowed
between the two pairing elements of a clearance-free R
joint. After connecting two links to the pairing elements of a
clearance-free R joint, an elementary clearance-free R joint
mechanism is made and can be used to construct clearance-
free serial and parallel mechanisms. In this section, first we
study the error characteristic of an elementary clearance-
free R joint mechanism. When two links are connected to
a clearance-free R joint, assembly and manufacturing errors
may occur at the adjacencies between the first link and the
bearing and between the second link and the shaft. Hence
the first objective is : in the presence of these assembly and
manufacturing errors, how to derive the relative configuration
space of the two links connected by a clearance-free R joint.

To describe the relative configurations of the two links
connected by the R joint, we assume that the first link
has no position and orientation error 1 and is fixed to the
ground. Define an inertial frame A and a body frame B that
are attached to the first and the second link respectively.
Thus the relative configuration of the two links is given
by the transformation matrix from the body frame B to
the inertial frame A, which is an element of SE(3)(see
[4] for more details). Without assembly and manufacturing
errors, the bearing and the shaft of the R joint together
with the second link will be at their nominal configurations.
In this ideal case, if we suppose that the body frame B
coincides with the inertial frame A at the home (or initial)
configuration, and the rotation axis of the R joint has a twist
coordinate ξ ∈ R

6 when expressed in the frame A (and
B), then the ideal relative configuration space of the two
links, denoted by CI

R, is given by CI
R = {eξ̂θ|θ ∈ (−ε, ε)},

where ε is the joint limit of the R joint. In the presence of
the assembly and manufacturing errors, however, position
errors may exist between the first link and the bearing
and between the second link and the shaft. To precisely
describe these position errors, first we assume that only the

1For concision, position and orientation error will be simply called
position error hereafter.

assembly and manufacturing error between the first link and
the bearing exists and causes the R joint and the second
link to deviate from their ideal configurations. In this case,
supposing that the body frame B is displaced from the
inertial frame A by an error transformation h ∈ SE(3) at
the home configuration (see Fig.1(b)), then the position error
of the bearing with respect to the first link caused by the
assembly and manufacturing error is uniquely characterized
by h. Due to the position error of the bearing, the R joint will
possess a changed rotational axis, with new twist coordinate
ξ′ when expressed in the inertial frame A. As the rotation
axis is not changed as seen from the body frame, the twist
representation of the R joint in the B frame of Fig.1(b) is still
ξ. Hence immediately we get ξ′ = Adhξ. Second, assume
that the adjacency between the second link the shaft also
has the assembly and manufacturing error. Then the body
frame B will further displace from the one in Fig.1(b) by
an error transformation matrix q at the home configuration
(see Fig.1(c)). Similarly, q describes the position error of
the second link relative to the shaft caused by the assembly
and manufacturing error too. As a consequence, the relative
configuration space of the two links of the actual R joint
mechanism, denoted by Ca

R, is given by

Ca
R = {eξ̂′θ · h · q|θ ∈ (−ε, ε)}

= {h · eξ̂θ · h−1 · h · q|θ ∈ (−ε, ε)}
= {h · eξ̂θ · q|θ ∈ (−ε, ε)}
= h · CI

R · q
(1)

For other lower pairs, e.g., prismatic (P ) and helical (H)
joint, we may also get Ca

P = h ·CI
P · q and Ca

H = h ·CI
H · q

by a similar analysis. From the above analysis, one may
observe that (h, q) together characterizes the assembly and
manufacturing errors at two adjacencies within a clearance-
free joint mechanism. Clearly, as the assembly and manufac-
turing errors are random when the two links are connected to
the R (or P , H) joints, the values of h and q are stochastic
for different R (or P , H) joint mechanisms with the same
ideal joint motions.

Next, suppose that M is a serial subchain that is the
cascading of n clearance-free R joint mechanisms (see
Fig.2 and Fig.3). Denote the ith R joint mechanism by Ri

afterwards, and label the two links of Ri by i − 1 and
i respectively. Clearly, link 0 is fixed with respect to the
ground, and link n is called the end-effector of M . The
second objective is : with assembly and manufacturing errors
for all the joint mechanisms in place, how to derive the set
of relative configurations between the end-effector and the
base link (link 0). As we did before, we attach two frames
Bi−1 and Bi to the two links of Ri, i.e., link i− 1 and link
i respectively. As B0 is fixed with respect to the ground,
it is also called the inertial frame and usually named by
A. Bn, as attached to the end-effector, is also called the
body frame of the subchain M and may be simply named
by B. Thus the configuration space of M is the set of
transformation matrices from B(or Bn) to A(or B0). Fig.2
depicts the ideal situation of the subchain M (i.e., none of the
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joint mechanisms has assembly and manufacturing error). In
this ideal case, assuming that Bi coincides with Bi−1 at the
home configuration, and the rotation axis of Ri has a twist
coordinate ξi when expressed in frame Bi−1, i = 1, · · · , n,
then the ideal relative configuration space of the two links
of Ri is given by CI

Ri
= {eξ̂iθi |θi ∈ (−εi, εi)}, where εi is

the joint limit of Ri. Consequently, the ideal configuration
space of M , denoted CI

M , is given by

CI
M = CI

R1 · · · ·CI
Rn

= {eξ̂1θ1 · · · eξ̂nθn |θi ∈ (−εi, εi)} , (2)

In place of the assembly and manufacturing errors (see
Fig.3), by our previous analysis, the actual relative configura-
tion space of the two links of Ri should be Ca

Ri
= {eξ̂′

iθi ·hi ·
qi|θi ∈ (−εi, εi)} = {hi · eξ̂θ · qi|θ ∈ (−ε, ε)} = hi ·CI

Ri
· qi,

where hi, qi characterizes the assembly and manufacturing
errors associated with Ri, and ξ′i is the twist coordinate of
the actual rotation axis of Ri as seen from Bi−1. Therefore,
the actual configuration space of M , Ca

M , is given by

Ca
M = Ca

R1 · · · ·Ca
Rn

= {h1 · eξ̂1θ1 · q1 · · ·hn · eξ̂nθn · qn|θi ∈ (−εi, εi)} .
(3)

Note that Eq.(2) and Eq.(3) can be derived in an alternative
way. The initial configuration of M is the transformation
from Bn to A at the home configuration. In the ideal situa-
tion, every joint has no assembly and manufacturing errors,
hence all the frames Bi, i = 1, · · · , n will coincide with
B0 = A at the home configuration (see Fig.2). Therefore,
the ideal initial configuration of M is e. Furthermore, it is
also clear that the twist coordinate of Ri in the inertial frame
A is also ξi, i = 1, · · · , n. Using the product of exponentials
formula in [4], one may get that

CI
M = {eξ̂1θ1 · · · eξ̂nθn |θi ∈ (−εi, εi)} .

In the presence of assembly and manufacturing errors, the ac-
tual initial configuration of M is h1 ·q1 ·· · ·hn ·qn (see Fig.3),
and the twist coordinate of Ri in the inertial frame A can
be easily got as η1 = Adh1ξ1, ηi = Adh1·q1···hi−1·qi−1·hi

ξi,
i = 2, · · · , n. Hence the actual configuration space of M is

Ca
M = {eη̂1θ1 · · · eη̂nθn · (h1 · q1 · · ·hn · qn)|θi ∈ (−εi, εi)}

= {h1 · eξ̂1θ1 · q1 · · ·hn · eξ̂nθn · qn|θi ∈ (−εi, εi)}
which is the same as Eq.(3).

For simplicity, afterwards we will assume that ξ1, · · · , ξn

are linearly independent. As we remarked before, for all
subchains that are the cascading of n clearance-free R joint
mechanisms with the ideal twists ξ1, · · · , ξn, the matrices
h1, q1, · · · , hn, qn are independent and random variables that
may take any values in SE(3). Hence we may define a map
as follows :

F : CI
R1

× · · · × CI
Rn

× SE(3) × · · · × SE(3) → SE(3)
: (g1, · · · , gn, h1, q1, · · · , hn, qn) �→ (h1g1q1 · · ·hngnqn)

where CI
Ri

= {eξ̂iθi |θi ∈ (−εi, εi)} is the ideal relative
configuration space of the two links of Ri, and gi =
eξ̂iθi ∈ CI

Ri
. As assembly and manufacturing errors in

general are very small, hi, qi, i = 1, · · · , n in practice take

values in a small neighborhood of e in SE(3). Clearly,
F is a smooth map. If we denote g = (g1, · · · , gn) and
s = (h1, q1, · · · , hn, qn), then the restriction map of F by
fixing s = (h1, q1 · · · , hn, qn)

Fs : CI
R1

× · · · × CI
Rn

→ SE(3) : g �→ F (g, s)

maps CI
R1

× · · · × CI
Rn

to the actual configuration space
(Ca

M ) of a particular subchain M affected by the assembly
and manufacturing error s. Furthermore, it is easy to see that
the other restriction map of F by fixing g

Fg : SE(3) × · · · × SE(3) → SE(3) : s �→ F (g, s)

is a submersion.
Proposition 1: Suppose that F : X×S → Y is a smooth

map of manifolds and for any fixed x ∈ X ,the map s �→
F (x, s) is a submersion S → Y . Then for any submanifold
Z of Y , the restriction map Fs : X → Y by fixing s is
transversal to Z for almost every s ∈ S.
Proof: See P.70 in [5].

Remark 1: (i)For the subchain M , we may choose X =
CI

R1
×· · ·×CI

Rn
, S = SE(3)×· · ·×SE(3) and Y = SE(3).

X and its image under Fs, Ca
M , are seen to be manifolds

by shrinking εi, i = 1, · · · , n if necessary. Thus Proposition
1 implies that Ca

M is transversal to any submanifold Z
of SE(3) for almost every assembly and manufacturing
error s = (h1, q1, · · · , hn, qn); (ii)The same result may be
obtained if the R joints are replaced by P or H joints.

Using the standard notation in [5], if X and Z are sub-
manifolds of SE(3), and X is transversal to Z, then we shall
write X�Z. A parallel manipulator is the parallel connection
of several serial subchains that share a common base ground
and a common end-effector. By an abuse of notation, later
on M will be used to denote a parallel manipulator. In this
section, the parallel manipulator M under consideration is
assumed to have k serial subchains M1, · · · ,Mk, with each
subchain consisting of clearance-free joint mechanisms only.
Furthermore, all the subchains M1, · · · ,Mk share a common
inertial frame A and a body frame B that are attached to
the base ground and the end-effector respectively. Assume
that the ideal initial configuration of the end-effector is e.
Then under assembly and manufacturing errors, the actual
configuration space of the end-effector, denoted Ca

M , is given
by

Ca
M = Ca

M1
∩ Ca

M2
∩ · · · ∩ Ca

Mk
,

where CMi
, i = 1, · · · , k can be derived by Eq.(3), and the

spatial velocity space of the end-effector at each g ∈ Ca
M ,

denoted Rg−1∗TgC
a
M , is given by

Rg−1∗TgC
a
M = Rg−1∗TgC

a
M1

∩ · · · ∩ Rg−1∗TgC
a
Mk

where Rg−1∗TgC
a
Mi

⊂ R
6 denotes the spatial velocity space

of the ith subchain at g, namely, the subspace of R
6 that

is the span of all the twist coordinates of joints in Mi

at g when expressed in the inertial frame A. Assume that
Ca

M1
, · · · , Ca

Mk
are all submanifolds by choosing small joint
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limits. Thus by Remark 1(i), it’s clear that for any i �= j,
1 ≤ i, j ≤ k, we have Ca

Mi
�Ca

Mj
. If moreover Ca

Mi
∩ Ca

Mj

is a submanifold, then for any other l ≤ k, l �= i and l �= j,
we can also get by Remark 1(i) that Ca

Ml
�(Ca

Mi
∩ Ca

Mj
).

Proposition 2: For two submanifolds X and Z of SE(3),
if X�Z, then X ∩ Z is again a submanifold of SE(3).
Furthermore, we have

codim(X ∩ Z) = codim(X) + codim(Z) (4)

where for any submanifold Y of SE(3), codim(Y ) =
6 − dim(Y ).
Proof: See P.30 in [5].

For the parallel manipulator M , let X = Ca
Mi

, Z =
Ca

Mj
. As Ca

Mi
�Ca

Mj
, Proposition 2 shows that Ca

Mi
∩ Ca

Mj

is a submanifold. Let Y = Ca
Ml

, then dim(Y ) is the
dimension of the spatial velocity space of the lth subchain,
i.e., the dimension of Rg−1∗TgC

a
Ml

at any g ∈ Ca
Ml

. Hence
codim(Y ) is equal to the dimension of the constraint force
space of the lth subchain at any g ∈ Ca

Ml
, which is the

annihilating subspace of Rg−1∗TgC
a
Ml

in R
6 :

(Rg−1∗TgC
a
Ml

)⊥ = {f ∈ R
6 | f ·ξ = 0,∀ξ ∈ Rg−1∗TgC

a
Ml

} .

It is clear that for any g ∈ (Ca
Mi

∩ Ca
Mj

), since

Rg−1∗Tg(Ca
Mi

∩ Ca
Mj

) = Rg−1∗TgC
a
Mi

∩ Rg−1∗TgC
a
Mj

,

we have

(Rg−1∗Tg(Ca
Mi

∩Ca
Mj

))⊥ = (Rg−1∗TgC
a
Mi

)⊥+(Rg−1∗TgC
a
Mj

)⊥.

However, Eq.(4) of Proposition 2 further tells us that ∀g ∈
Ca

Mi
∩ Ca

Mj
,

(Rg−1∗Tg(Ca
Mi

∩ Ca
Mj

))⊥ = (Rg−1∗TgC
a
Mi

)⊥

⊕(Rg−1∗TgC
a
Mj

)⊥ ,
(5)

i.e., (Rg−1∗TgC
a
Mi

)⊥ ∩ (Rg−1∗TgC
a
Mj

)⊥ = {(0, · · · , 0)T }.
Since Ca

Ml
�(Ca

Mi
∩ Ca

Mj
), by a similar analysis, it is easy

to see that Ca
Mi

∩ Ca
Mj

∩ Ca
Ml

is also a submanifold, and
∀g ∈ (Ca

Mi
∩ Ca

Mj
∩ Ca

Ml
),

(Rg−1∗Tg(Ca
Mi

∩ Ca
Mj

∩ Ca
Ml

))⊥ = (Rg−1∗TgCa
Mi

)⊥

⊕(Rg−1∗TgCa
Mj

)⊥

⊕(Rg−1∗TgCa
Ml

)⊥.

By deduction, one can get that Ca
M is a submanifold, and

∀g ∈ Ca
M ,

(Rg−1∗TgCa
M )⊥ = (Rg−1∗TgCa

M1)
⊥ ⊕ · · · ⊕ (Rg−1∗TgCa

Mk
)⊥,

where (Rg−1∗TgC
a
M )⊥ is the constraint force space of the

end-effector at g.
Finally, we remark that a necessary and sufficient condi-

tion for X to be transversal to Z is that for any g ∈ X ∩Z,

Rg−1∗Tg(X) + Rg−1∗Tg(Z) = R
6 , (6)

or equivalently

(Rg−1∗Tg(X ∩ Z))⊥ = (Rg−1∗TgX)⊥ ⊕ (Rg−1∗TgZ)⊥ , (7)

Fig. 4. A Parallel Manipulator With Theoretical 5-DoF

where Rg−1∗Tg(X) is the spatial velocity space of X at g,
and (Rg−1∗TgX)⊥ is the constraint force space of X at g.
However, if dim(X) + dim(Z) < 6, then a special case of
transversality(see P.30 in [5]) is that

X�Z ⇔ X ∩ Z is empty (8)

Definition 1: Non-overconstrained and Overcon-
strained Parallel Manipulators
Let M be a parallel manipulator that consists of a couple of

serial subchains M1, · · · ,Mk. Assume that joint limits are
small such that the configuration spaces of all the subchains
are submanifolds of SE(3). At a configuration g of the
end-effector of M , denote by ΓMi

(g) the constraint force
space of Mi at g, i = 1, · · · , k, and ΓM (g) the constraint
force space of the end-effector at g. If for any configuration
g of the end-effector of M , one can get

ΓM (g) = ΓM1(g) ⊕ ΓM2(g) · · · ⊕ ΓMk
(g) , (9)

then M is called a non-overconstrained parallel manipulator.
Otherwise, M is called an overconstrained parallel manipu-
lator.

Remark 2: (i)Definition 1 assume that the parallel ma-
nipulator has small joint limit. For a general parallel ma-
nipulator with larger joint limits, to see whether it is non-
overconstrained or not, one may reduce the joint limits and
check the condition of Eq.(9) in the shrunk configuration
space of the end-effector only; (ii) From Definition 1 and
Proposition 2, it is easy to see that those whose configuration
spaces of subchains are transversal submanifolds are non-
overconstrained parallel manipulators, and vice versa.

By the previous analysis and Remark 2(ii), parallel manip-
ulators having clearance-free joints only in practice are all
non-overconstrained due to the assembly and manufacturing
errors, even if they are theoretically designed to be over-
constrained ones.

Example 1: A 5-DoF Overconstrained Parallel Manip-
ulator Consider a parallel manipulator M in Fig.4 with
three symmetrically arranged subchains M1, · · · ,M3 ([6]).
Theoretically, the ith subchain Mi consists of 5 revolute joint
mechanisms Ri1, · · · ,Ri5, with the axis of Ri1 and Ri2

parallel to each other, and the axis of Ri3, Ri4 and Ri5

converge to a point oi (see Fig.4(a), where for concision,
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Fig. 5. A Parallel Manipulator With Theoretical 4-DoF

Fig. 6. A Parallelogram

the end-effector and the base are not depicted). At any
configuration g of the end-effector, ΓMi

(g), i = 1, · · · , 3 is
thus spanned by a pure force passing through oi

ΓMi
(g) = (Rg−1∗TgC

I
Mi

)⊥ = {(fi, oi × fi)} i = 1, · · · , 3

where fi is the direction vector parallel to the axis of
Ri1 and Ri2. The three subchains are assembled such that
o1 = o2 = o3 and f1 = f2 = f3. Then it is clear that
ΓM1(g) = ΓM2(g) = ΓM3(g) at any configuration g of the
end-effector. Hence in theory, M is a 5-DoF overconstrained
parallel manipulator by Definition 1. However, with assembly
and manufacturing errors in place, the axis of Ri1 and Ri2

may not be parallel, and the axis of Ri3, Ri4 and Ri5 may
not be able to converge to a point. Thus by our previous
analysis, ΓMi

(g) = (Rg−1∗TgC
a
Mi

)⊥ and

ΓM (g) = (Rg−1∗TgC
a
M )⊥

= (Rg−1∗TgC
a
M1

)⊥ ⊕ · · · ⊕ (Rg−1∗TgC
a
M3

)⊥

= ΓM1(g) ⊕ · · · ⊕ ΓM3(g)

at any configuration g of the end-effector. Hence in the
presence of assembly and manufacturing errors, M is a non-
overconstrained parallel manipulator, with only 6 − 3 = 3
DoF.

Example 2: A 4-DoF Overconstrained Parallel Manip-
ulator As another example, look at a parallel manipu-
lator M in Fig.5. M composes of 4 identical subchains
M1, · · · ,M4, and each subchain Mi has 5 revolute joint

mechanisms Ri1, · · · ,Ri5. Without assembly and manufac-
turing errors, Ri1,Ri2, and Ri3 have parallel rotation axis
with direction ωi1 ∈ R

3, and Ri4,Ri5 also have parallel
rotation axis, with direction ωi2 �= ωi1 (see Fig.5(a)). Thus at
any configuration g of the end-effector, ΓMi

(g), i = 1, · · · , 3
is spanned by a pure torque

ΓMi
(g) = (Rg−1∗TgC

I
Mi

)⊥ = {(0, τi)} i = 1, · · · , 3

where τi is the direction vector perpendicular to the plane
spanned by ωi1 and ωi2. As seen from Fig.5(b), ideally the
four subchains are assembled in a way such that ω11 = ω21,
ω12 = ω22, ω31 = ω41, and ω32 = ω42, which implies that
τ1 = τ2, and τ3 = τ4. In other words, at any configuration g
of the end-effector, ΓM1(g) = ΓM2(g), ΓM3(g) = ΓM4(g),
and

ΓM (g) = (Rg−1∗TgC
I
M )⊥

= ΓM1(g) + ΓM2(g) + ΓM3(g) + ΓM4(g)
= {(0, τ1), (0, τ3)}

Hence theoretically M is a 4-DoF overconstrained parallel
manipulator. In place of assembly and manufacturing errors,
however, the parallel conditions of the joints may not be
able to be achieved. Furthermore, by our previous analysis,
we can get

ΓM (g) = (Rg−1∗TgC
a
M )⊥

= (Rg−1∗TgC
a
M1

)⊥ ⊕ · · · ⊕ (Rg−1∗TgC
a
M4

)⊥

= ΓM1(g) ⊕ · · · ⊕ ΓM4(g)

at any configuration g ∈ Ca
M . That is, the manipulator in

practice only has 6 − 4 = 2 DoF due to the inevitable
assembly and manufacturing errors.

Example 3: An Overconstrained Parallelogram As
an extreme example, we investigate a parallelogram in Fig.6,
and show how seriously the assembly and manufacturing
errors could ruin the parallel mechanism’s performance.
Denote the two subchains of a parallelogram by M1 and M2

respectively. Each subchain Mi consists of two revolute joint
mechanisms Ri1 and Ri1. Ideally, the four revolute joints
have parallel rotation axis, with direction ω ∈ R

3. Assume
that at any configuration g of the end-effector of the ideal
parallelogram, the vector of link 1 and 3 is v(g)(see Fig.6).
Then it is easy to get

ΓMi
(g) = (Rg−1∗TgC

I
Mi

)⊥

= {(v(g), qi1 × v(g)),
(ω, 0), (0, u), (0, v)}

i = 1, 2

where qi1 is a point on Ri1, i = 1, 2, and u, v are two vectors
such that {u, v, ω} = R

3. Note that (v(g), q11 × v(g)) is a
pure force along link 1, and (v(g), q11 × v(g)) is a pure
force along link 3. Thus it is clear that ΓM1(g)∩ ΓM2(g) =
{(ω, 0), (0, u), (0, v)}, and

ΓM (g) = (Rg−1∗TgC
I
M )⊥

= ΓM1(g) + ΓM2(g)
= {(v(g), q11 × v(g)),

(v(g), q21 × v(g)),
(ω, 0), (0, u), (0, v)}
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Fig. 7. Clearance-affected Revolute Joint

Fig. 8. Clearance-affected Prismatic Joint

at any g ∈ CI
M . Hence an ideal parallelogram is an over-

constrained parallel mechanism with 1-DoF. However, as we
analyze before, Ca

M1
�Ca

M2
in the presence of the assembly

and manufacturing errors. As dim(Ca
M1

)+dim(Ca
M2

) = 4 <
6, by Eq.(8), Ca

M1
∩ Ca

M2
is empty, i.e., such a mechanism

is impossible to be assembled. This justifies that in the real
world, a mobile parallelogram can not exist if it composes
of purely clearance-free revolute joints.

Through these examples and our analysis, we have
shown that overconstrained parallel manipulators can not
be achieved in the real world if they are built solely by
clearance-free lower pairs; in the presence of inevitable
assembly and manufacturing errors, these mechanisms will
lose DoFs or even can not move after they are assembled.
This phenomenon is called the assembly problem of over-
constrained parallel manipulators. However, nowadays many
symmetrically arranged sub-6 DoF parallel manipulators are
designed to be overconstrained, for example, the famous
Delta robot. In particular, all 4 and 5-DoF parallel ma-
nipulators with symmetrical limbs, like those in Fig.4 and
Fig.5, are in theory also overconstrained. Hence, one must
overcome the assembly problem for overconstrained parallel
manipulators before the application of them.

Using clearance-affected lower pairs is an alternative to
solve this problem. A clearance-affected lower pair actually
has 6-DoF and the rotation or translation axis of its nominal
DoF motions is allowed to wobble in a bounded region
determined by the clearance. For example, consider a journal
bearing revolute pair with clearance(see Fig.7). Such a design
is common for revolute pairs. From Fig.7, it is easy to see
that instead of being only allowed to rotate about its nominal
axis, the second element of the pair can also rotate about any
two right axis perpendicular to the nominal one, and translate
along any three independent directions in the space. These

five extra DoF motions are bounded within a small region
determined by the geometry and magnitude of clearance of
the pairing elements. Similar analysis can be applied to a
clearance-affected prismatic pair modelled by Fig.8. Thus, if
a parallel manipulator is built all by such clearance-affected
lower pairs, even though the assembly and manufacturing
errors exist for every joint mechanism, the end-effector can
still undergo desired motions through the self-adjustment
of the rotation or translation axis of each lower pair to
its desired position and orientation. The drawback is, in
each ideal configuration of the parallel manipulator, there
exists extra DoFs error motions for the end-effector due
to the clearance and extra DoFs brought by the clearance-
affected lower pairs. In our peer work [7], we have proposed
an efficient method to evaluate these configuration(or pose)
errors of the end-effector caused by the joint clearance.

III. CONCLUSION

In this paper, using differential topology, we make the
definitions of non-overconstrained and overconstrained par-
allel manipulators according to the transversality condition
of their subchains’ configuration spaces. we prove that in
the presence of inevitable assembly and manufacturing er-
rors, parallel manipulators having clearance-free joints only
in practice are all non-overconstrained, even if they are
theoretically designed to be over-constrained ones. Thus
overconstrained parallel mechanisms can not work with
clearance-free lower pairs only, which is called the assembly
problem for this type of parallel manipulators. We also have
shown that introducing joint clearance is an essential and
efficient way for the correct functioning and easy assembly of
overconstrained parallel manipulators. Several examples are
used to elucidate the application of the proposed approach.
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