
Sloppy motors, flaky sensors, and virtual dirt:

Comparing imperfect ill-informed robots

Jason M. O’Kane and Steven M. LaValle

Abstract— Robots must complete their tasks in spite of
unreliable actuators and limited, noisy sensing. In this paper,
we consider the information requirements of such tasks. What
sensing and actuation abilities are needed to complete a given
task? Are some robot systems provably “more powerful” than
others? Can we find meaningful equivalence classes of robot
systems? This line of research is inspired by the theory of
computation, which has produced similar results for abstract
computing machines. The basic idea is a dominance relation
over robot systems that formalizes the idea that some robots
are stronger than others. We show that this definition is directly
related to the robots’ ability to complete tasks. Our prior work
in this area assumes perfect control and sensing, requires that
the robot begin with a single fixed initial condition within
a known environment, and models of time as a sequence of
variable-length discrete stages, rather than as a continuum. In
this paper, we substantially improve upon that earlier work by
addressing these problems.

I. INTRODUCTION

Suppose we want a robot to complete some task, such

as navigating to a goal, manipulating an object, or localizing

itself within its environment. Many different combinations of

sensing and motion modalities can be (and have been) used

to complete each of these tasks. Indeed, much of the robotics

literature is concerned with finding sufficient conditions on

the sensing and actuation capabilities needed to complete

such tasks. In this paper we take a different approach. For

a given task, we are interested in determining the necessary

conditions: What sensors and actuators are needed? What

are the information requirements of robotic tasks? The long

term goal of this research is to develop a theory of robots

and sensing that helps in answering such questions.

A. Robots, sensors, and the theory of computation

This work is inspired in part by the theory of computation,

which begins with precisely defined models of abstract ma-

chines, such as finite automata, pushdown automata, Turing

machines, and so on [8]. In this context, a problem is usually

a language of strings; to solve the problem is to accept

strings in this language and reject all others. The theory of

computation gives answers several kinds of basic questions

about these machines and problems.

Solvability: Can a given machine can solve a given

problem?

This work is supported by ONR Grant N00014-02-1-0488 and by
DARPA grant #HR0011-07-1-0002. J. M. O’Kane and S. M. LaValle
are with the Department of Computer Science, University of Illinois at
Urbana-Champaign, 201 North Goodwin Avenue, Urbana, IL 61801, USA.
{jokane, lavalle}@cs.uiuc.edu

Complexity: If the machine can solve the problem, how

efficiently (in terms of time or space, for example) can it do

so?

Comparison: Are some machines strictly more powerful,

in terms of the problems they can solve, than others? It is

known, for example, that pushdown automata can accept a

strictly larger set of languages than can finite automata. Like-

wise, Turing machines are more powerful than pushdown

automata.

Equivalence: Are there apparently dissimilar machines

that can solve the same set of problems? For example, it is

a standard result that a Turing machine with multiple tapes

is functionally equivalent to an ordinary single tape Turing

machine.

These ideas are well understood. In the sense that they

form the formal foundation of the discipline, they are part

of the core of computer science. Current robotic science

lacks a comparable foundation; the field needs a unified

theory in which meaningful statements can be made about

the complexity of robotic tasks and the robot systems we

build to complete these tasks.

Can we adapt standard models of computation to the

robotics context? Unfortunately, these models are fundamen-

tally ill suited for studying robotics problems. They assume

that all of the relevant information is supplied ahead of time

on the machine’s tape. Sensing and uncertainty are central

defining issues in robotics. This structure is destroyed by an

a priori encoding of the problem on a machine’s tape.

The aim of this paper is to develop a “sensor-centered”

theory for analyzing and comparing robot systems. Our

contribution is to develop such a theory more completely than

in prior work and to illustrate its usefulness with examples.

B. Organization

Section II is a brief survey of related work. In Section III

we give a basic problem definition. Our definition of robot

dominance and its properties are in Section IV. Section V

relates the continuous-time model we introduce in this paper

to our prior work that models time as a sequence of discrete

stages. We make concluding remarks and discuss open prob-

lems in Section VI. We illustrate with examples throughout.

II. RELATED WORK

We partially address issues issues of robot comparison

and dominance in prior work [12], in which we establish a

dominance relation over robot systems. That work has several

important shortcomings that limit its applicability.

1) Perfect control – In [12], we assumed that the robot

can execute all of its actions with perfect precision

2007 IEEE International Conference on
Robotics and Automation
Roma, Italy, 10-14 April 2007

FrC6.5

1-4244-0602-1/07/$20.00 ©2007 IEEE. 4084

and complete reliability. The motions of real robots

are imprecise and unpredictable.

2) Perfect sensing – Although [12] accounts for the

importance of sensing by assuming that the robot is

uncertain of its current state and must rely on sensing,

it assumes that sensor readings are uncorrupted by

noise. A more realistic sensor model would allow

information from sensors to be subject to error.

3) Modeling of time – In [12], time is managed in discrete

stages. The robot makes a single decision at each

stage. Continuous-time models have a more direct

correspondence with reality.

4) Fixed, known environment – In [12], we assumed

(tacitly) that the robot operates in a fixed, known

environment. This assumption is unsatisfactory in all

but the most structured contexts.

5) Identical state spaces – The dominance relation in [12]

is only able to compare robots that share the same state

space. To compare robots that are truly dissimilar, the

framework must allow each robot to have a distinct

state space.

In this paper, we present substantial revisions and extensions

to the framework of [12] to remedy these shortcomings.

These extensions illuminate several issues and subtleties not

evident in the former paper.

Our goals are similar to those of Donald [4]. The reduc-

tions in that work are similar to our dominance relation;

Donald’s notion of calibration is related to our idea of

initial conditions. The most fundamental difference is that

our analysis is rooted in the information space. We claim

that for robotic problems for which sensing is a crucial issue,

the information space is the space in which the problem can

most naturally be posed.

A third line of related research is the work of Erdmann [6],

which is itself grounded in the preimage planning ideas due

Lozano-Perez, Mason, and Taylor [10]. In Erdmann’s work,

sensors are modeled by giving a partition of state space. The

problem of sensor design is choose a partition so that from

each region in the partition, the robot knows what action to

select in order to make progress toward its goal.

Others in artificial intelligence [2] and control theory [5],

[7] have addressed related issues.

III. BASIC DEFINITIONS

This section contains basic definitions for planning with

uncertainty in the robot’s current state.

A. State spaces and environment spaces

The robot moves in a state space X , which must be suf-

ficiently expressive to encode all of the relevant information

about the condition of the world. In a simple case, X might

be defined as the configuration space [11] of the robot in a

certain environment. Time proceeds continuously starting at

t = 0 and continuing indefinitely. The robot’s state at time t

is denoted x(t).
What happens when the robot begins with limited or no

knowledge about its environment, in the sense that positions

and geometry of obstacles, map topology, navigability of

terrain, and so on are unknown? Imperfect knowledge about

the environment is a more drastic instance of the general

issue of state uncertainty. If the state is defined to include

a description of the environment in addition to the robot’s

configuration, then uncertainty in the environment can be

represented as an additional dimension of state uncertainty.

Concretely, choose an environment space E of which each

element E ∈ E is a potential environment for the robot.

Possibilities for E (with varying degrees of realism, interest,

practicality, and amenability to analysis), include:

1) the set of simple polygons in the plane, and

2) the set of compact regions in R
2 or R

3 with connected

interiors and piecewise analytic boundaries.

3) the set of terrain maps from R
2 to R, giving the

elevation or navigability at each point in the plane.

The state space is formed by combining the robot’s configu-

ration space C with E , so that X = C×E . In our models, the

true environment E ∈ E affects the robot by influencing the

state transitions that the robot makes and the observations

that the robot receives.

B. Actions and transitions

The robot influences its current state by choosing actions

from some action space U . At each instant t, the robot

chooses some u(t) ∈ U . Let Ũt denote the space of all

functions from [0, t) into U , and let Ũ =
⋃

t∈[0,∞) Ũt. For

simplicity of notation, adopt the convention that [0, 0) = ∅.

Define ũ : [0,∞) → U as the robot’s complete action history,

and let ũt ∈ Ũ denote the robot’s action history up to (but

exclusive of) time t.

We include a special termination action uT ∈ U . The

robot selects uT to indicate that it has finished its task and

intends to terminate execution. We require that if u(t) = uT ,

then u(t′) = uT for all t′ > t.

How do these actions influence the state? We model

disturbances and unexpected events as interference from a

fictitious external decision maker we call “nature”. Choices

made by both the robot and by nature affect changes in the

state. Let Θ denote a nature action space. Let Θ̃t denote

the space of all functions mapping [0, t) into Θ, and let

Θ̃ =
⋃

t∈[0,∞) Θ̃t. Let θ̃ : [0,∞) → Θ denote the complete

history of nature actions and θ̃t ∈ Θ̃t the nature action

history up to (and including) t.

We describe changes in the state with a state transition

function, Φ : X ×
⋃

t∈[0,∞)(Ũt × Θ̃t) → X . The intuition is

that, given a starting state x(0), and action histories ũt and

θ̃t of equal duration for the robot and nature respectively, the

state transition function computes the resulting state

x(t) = Φ(x(0), ũt, θ̃t). (1)

This notation of a “black box” state transition function

follows notation employed in control theory, for example by

Chen [3].

Example 1: A familiar special case of (1) occurs if ũ and

θ̃ are smooth functions and there exists a function f such

FrC6.5

4085

Fig. 1. [left] The robot in Example 2 gives velocity inputs that determine
a nominal trajectory. [right] Nature interferes with this trajectory, but error
bounds ensure that the final state is contained in a circle of radius tθmax.

that

Φ(x(0), ũt, θ̃t) = x(0) +

∫ t

0

f(x(s), u(s), θ(s))ds. (2)

In this case, the system dynamics can be described by the

differential equation ẋ = f(x, u, θ). �

Example 2: Consider a point in the plane with velocity

input, for which the motion is subject to noise. Let umax

denote a bound on the magnitude of the commanded velocity,

and let θmax denote a bound on magnitude of the error in

the velocity. Let X = R
2, U = {u ∈ R

2 | ||u|| ≤ umax},

Θ = {θ ∈ R
2 | ||θ|| ≤ θmax}, and

Φ(x(0), ũt, θt) = x(0) +

∫ t

0

(u(s) + θ(s))ds. (3)

At every time t, the robot can be certain that its state lies

within a closed ball of radius tθmax, centered at the nominal

(error free, i.e. θ̃ ≡ (0, 0)) final point. See Figure 1.

�

C. Observations

As time passes, the robot’s sensors provide feedback in

the form of observations drawn from an observation space

Y . Let Ỹt denote the space of functions mapping [0, t] into Y

and let Ỹ =
⋃

t∈[0,∞) Ỹt. The robot’s complete observation

history is ỹ : [0,∞) → Y . The observation history up to t

(inclusive) is ỹt ∈ Ỹt.

Nature interferes with the observations by choosing a

nature observation action from a space Ψ. Let Ψ̃t denote

the space of functions mapping [0, t) into Ψ and let Ψ̃ =⋃
t∈[0,∞) Ψ̃t. The robot’s complete nature observation action

history is ψ̃ : [0,∞) → Ψ; the nature observation action

history up to time (but not including) t is ψ̃t ∈ Ψ̃t. The

observations received by the robot are governed by the

observation function h : X × Ψ → Y .

Example 3: Suppose the mobile robot has a sensor that

detects the distance to some landmark. Let X = R
2 and

Y = R. Without loss of generality, position the landmark

at the origin. Assume that the sensor has bounded additive

disturbance, so that Ψ = [−ψmax, ψmax] and h(x, ψ) =
||x|| + ψ. See Figure 2. At each instant, the robot knows

with certainty that its state is within an annulus of width

2ψmax centered at the origin. �

(0, 0)

x

(0, 0)

x

Fig. 2. [left] The robot in Example 3 has a sensor that reports a noisy
estimate of the distance to the origin. [right] Accounting for noise bounded
by ψmax, the observation confines the robot’s state to an annulus of width
2ψmax.

D. Information spaces and information mappings

To inform its decisions, the robot has access only to

the histories of actions it has selected and observations it

has received so far. That is, to select u(t), the robot can

use ũt and ỹt. This motivates our definition of the history

information space, Ihist =
⋃

t∈[0,∞) Ũt × Ỹt. The tuple

η(t) = (ũt, ỹt) ∈ Ihist containing the robot’s action and

sensing histories is the robot’s history information state.

The history information state, since it is composed of

functions of time, is unwieldy in isolation. As a result, we

select a derived information space I and an information

mapping κ : Ihist → I. Informally, a derived information

space represents “compression” or “interpretation” of the

histories.

We say that a state x is consistent with an information state

η(t) = (ũt, ỹt) if and only if there exists some starting state

x(0) and nature histories θ̃ and ψ̃ such that Φ(x(0), ũt, θ̃t) =
x and h(x(t′), ψ̃(t′)) = y(t′) for t′ < t. The next example is

an information mapping that arises directly from the notion

of consistent states.

Example 4 (Nondeterministic information mapping): Let

Indet = pow(X) − ∅. The relevant information mapping is

κndet : Ihist → Indet, under which each history information

state maps to the minimal subset of X consistent with it.

The intuition is that η(t) gives a set of “possible states” for

the robot at time t. �

E. Information feedback strategies

How does the robot decide which actions to select? We

describe the robot’s strategy as a feedback strategy π :
Ihist → U that specifies an action for history information

state. As the robot executes π, the actions are given by

u(t) = π(η(t)). We call π an information feedback strategy.

Even though we define π as a feedback strategy over the

history information space, the next two examples illustrate

that feedback over a derived information space can some-

times be a natural way to express familiar kinds of strategies.

Example 5 (Open loop strategy): Let Itime = [0,∞) and

consider the information map κtime(η(t)) = t. In this case,

the derived information state is simply the time elapsed.

Then if the robot has an intended open loop action trajectory

ω : [0, tf) → U , a strategy to execute γ is π(η(t)) =
ω(κtime(η(t)) if t < tf and π(η(t)) = uT otherwise. �

FrC6.5

4086

Example 6 (Memoryless strategy): Another possibility is

that it is enough to know the “most recent” observation, so

Iobs = Y and κobs(η(t)) = y(t). Given a memoryless plan

γ : Y → U , the composed function κobs ◦ γ : Ihist → U is

a memoryless information feedback strategy.1 �

We assume that a given strategy is executed until it

selects uT . The time when this occurs, the resulting final

state, and the observations received along the way are all

affected by the strategy itself π, the starting state x(0),
and the actions of nature θ̃ and ψ̃. Assuming that the

robot executes π, the termination time is T (π, x(0), θ̃, ψ̃) =
inf{t ∈ [0,∞) | π(η(t)) = uT }, and the final state

is F (π, x(0), θ̃, ψ̃) = Φ(x(0), ũtf
, θ̃tf

), in which tf =

T (π, x(0), θ̃, ψ̃).

Example 7 (Concatenating strategies): Given two strate-

gies π1 and π2, a new strategy that concatenates them (that

is, executes them in sequence) is expressed by π(η(t)) =
π1(η(t)) if π1(η(t)) 6= uT and π(η(t)) = π2(η(t)) other-

wise. By nesting this construction, arbitrarily many strategies

can be chained together. �

F. Tasks and solutions

A task (or problem) is defined by a goal region IG ⊂ Ihist

in history information space. This notion is a generalization

of the traditional idea of a goal state or goal region in state

space. An information feedback plan is a guaranteed solution

to a problem if there exists some time tg such that, for any

θ̃tg
and any ψ̃tg

, η(tg) ∈ IG.

IV. COMPARING ROBOT SYSTEMS

In this section, we show that the basic results of [12] still

hold in our generalized framework. We define a dominance

relation between robot systems to formalize the informal

idea that some robots are “more powerful” than others, in

the sense of having richer sensing and motion abilities. This

relation has direct implications on the ability of robot systems

to complete tasks.

A. Information preference relation

The first ingredient we need is some notion of when

one derived information state is “better than” another. Fix

a derived information state I and an information mapping

κ : Ihist → I. Equip I with a partial order information

preference relation �, under which η1 � η2 means that η2
is “more informed than” η1. The only constraint on � is that

is must be a partial order satisfying the following consistency

property for any t ∈ [0,∞), ũt ∈ Ũt and ỹt ∈ Ỹt:

κ(η1) � κ(η2) =⇒ κ(η1, ũt, ỹt) � κ(η2, ũt, ỹt), (4)

in which the concatenation on the right side indicates that the

additional history information from ũt and ỹt is appended to

1In [12], we used a slightly different observation model, in which h :
X × U → Y . In this context, the time period over which observations
are available is the half-open interval [0, t); eyt is undefined at t itself. As
a result, the closest we can come to a memoryless strategy is to use the
left-hand limit of eyt at t, κobs(η(t)) = lim

t′→t−
y(t′), provided the limit

exists. This technicality is part of the motivation for preventing y from
depending directly on u, as we have done in this paper.

η1 and η2. The intuition is that information preference must

be preserved if the same actions are selected and the same

observations received from both η1 and η2.

Example 8: Recall κndet from Example 4. Define � so

that η1 � η2 if and only if κndet(η2) ⊆ κndet(η1). It is easy

to verify that the consistency property holds. �

B. Definition of dominance

Our goal is a formal way to compare the power of robot

systems. Consider two robot systems R1 and R2 defined as

in Section III:

R1 = (X(1), U (1), Y (1),Θ(1),Ψ(1),Φ(1), h(1)) (5)

R2 = (X(2), U (2), Y (2),Θ(2),Ψ(2),Φ(2), h(2)) (6)

Because U (1) need not have any special relationship to U (2),

and likewise Y (1) need not be related to Y (2), the comparison

cannot be made directly in the history information space,

which simply records actions and observations. Instead, map

the two history information spaces to the same derived

information space. The corresponding information mappings

are κ(1) : I
(1)
hist → I and κ(2) : I

(2)
hist → I.

To compare distinct robot systems (perhaps with distinct

state spaces) operating in the same family of environments,

use the environment space construction described in Sec-

tion III-A with R1 and R2 in the same environment space,

so that X(1) = C(1) × E and X(2) = C(2) × E .

Now we can state the dominance relation between robot

systems.

Definition 1 (Robot dominance): Consider two robots R1

and R2. If, for all η(1)(t1) ∈ I
(1)
hist, η

(2)(t2) ∈ I
(2)
hist

with κ(1)(η(1)(t1)) � κ(2)(η(2)(t2)), t
′

1 ∈ [0,∞), and

ũ
(1)
t′
1

∈ Ũ
(1)
t′
1

, there exists an information feedback strategy

π2 : I
(2)
hist → U (2), such that for all x(1) ∈ X(1) consistent

with η(1)(t1) and x(2) ∈ X(2) consistent with η(2)(t2), there

exists t′2 ∈ [0,∞) such that for all θ̃
(1)
t′
1

∈ Θ
(1)
t′
1

, θ̃
(2)
t′
2

∈ Θ
(2)
t′
2

,

ψ̃
(1)
t′
1

∈ Ψ̃
(1)
t′
1

, and ψ̃
(2)
t′
2

∈ Ψ̃
(2)
t′
2

, if R1 executes ũ
(1)
t′
1

from time

t1 to t′1 and R2 executes π(2) from time t2 to t′2, we have

κ(η(1)(t′1)) � κ(η(2)(t′2)) (7)

then R2 dominates R1 under I, κ, and �, denoted R1 ER2.

If R1 E R2 and R2 E R1, then R1 and R2 are equivalent,

denoted R1 ≡ R2. If R1 6E R2 and R2 6E R1 then R1 and

R2 are incomparable, denoted R1 EDR2. ◦

Informally, Definition 1 means that, regardless of the

transitions made by R1 (and regardless of the interference

from nature R1 receives), there exists some strategy for R2

to reach an information state at least as good, in the sense

of information preference, as that reached by R1. Figure 3

illustrates this intuition.

C. Dominance and solvability

Now we can establish the relationship between dominance

and solvability. Fist, we define a class of “well-formed” tasks

based on the information preference relation.

FrC6.5

4087

R2R1

κ(η(1)(t1)) � κ(η(2)(t2))

eu
(1)

t′
1

eu
(2)

t′
2

κ(η(1)(t′1)) � κ(η(2)(t′2))

Fig. 3. An illustration of Definition 1.

Definition 2: Consider a set I ⊂ I of derived information

states. If, for any η1 ∈ I and η2 ∈ I with η1 � η2, we have

η2 ∈ I , then I is preference closed. ◦

For any preference closed goal region, we have the follow-

ing result. A similar, but weaker (because of the limitations

in robot models) result appeared in [12].

Lemma 1 (Solution by imitation): Consider two robot

systems R1 and R2 with R1 E R2 and a preference-closed

goal region IG. If there exists a guaranteed solution for R1

to reach IG, then also there exists a guaranteed solution for

R2 to reach IG.

D. Dominance examples

This section presents a few examples to illustrate the

implications of Definition 1.

Example 9 (Omniscient sensing and perfect control):

Consider a degenerate case with Y = X , and h(x, ψ) = x.

Let Θ = Ψ = {0} be dummy singleton sets with no effect

on state transitions or observations. This situation gives

the robot perfect control and complete information about

its state. Choose κ(η(t)) = y(t) = x(t). Let η1 � η2 if

and only if η1 = η2. In this context, Definition 1 becomes

a statement about the regions of state space reachable by

different control systems.

Suppose three such systems R1, R2, and R3 differ only in

their action spaces U (1), U (2), and U (3). Let Z(A) denote

the subset of state space reachable by a robot with action

space A. Suppose R1 E R2. R3 need not be comparable to

either R1 or R2. Note that additional robot models can be

constructed from unions of U (1), U (2) and U (3). We have

the following results:

Z(U (1)) ⊆ Z(U (2) ∪ U (3)) (8)

Z(U (1)) = Z(U (1) ∪ U (2)) (9)

Z(U (1) ∪ U (3)) ⊆ Z(U (2) ∪ U (3)) (10)

These results are somewhat analogous to Lemmas 2-4 in

[12]. Note that in combining action spaces in this way, we

allow the robot to choose sequentially the action set from

which to choose its action. The results fail if the robot is

somehow allowed to choose actions from each constituent

set in parallel. �

Example 10 (Varying error bounds): Recall the incom-

pletely specified models in Examples 2 and 3. Consider

Fig. 4. The lost cow of Example 11 searching for a gate.

two robot systems R1 and R2 with state transitions as in

Example 2 and observations as in Example 3; R1 and R2

differ only in the error bounds θ
(1)
max, ψ

(1)
max, θ

(2)
max, and ψ

(2)
max.

We will compare these robots under κndet.

Comparing θ
(1)
max to θ

(2)
max, and ψ

(1)
max to ψ

(2)
max, there are

three cases:

1) If θ
(1)
max ≤ θ

(2)
max and ψ

(1)
max ≤ ψ

(2)
max, then R2 ER1.

2) If θ
(2)
max ≤ θ

(1)
max and ψ

(2)
max ≤ ψ

(1)
max, then R1 ER2.

3) If θ
(1)
max ≤ θ

(2)
max and ψ

(2)
max ≤ ψ

(1)
max or θ

(2)
max ≤ θ

(1)
max

and ψ
(1)
max ≤ ψ

(2)
max, then R2 EDR1.

This implies that θ
(1)
max = θ

(2)
max and ψ

(1)
max = ψ

(2)
max if and

only if R1 ≡ R2. These results follow in a straightforward

manner from Definition 1. The intuition of this (perhaps

unsurprising) example is that one robot system dominates

the other if its error bounds are smaller. �

Example 11 (A Lost Cow): A well-known problem in on-

line algorithms is the lost cow problem [1], [9] in which

a near-sighted cow moves along a fence searching for a

gate, as illustrated in Figure 4. The difficulty under the

standard sensing model is that the cow must systematically

search in both directions from its initial position without any

information about the distance or direction to the gate. The

interest in this problem derives from potential applications

in (or at least the potential for better understanding of)

exploration in unbounded environments.

We formulate the lost cow problem and consider how the

sensing model affects the cow’s searching ability. Let X =
R, in which x(t) is the position of the gate relative to the

cow at time t. For simplicity, assume perfect control and

perfect sensing by setting Θ = Ψ = {0}. The action space

is U = [−1, 1], with Θ = {0} and Φ(x(0), ũt, θt) = x(0) +∫ t

0
u(s)ds. We compare three distinct models C1, C2, and

C3 under κndet.

1) C1: Let Y (1) = R and h(1)(x, ψ) = x. Here the cow

can determine both the direction and distance to the

gate.

2) C2: Let Y (2) = {−1, 0, 1} and h(x, ψ) = sign(x).
This allows the cow to determine the direction it must

move to reach the gate, but not the distance.

3) C3: Let Y (3) = {0, 1} and h(2)(x, ψ) = 1 if x = 0
and h(2)(x, ψ) = 1 otherwise. This is the standard lost

cow sensing model, in which the cow cannot see the

gate from a distance, but can detect the gate when it

arrives.

Perhaps surprisingly, these three models are equivalent in the

sense of Definition 1. This comes about as a result of the fact

that each can eventually determine its state (by finding the

gate) and after the state is known, the state uncertainty cannot

recur. To simulate C1 with C3, first execute the algorithm of

[1], then move to the state occupied by C1. �

FrC6.5

4088

V. A DISCRETE-STAGE MODEL

This section describes how the continuous-time model

given in Section III is related to the discrete-stage formu-

lation of [12].

A. Transforming from continuous time to discrete stages

Consider a division of time into variable length stages, in

which, in each stage, the robot executes a single information

feedback strategy to completion. We require of each of these

strategies the following special property:

Definition 3 (History invariance): If, for all η(t) ∈ Ihist,

all x ∈ X consistent with η(t), all θ̃ ∈ Θ̃, all ψ̃ ∈ Ψ̃, and

all y(0) ∈ Y , we have

F (π, x, η(t), θ̃, ψ̃) = F (π, x, η(0), θ̃, ψ̃), (11)

then π is a history-invariant strategy. ◦

The intuition of the definition is that the robot executing

π is free to use the observation and action history generated

during its own execution, but it cannot peer into the past

before its execution began in order to make decisions.

Given a continuous-time robot system R =
(X,U, Y,Θ,Ψ,Φ, h) as in Section III and a set Π of

history-invariant information feedback strategies, construct a

discrete-stage system R = (X,U, Y ,Θ,Ψ, f , h) as follows:

1) The state space X is unchanged.

2) The action space is U = Π.

3) The observation space is Y = Ỹ .

4) The nature action space is Θ = Θ̃.

5) The nature observation action space is Ψ = Ψ̃.

6) The state transition function is f : X × U → X , with

f(x, π) = F (π, x, θ̃, η(0)).
7) The observation function is h : X × U × Ψ → Y .

The system starts at some (unknown) initial state x1 ∈ X .

Let xk ∈ X , uk ∈ U , yk ∈ Y , θ ∈ Θ, and ψk ∈ Ψ denote the

appropriate values at stage k. These sequences are related to

each other by xk+1 = f(xk, uk, θk) and yk = h(xk, uk, ψk).
The history information state consists of the action and

observation histories: ηk = (u1, y1, . . . , uK−1, yK−1). We

now argue that this discretized system faithfully represents

the underlying continuous-time system.

Lemma 2: Any action sequence u1, . . . , uK executed by

R reaches the same final state x and the analogous final

history information state as does R.

Note, however, that in making this transformation, we may

restrict the space of strategies that the robot can employ. If U

does not contain a sufficiently rich selection of information

feedback strategies, there may be regions of information

space that are no longer reachable under the discretized

model. It remains an open problem to find small (or at least

succinctly described) sets of strategies that are complete or

nearly complete in the sense of not eliminating any reachable

regions in information space.

VI. CONCLUSION

Although the results we present here are a substantial

improvement over those of [12], there are still important

pieces missing.

A. Computational issues

We have focused mostly on the sensing and motion

requirements of tasks. An important related question is

to determine the kinds of computation power these tasks

require. What are the tradeoffs between computation time,

memory usage, sensing requirements and solution quality?

Is there a satisfactory way to scalarize these competing

objectives into a single-valued objective function, or should

we expect a single problem will lead to many different Pareto

optimal solutions?

B. Reductions and decision problems

One of the most powerful ideas in the theory of compu-

tation that we have not explored here is the idea of reduc-

tions, which hold promise for comparing robotic problems

themselves. The resulting statements would have the form

“Problem A is at least as hard as Problem B.” To make things

more concrete, we might consider decision problems, in

which the robot must determine if its environment E ∈ E has

a certain property. Such problems fit naturally as planning

problems in information space.

REFERENCES

[1] R. A. Baeza-Yates, J. C. Culberson, and G. J. E. Rawlins, “Searching
in the plane,” Information and Computation, vol. 106, pp. 234–252,
1993.

[2] R. I. Brafman, J. Y. Halpern, and Y. Shoham, “On the knowledge
requirements of tasks,” Artificial Intelligence, vol. 98, no. 1-2, pp.
317–349, 1998.

[3] C.-T. Chen, Linear System Theory and Design. New York: Holt,
Rinehart, and Winston, 1984.

[4] B. R. Donald, “On information invariants in robotics,” Artificial

Intelligence, vol. 72, no. 1-2, pp. 217–304, 1995.
[5] M. Egerstedt, “Motion description languages for multi-modal control

in robotics,” in Control Problems in Robotics, ser. Springer Tracts in
Advanced Robotics, A. Bicchi, H. Cristensen, and D. Prattichizzo,
Eds., 2002, pp. 75–90.

[6] M. A. Erdmann, “Understanding action and sensing by designing
action-based sensors,” International Journal of Robotics Research,
vol. 14, no. 5, pp. 483–509, 1995.

[7] A. Girard and G. J. Pappas, “Approximation metrics for discrete and
continuous systems,” IEEE Transactions on Automatic Control, Mar.
2005, to appear.

[8] J. E. Hopcroft, J. D. Ullman, and R. Motwani, Introduction to

Automata Theory, Languages, and Computation, 2nd ed. Reading,
MA: Addison-Wesley, 2000.

[9] M.-Y. Kao, J. H. Reif, and S. R. Tate, “Searching in an unknown
environment: An optimal randomized algorithm for the cow-path
problem,” in SODA: ACM-SIAM Symposium on Discrete Algorithms,
1993, pp. 441–447.

[10] T. Lozano-Pérez, M. T. Mason, and R. H. Taylor, “Automatic synthesis
of fine-motion strategies for robots,” International Journal of Robotics

Research, vol. 3, no. 1, pp. 3–24, 1984.
[11] T. Lozano-Pérez and M. A. Wesley, “An algorithm for planning

collision-free paths among polyhedral obstacles,” Communications of

the ACM, vol. 22, no. 10, pp. 560–570, 1979.
[12] J. M. O’Kane and S. M. LaValle, “On comparing the power of mobile

robots,” in Proc. Robotics: Science and Systems, 2006.

FrC6.5

4089

