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Abstract— Network surveillance systems provide extended
perception and distributed sensing capability in monitored
environments through real time monitoring of the target area
and target objects using multiple networked sensors. The
development of wireless communication and sensing technology
make it possible to deploy networked surveillance systems
in various environments. We consider a surveillance network
where the sensors are static. The task of tracking targets in
a surveillance network is challenging because of the following
reasons: (1) The location of the sensors need to be optimally
deployed. (2) the view of the sensors need to be optimized so
that at a given time the targets are shown with a discernable
resolution for feature identification. (3) it is important to devise
stable control algorithms for accomplishing the surveillance
task. When the target moves, it is important to switch the
sensing task between sensors to maintain the visibility of the
target with adequate resolution. This paper presents a novel
method to deploy static sensors given a target region and
a dynamic programming method to optimally switch sensors
when the target moves. Finally, simulation results demonstrate
the efficacy of the proposed approach for tracking targets over
an area.

I. INTRODUCTION

Networked surveillance systems have received much at-

tention from the research community due to their many per-

vasive applications [1]. Technological advances in wireless

networking and distributed robotics have been leading to

increasing research on distributed sensing applications us-

ing wireless sensor networks. Infrastructure-less surveillance

and monitoring are important applications of such rapidly

deplorable sensor networks.

Video feedback is an essential component of the surveil-

lance system. A single human operator cannot effectively

monitor a large area by looking at dozens of monitors

showing raw video output. In [2] an approach is presented

which provides an interactive, graphical user interface (GUI)

showing a synthetic view of the environment, upon which

the system displays dynamic agents representing people and

vehicles. Another program called the the Modular Semi-

Automated Forces (ModSAF) program provides a 2-D graph-

ical interface similar to the VSAM GUI [3], with the ability

to insert computer-generated human and vehicle avatars that

provide simulated opponents for training [4].

∗ This research work is partially supported under NSF Grants CNS-
0551464, EIA-9911077, DMI-0115355, and OCI-0334035.

Although automatic image analysis and video understand-

ing tools [2] can be used to facilitate identification of targets

and activation of alarms or logs for certain surveillance tasks,

the operator needs the video feedback to make decisions

about the tracking task which may not have been pre-

programmed or to independently task the network based on

the current feedback received from the sensors.

Since multiple cameras are deployed to track the identified

targets, multiple, concurrent feedback video streams maybe

required for monitoring the target. These sensors initiating

these streams will be changing from time to time as the

target moves out of range of the current sensors tracking it.

However, providing multiple unnecessary (unrelated to the

task) video feedback streams often causes loss of attention

span of the operator and makes it hard to keep track of the

various activities over the cameras. Hence only video streams

from relevant sensors should be presented to the operator

on a per activity basis. This is done through automatic or

manual switching of the camera streams that are presented

to the operator.

In this research we focus on the problem of optimally

deploying multiple sensors to maximize the ability to monitor

the target location. Also given a moving target, the proposed

approach can predict the motion of the target and thus

dynamically allocate an optimal switching strategy among

the sensors. By automatically switch between cameras, the

human operator can maintain an active view of the subject.

The remaining paper is organized as follows: Section

II discusses optimal control of a discrete-time finite-state

as a dynamic programming problem. Section III discusses

switched video feedback and provides a dynamic systems

model of a switched video feedback system. It further

provides examples of switched video feedback algorithms

and develops an assessment metric based on the camera

locations. Section V proposes a dynamic programming based

method to optimally minimize switching cost and maintain

the target resolution. Simulation results of the proposed

approach are provided in section VI. Finally, the conclusions

and discussions are provided in section VII.

II. OPTIMAL CONTROL AND DYNAMIC PROGRAMMING

A controlled dynamical system [5] is a system Σ =
[X , Γ,U , φ] where,
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• X is an arbitrary topological space called the state space

of Σ;

• Γ is the time set, which is a transition semigroup with

identity;

• U is a nonempty set called the control-value space of

Σ; and

• The map φ : X × Γ×U 7→ X is a continuous function

satisfying the identity and semigroup properties.

The dynamical system can also be denoted by the system

Σ = [X , Γ,U , f ] where the transition function f is the

generator of the extended transition function φ [5].

A discrete-time dynamic system is a dynamic system Σ
for which Γ = Z where, Z is the set of integers. The discrete-

time dynamic system, Σ is finite dimensional if both X and

U are finite dimensional and the dimension of the system Σ
is the dimension of X .

Consider a finite dimensional discrete-time dynamic sys-

tem Σ and function b : X × Γ × U 7→ R+ that takes on

non-negative real values. We can now define a trajectory cost

function as:

B(τ, σ, x, ω) =

τ−1∑
i=σ

b(i, ξ(i), ω(i)) (1)

where, ω is a sequence of inputs and ξ = ϕ(x, ω) is a

sequence of states of the dynamical system given the initial

state x and a sequence of control inputs ω.

The optimization problem can be stated as: Given a

discrete-time finite dimensional dynamic system Σ, a trajec-

tory cost function B and a pair of times σ < τ , and an initial

state x(σ) find a sequence of control inputs ω admissible for

state x(σ) which minimizes B.

More generalized problems can be introduced which re-

quire the total cost to be a function of the final state or by

adding constraints to the final state etc.

In order to find a control input sequence ω that minimizes

the trajectory cost function B, we could list all possible

control input sequences ω = uσ, uσ+1, ...uτ which are ele-

ments of U and compute the total cost of all the trajectories

generated by all ω ∈ U [σ,τ). This could indeed entail a

prohibitively large computation cost.

Alternately we could use the Dynamic Programming

method and inductively construct the Bellman function V

and the optimal control input law K , backwards in time i.e,

from τ towards σ as:

V : [σ, τ ] ×X 7→ R+ (2)

K : [σ, τ) ×X 7→ U (3)

The Bellman function V (s, x) should satisfy for any s ∈
[σ, τ ], and each x ∈ X ,

V (s, x) = min
ω
B(τ, σ, x, ω) (4)

and the optimal control input satisfies the condition

ξ(j + 1) = φ(ξ(j), j, K(j, ξ(j))), j = s, s + 1, ..., τ

ξ(s) = x (5)

for each s ∈ [σ, τ) and each x ∈ X .

The computation effort required to solve this problem will

be significantly lower than tabulating all the control input

sequences. However storage requirements for this procedure

will be significantly large.

III. SWITCHED VIDEO FEEDBACK AS A DYNAMIC

SYSTEM

The video feedback switch is based on the capability of

the tracking cameras to visually resolve the target and discern

its features i.e., the resolution of the target sustained at the

cameras.

The configuration space of N cameras C can be defined as

the collection of all the parameters of the cameras involved.

That is:

C = {C1, C2, . . . , CN} (6)

where, Ci ∈ R
p is a vector containing all the intrinsic and

extrinsic parameters of the camera.

Consider a monitored region as a domain E ⊂ R
n under

surveillance. A finite number (N ) of cameras are distributed

in this region and are involved in the surveillance task of

maintaining visibility of a target as it moves within the

monitored region. The monitored region E can be discretized

on a finite dimensional grid G = {Vi|Vi ∈ R
n, i=1,..,g}

which consists of finite number, g, of vertices Vi. Note that

grid G can be generated from the domain E using various

approximate cell decomposition methods where the cells

have a pre-defined shape and size in order to achieve a certain

resolution.

Consider any continuous time target trajectory in two di-

mensions kc(τ) : Γc 7→ R
2. For every τ ∈ Γc, kc(τ) provides

as an output the location of the target. This continuous

time trajectory can be approximated as a discrete-time finite

dimensional map on a grid as

k(t) : Γ 7→ UG (7)

where, Γ = Z and UG represents the finite dimensional space

of the locations of the vertices Vi of the grid G.

The dynamic sensor switching problem can be modeled

as a discrete-time, finite-dimensional dynamic system. The

state space of this system is the finite set of camera states

defined as: Q = {qi|qi = (i, Ci), i ∈ (1, ..., N), Ci ∈ C}.
Using the above definitions we can now describe the model

of a dynamic sensor switched system as a finite-dimensional

discrete-time dynamic system V as:

V = [Q, Γ,U , φ]

φ : Q× Γ× UG × U1 7→ Q (8)

where U := UG×U1. Here, u ∈ U1 is the control inputs while

k(t) ∈ UG , t ∈ Γ, the sequence of grid locations in G that

the target visits, is the reference inputs to the system. The

reference inputs evolve according to a predefined function

of time t and depend only on the target motion which may

not be known apriori. The control inputs are used to control

the trajectory of the system to ensure the target is covered

and can also be used for optimization of the various metrics

being used.
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A. Example Switched Video Feedback Algorithm - Best Res-

olution

Consider a set of N cameras Q = {(i, Ci)|i =
1, ..., N Ci ∈ C}. The sensor selection strategy is dependent

on the resolution sustained by the target at each of the

cameras and the one with the best resolution will be selected

to provide feedback to the human operator.

This sensor selection strategy takes into account only

on the best resolution sustained at all the cameras which

implies that the control input u, is based solely on the

camera configurations {Ci}, and the target locations k(t).
The strategy does not depend on the current camera tracking

the target i.e., sensor switching costs are not taken into

account.

In order to implement this strategy in the dynamic systems

model, we define a function Rres : UG×Γ 7→ U1 which maps

the locations of the target at various time instances to the

space of the control input variables u based on the resolution

sustained by the target at each camera. Notice that R is not

a function of the current state of the dynamic system i.e., the

current camera. This implies that the system does not have

memory.

The above algorithm can be implemented as follows. Let

qbest represent the camera that has the least distance to the

target, i.e., under the assumption of homogenous camera

sensors, qbest can view the target with the best resolution.

For a given target location k(t) and time t, qbest can be

written as:

qbest(t) = qi| min
i=1···N

dist(Ci(t), k(t)), (9)

visible(q(t), k(t)) == 1

Using the definition of qbest the next sensor to switch to

i.e., q(t + 1) can be written as: q(t + 1) = qbest(k(t + 1)).

B. Example Switched Video Feedback Algorithm - Persistent

Camera

In the best resolution based video feedback algorithm, the

current camera tracking the target was not taken into account

in the input to the dynamic system. Switching cameras in

a surveillance network can lead to the disorientation of

the human operator and is also generally associated with a

switching time delay. Hence we should minimize the number

of switches when tracking a target. However, the target

should sustain a certain resolution at the tracking camera

for recognition and classification purposes.

In order to implement this strategy, define a function

Rper : Q × UG × Γ 7→ U1 which maps the current

tracking camera and the locations of the target at various

time instances to the space of the control input variables u.

This implies that the state of the system i.e. q(t) is used

along with the resolution in order calculate the control input

to the dynamic system.

The above algorithm can be implemented using the defi-

nition of qbest from previous section. The sensor selected at

the next time step q(t + 1) can be written as:

q(t + 1) =
8

<

:

min(dist(Cbest(t + 1), k(t + 1) + ǫ, dist(q(t), k(t + 1))),
if visible(q(t), k(t + 1)) = 1

qbest(t + 1), if visible(q(t), k(t + 1)) = 0
(10)

IV. ASSESSMENT METRIC FOR CAMERA DEPLOYMENT

USING SWITCHED VIDEO FEEDBACK

In this section we propose a metric as a performance

measure of the video feedback switching algorithm based

on the configuration of the cameras.

The switching metric M ∈ R+ maps the configuration

space of the video algorithm [6] (which includes the previous

feedback camera) and a scalar potential field over the con-

figuration space of the video algorithm to a positive scalar.

Given the configuration of the cameras C, the video algorithm

can be thought of as a mapping from the combined space of

current feedback camera and target location to the feedback

camera space. The scalar potential ϕ(p) ∈ R+, p ∈ E

provides a relative importance to the current target location

and can be chosen to bias the importance of the target

locations.

M =

∫
F

∇V(f, C) ϕ(p) df (11)

where, f ∈ F ⊂ Q×E and p ∈ E. ∇V ∈ [0, 1] is the spatial

derivative of the output of the video feedback algorithm and

represents at which points in the video feedback configu-

ration space F the output of the video feedback algorithm

changes. Integration of these points over the configuration

space represents the number of switching surfaces present

in the space E. A lower number of switching surfaces will

imply that the feedback camera location does not switch

a lot with the free motion of the target. The term ϕ(p)
is just a scalar potential which reflects the importance of

the particular point p ∈ E and can be used to bias the

surveillance space E.

The switching metric M in conjunction with other metrics

such as target resolution at various locations in E can

be computed for a large number of randomly generated

configurations and a sub-optimal solution can be derived for

the placement of the cameras.

V. OPTIMIZED TARGET TRACKING USING SWITCHED

VIDEO FEEDBACK

Given the scenario having a large number of static cameras

distributed in an environment with significant overlap of their

viewing regions, the problem is to identify the minimum

number of cameras required to track a given target trajectory.

We propose to use dynamic programming as an optimal

control strategy in order to minimize the total number of

cameras required to view the target with adequate resolution.

In order to minimize the switching cost and maintain

the resolution of the target, we construct a graph based on

the camera location and the visibility of the targets to the

cameras, given the predicted motion of the target on the grid
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G. Figure 1 shows a part of the graph constructed for each

grid point in G that the target traverses. All the cameras

that can observe a particular grid point are listed as the

possible nodes to switch to. An extra node column is added

to accommodate the resolution metric as shown in the Figure

1. The switching cost between the different nodes is tabulated

as ’1’ if the tracking sensor is switched at this grid point and

as ’0’ if the same camera is retained.

The entire graph is constructed for all the points sequen-

tially visited by the target on the grid G. Note that this

procedure does not mandate any contiguity requirements

on the path traversed by the target in order to construct

the graph. Once the entire graph is constructed, dynamic

programming can be used in order to find the optimal

switching sequence.

In order to construct the entire graph, it was assumed that

the complete motion of the target on the grid was known.

However, it is a very strict requirement to know the entire

path of the target. Given the current and past observations of

the target, the future trajectory of the target can be predicted.

Based on this finite time prediction, the graph can be con-

structed for the predicted trajectory and the camera switching

sequence can be calculated for the predicted trajectory. As

the target location evolves, the future trajectory of the target

can be predicted and a camera switching sequence can be

computed based on the prediction.

This procedure enables us to extend the dynamic pro-

gramming algorithm for computing the switched camera

sequence to a case where the target trajectory is not know

in advance but can be predicted (for a finite look ahead

time) using the current and past observations of the target

location. Using this trajectory prediction based algorithm a

sub-optimal solution to the camera selection problem can be

computed.

The procedure for constructing the graph is shown in Al-

gorithm 1. After the graph is constructed, we use the dynamic

programming method, a modified version of Dijkstra algo-

rithm to find the optimal switching strategy (Algorithm 2). In

the graph generating stage, we enumerate all the cameras that

can see the current grid point with an acceptable resolution.

The resolution metric is marked over each camera as a

weight on the vertex. However, in order to run the dynamic

programming method, it is desirable to have all the weight on

the edges. Thus each camera is represented by two vertexes

in the graph, with an edge connecting them that has a weight

equaling to the resolution metric. We also enumerate all

the cameras that can see the grid points specified by the

prediction vector. Between two prediction grid points we

connect the cameras based on their switching metric. If the

two cameras are the same, the switching metric is set to 0,

otherwise a non zero switching metric is set on the edge.

In Figure 1, all nonzero metrics are set to 1 for the sake of

simplicity.

c1 c1'
Resolution

Metric

Resolution

Metric
ck ck’

Resolution

Metric

c2 c2'
Resolution

Metric

...

c1 c1'
Resolution

Metric

Resolution

Metric
ck ck’

Resolution

Metric

c2 c2'
Resolution

Metric

...

...

0

1

1

...

Fig. 1. Generating Graph for the Camera Switching Strategy

Algorithm 1 [G, W ] = GraphGen(pv)

1: for all cam in CameraSet do

2: if pv(1) is visible by cam then

3: Add two nodes representing cam to G

4: Connect the two nodes with the resolution metric

of cam in W

5: end if

6: end for

7: pprev = pv(1)
8: Delete pv(1) from pv

9: for all p in pv do

10: for all cam in CameraSet do

11: if p is visible by cam then

12: Add two nodes representing cam to G

13: Connect the two nodes with the resolution metric

of cam

14: Connecting the nodes generated by p and pprev

and set the switching cost to W if they are for

different cameras.

15: end if

16: end for

17: end for

VI. SIMULATION STUDIES

A. Sensor Deployment

Consider a switched surveillance scenario with two cam-

eras as shown in Figure 2. Camera 1 is kept static at location

(0, 0) while the location of camera 2 is changed from 0-100

on both the X and Y axes. Both the cameras are directed at

45 degrees and have a viewing cone of 90 degrees. Figures 3,

4 and 5 depict the change in the three metrics namely simple

distance based camera switching metric, persistent distance

metric and the resolution metric, when the location of camera

2 is moved all over the grid.

Figure 3 shows the result of simple distance based met-

ric simulation. Simple Distance switching is based on the

following. If the target is being monitored by the current

camera, and the distance between the target and that camera

is greater than the distance between the target and some other

camera, then the system will switch which camera is tracking

the target, thus creating a cost. The total of the costs at each

point within the grid is the total cost for a given camera

configuration.

Persistence distance (Figure 4) is nearly exactly the same

as simple distance, except that there is threshold related to

when you switch, i.e. if the distance between the current
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Fig. 2. Two camera setup
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Fig. 3. The Metric Plot When Simple Distance Is Used
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Fig. 4. The Metric Plot When Persistence Is Used

0
20

40
60

80
100

0

20

40

60

80

100

55

60

65

70

75

80

Y

X

M
e

tr
ic

Fig. 5. The Resolution Metric Plot

Algorithm 2 p = Dijkstra(G, W, s, t)

1: for all v in V (G) do

2: d(v)← +∞ {Initialize the distance vector}
3: p(v) ← undefined {Initialize the previous node vec-

tor}
4: end for

5: d(s)← 0 {The source has 0 distance to itself}
6: C ← ∅ {Initialize the checked node set}
7: Q← V (G) {Copy the vertex set into a working set}
8: while Q 6= ∅ do

9: u ← ExtractMin(Q) {Extract the vertex with min-

imum value in d}
10: C ← C ∪ {u}
11: if u = t then

12: return

13: end if

14: for all edge (u, v) do

15: if d(u) + W (u, v) < d(v) then

16: d(v)← d(u) + W (u, v)
17: p(v)← u

18: end if

19: end for

20: end while

21: if !t ∈ C then

22: p← ∅
23: end if

camera and the next best camera is above some threshold,

then you switch and assign a cost. The main purpose of this

persistence method, is to avoid a constant switching, which

could lead to user disorientation. This will require that the

switch will provide the user with not only a better view, but a

significantly better view based on you persistence threshold.

The resolution metric (Figure 5), is based on the concept

that the closer the sensor is to the target the higher the

resolution is for that sensor. So for the resolution metric,

the cost is the distance between the grid point and the best

sensor to view that grid point. Then the total cost of a given

sensor configuration is the sum of the cost at each grid point

within the viewing area.

We have developed a series of metrics and used a Monte

Carlo simulation method to find the optimal location of the

cameras based on this metric. The simulation results of a 10

camera placement problem on a 100x100 grid is presented

in this section.

The metric used to calculate the cost of the camera

placement is a combination of the resolution based switching

metric and a best resolution metric. The configuration of the

cameras was varied and over 100,000 sets of random camera

locations were generated for the Monte-carlo simulation. The

Monte-carlo simulations were conducted in 10 iterations with

each iteration simulating 10,000 sets of random locations.

The convergence of the Monte-carlo scheme was verified by

noting that the minimum cost of all the 10 batches was nearly

identical.

The parameters of the cameras that were varied were the
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Fig. 6. Optimal camera placement for 10 cameras using Monte-carlo based
optimization

X and Y position and the pointing angle θ. The viewing cone

angle of the cameras was kept constant. Figure 6 shows the

optimal placement of the cameras.

Based on the defined switches, we run the Monte Carlo

simulation a number of iterations to obtain the best camera

placement.

B. Optimized Target Tracking using Switched Video Feed-

back

In the simulation scenario, we deployed a set of cameras in

a 100x100 grid area. A trajectory of sine wave is simulated

and the switching of the cameras are captured along with

the switching cost and resolution cost. In the simulation

11 cameras are placed as indicated by circles in Figure 7.

The line under the camera circle indicates the facing of the

camera. In the first simulation scenario, it is assumed that the

whole trajectory is know at the starting point, thus a better

switching strategy is given with only six switches. The num-

ber along the sine trajectory indicates that camera is switched

to be the active camera at the point (Figure 7). In another

more realistic scenario, we assume that the trajectory is only

know for the next two grid points, and the third grid point is

predicated through linear extrapolation. It is shown that more

switches are needed in this case (Figure 8). However we

expect less switches are needed when a more sophisticated

prediction method is used. The cost associated with Figure 7

and Figure 8 are 1772.58 and 2094.47 respectively. We see

a 18% improvement of the costs if we can see the whole

path.

VII. CONCLUSION

In this paper we examined the problem of optimally

placing a number of cameras in a given field to facilitate

a surveillance task. We develop a series of metrics and use

Monte Carlo method to obtain optimal camera placement

strategies. Another problem we studied is related to camera

switching strategy given a full or part of a trajectory path of

a moving target. We develop a dynamic programming based

approach to generate the switching strategy and optimize

both the switching and resolution metrics. The simulation
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Fig. 7. Camera Switching for the Whole Path
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Fig. 8. Camera Switching with Trajectory Prediction

results show our method works well for surveillance tasks

and scale well for large deployments.
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