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Abstract— The paper focuses on leader-follower formations of
nonholonomic mobile robots. A formation control alternative to
those existing in the literature is introduced. We show that the
geometry of the formation imposes a bound on the maximum
admissible curvature of leader trajectory. An peculiar feature
of the proposed strategy is that the followers position is not
rigidly fixed with respect to the leader reference frame but
varies in suitable cones centered in the leader reference frame.
Our approach also applies to hierarchical multirobot forma-
tions described by rooted tree graphs. Simulation experiments
confirm the effectiveness of the proposed control schemes.

I. INTRODUCTION

In the last few years formation control became one of

the leading research areas in mobile robotics. By formation

control we simply mean the problem of controlling the

relative position and orientation of the robots in a group

while allowing the group to move as a whole [2]. The use of

robot formations ranges from military to civilian applications

such as terrain and utilities inspection, disaster monitoring,

environmental surveillance, search and rescue and planetary

exploration. Different robot formation typologies have been

studied in the literature: ground vehicles [5], [7], [12], [13],

unmanned aerial vehicles (UAVs) [3], [10], aircraft [8], [9],

and surface and underwater autonomous vehicles [6], [14].

Existing approaches to robot formation control generally fall

into three categories: behavior based, virtual structure and

leader following.

In the behavior based approach [1], [11] several desired

behaviors (e.g. collision avoidance, formation keeping, target

seeking) are prescribed to each robot. Robot final action

is derived by weighting the relative importance of each

behavior. The theoretical formalization and mathematical

analysis of this approach is difficult and consequently it is

not easy to guarantee the convergence of the formation to a

desired configuration.

The virtual structure approach [15] considers the robot

formation as a single virtual rigid structure so that the

behavior of the robotic system is assimilable to that of

a physical object. Desired trajectories are not assigned to

each single robot but to the entire formation as a whole.

In this case the behavior of the robot formation is predictable

and consequently the control of the robot formation is

L. Consolini is with Dipartimento di Ingegneria dell’Informazione,
University of Parma, Parco Area delle Scienze 181/a, 43100 Parma, Italy
luca.consolini@polirone.mn.it

F. Morbidi and D. Prattichizzo are with Dipartimento di Ingegneria
dell’Informazione, University of Siena, Via Roma 56, 53100 Siena, Italy
{morbidi,prattichizzo}@dii.unisi.it

M. Tosques is with Dipartimento di Ingegneria Civile, Univer-
sity of Parma, Parco Area delle Scienze 181/a, 43100 Parma, Italy
mario.tosques@unipr.it

straightforward. Nevertheless a large inter-robot communi-

cation bandwidth is required.

In the leader-follower approach a robot of the formation,

designed as the leader, moves along a predefined trajec-

tory while the other robots, the followers, are to main-

tain a desired posture (distance and orientation) to the

leader [5], [16]. The main criticism to the leader-follower

approach is that the formation does not tolerate leader faults

and exhibits poor disturbance rejection features. In spite of

these deficiencies the leader-follower approach is particularly

appreciated because of its simplicity and scalability.

The leader-follower formation control of nonholonomic mo-

bile robots is the subject of this work. We propose a leader-

follower setup that is alternative to those existing in the

literature [5], [13]. The main difference is that the desired

angle between the leader and the follower is measured in

the follower frame instead of the leader frame. In this

framework, we design a formation control strategy that

generates smoother trajectories while guaranteeing lower

control effort (especially for large distances between the

robots) with respect to other controllers proposed in the

literature as shown in [4].

The main contribution of this work is that of showing how

the geometric properties of the formation affect the set of the

admissible curvatures of leader trajectory and the velocity

bounds of the followers. Differently from [5], in our setting

the followers are not rigidly disposed with respect to the

leader reference frame, but their relative positions vary in

time in suitable cones centered in the leader frame thus

making the formation more flexible.

Basic results are extended to multirobot hierarchical for-

mations described by rooted tree graphs. To the best of

our knowledge this coordination scheme, a generalization of

leader following (of which inherits pros and cons), has not

been investigated yet in the literature.

The rest of the paper is organized as follows. Sect. II

is devoted to the problem formulation. In Sect. III and IV

the exact formation control problem and the stabilization

problem are studied. In Sect. V basic results are extended

to multirobot hierarchical formations. In Sect. VI simulation

experiments confirm the effectiveness of the proposed control

schemes. In Sect. VII the major contributions of the paper

are summarized and future research lines are highlighted.

Notation: R
+ = {t ∈ R | t ≥ 0}; ∀ t ≥ 0, sign(t) = 1;

∀ t < 0, sign(t) = −1; ∀ a, b ∈ R, a ∧ b = min{a, b},

a ∨ b = max{a, b}; ∀x, y ∈ R
n (n ≥ 1), 〈x, y〉 =

∑n

i=1 xi yi, ‖x‖ =
√

〈x, x〉; ∀x ∈ R
2\{0}, arg(x) = θ,

where θ ∈ [0, 2π) and x = ‖x‖(cos θ, sin θ)T ; ∀ θ ∈ R,

τ(θ) = (cos θ, sin θ)T , ν(θ) = (− sin θ, cos θ)T .
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Fig. 1. Basic leader-follower setup.

II. PROBLEM FORMULATION

The basic leader-follower setup considered in this paper

is presented in Fig. 1. It consists of a leader robot RL and a

follower RF whose kinematics is described by the unicycle

model
ẋL = vL cos θL

ẏL = vL sin θL

θ̇L = ωL

(1)

and
ẋF = vF cos θF

ẏF = vF sin θF

θ̇F = ωF

(2)

where the vectors L = (xL, yL), F = (xF , yF ) represent

the position of the leader and respectively the follower.

Analogously θL, θF are the orientation of the leader and

follower with respect to the reference system (x, y). Finally,

vL, vF and ωL, ωF are the linear and angular velocities of

the robots. With reference to Fig. 1, consider the following.

Definition 1: Set d > 0 and φ : |φ| < π
2 ; the robots RL

and RF make a (d, φ)-formation, if, ∀ t ≥ 0:

‖L(t) − F (t)‖ = d (3)

arg(L(t) − F (t)) − θF (t) = φ . (4)

It is required that the velocities of the leader and the follower

verify the following constraints:

0 < vL ≤ VL

−K ≤ ωL/vL ≤ K
(5)

0 ≤ vF ≤ VF

−ΩF ≤ ωF ≤ ΩF
(6)

lim inf
t→∞

vF (t) > 0

where VL, VF , ΩF ∈ R
+ are the leader and follower

maximum linear velocity and the follower maximum angular

velocity, and K represents the leader trajectory maximum

curvature (note that for a unicycle robot the instantaneous

trajectory curvature is given by ωL/vL).

The first problem we discuss can be stated as follows.

Problem 1 (Exact formation control): Find the condi-

tions on leader motion that guarantee the existence of the

control functions vF , ωF , and an initial state such that RL

and RF make a (d, φ)-formation, that is equations (3) and

(4) hold for all t.
The second problem we deal with, is that of stabilizing

these trajectories.

Problem 2 (Stabilization): Find the conditions on leader

motion and the control functions vF , ωF , such that, start-

ing from an arbitrary initial state, equations (3)-(4) are

asymptotically satisfied.

In Sect. V we extend Definition 1 to multirobot

hierarchical formations (or (D, Φ)-formations) and a

generalization of Problem 1 is discussed.

III. EXACT FORMATION CONTROL

The following Theorem gives a solution to Problem 1.

Theorem 1: In the previous hypotheses and notation, let

d > 0 and φ : |φ| < π
2 be given. For any robot

RL verifying conditions (5) there exist initial conditions

xF (0), yF (0), θF (0) and controls vF (t), ωF (t) such that RL

and RF are in (d, φ)-formation and bounds (6) are verified

if and only if
Kd ≤ 1 (7)

VL K ≤ ΩF (8)

VL cos
(

0 ∨ |φ| − arcsin(Kd cosφ)
)

≤ VF cosφ . (9)

Furthermore vF and ωF are given by

vF = vL

cos(β − φ)

cosφ

ωF = vL

sin β

d cosφ

(10)

where β = θL − θF and, ∀ t ≥ 0

|β(t)| ≤ arcsin(Kd cosφ) . (11)

Proof: see [4], Theorem 1.

Remark 1: From inequality (11) it follows that β is

bounded. This implies the following geometric property

L(t) − F (t) ∈ C
(

θL(t) + φ, arcsin(Kd cosφ)
)

(12)

where ∀ θ, γ ∈ [0, 2π],

C(θ, γ) =
{

x ∈ R
2
∣

∣〈x , τ(θ)〉 ≥ ‖x‖ cosγ
}

is a cone of aperture 2γ centered in the origin, whose sym-

metry axis is given by τ(θ) = (cos θ, sin θ)T (see Fig. 2).

Differently from [5], the followers are not rigidly disposed

with respect to the leader reference frame, but their relative

positions vary in time in suitable cones and only these cones

remain stable with respect to the leader reference frame.

To prove (12) remark that, from (11)

〈L − F , τ(θL + φ)〉 = 〈d τ(θF + φ), τ(θL + φ)〉

= d cosβ ≥ d cos(arcsinKd cosφ).

With respect to the cone, β is the angle between the line

connecting the leader to the follower and the symmetry axis

of the cone.
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IV. STABILIZATION

We now suppose that the leader and the follower start

from arbitrary initial conditions. It is assumed that the leader

velocity is bounded from below by a positive constant V0L,

namely, 0 < V0L ≤ vL ≤ VL. The control strategy consists

of two steps.

In the first step the follower rotates with zero translational

velocity until its direction is sufficiently close to that of

the leader in order to satisfy the condition |β| ≤ αχ,

where αχ is a suitable positive constant. In the second step

the follower performs the control defined in the previous

section with an added stabilizing term in order to reduce the

error asymptotically to zero. The stabilizing term is chosen

accurately in order to satisfy the input bounds (6).

Theorem 2: Suppose that

Kd < 1 (13)

VL K < ΩF (14)

VL cos
(

0 ∨ |φ| − arcsin(Kd cosφ)
)

< VF cosφ (15)

and let χ1, χ2 be any constants such that

Kd < χ1 < χ2 < 1. (16)

Set the following control functions

vF =







0 if |β| > αχ

η 〈E, τ(θF + φ)〉 + vL cos(β − φ)

cosφ
if |β| ≤ αχ

ωF =











sign(β) ΩF if |β| > αχ

η 〈E, ν(θF )〉 + vL sin β

d cosφ
if |β| ≤ αχ

(17)

where η is given by

η =
(ΩF − KvL) d cosφ

|〈E, ν(θF )〉|
∧

(vL χ1 − |ωL|) d cos φ

|〈E, ν(θF )〉|
∧

VF cosφ − vL cos(β − φ)

|〈E, τ(θF + φ)〉|
∧

vL cos(β − φ)

|〈E, τ(θF + φ)〉|
∧ M

(18)

M is a positive constant and E(t) = L(t) − F (t) −
d τ(θF (t) + φ) is the error vector. Then for any initial state

xL(0), yL(0), θL(0), xF (0), yF (0), θF (0), the solution of

systems (1), (2), with vF , ωF given by (17), is such that

limt→+∞ E(t) = 0, (6) hold and there exists t0 ≥ 0, such

that |β(t)| ≤ αχ = arcsin(χ2 d cosφ), ∀ t ≥ t0.

Proof: Let xL, yL, θL, xF , yF , θF be the solution of

systems (1), (2) with vF , ωF given by (17) and initial

conditions xL(0), yL(0), θL(0), xF (0), yF (0), θF (0).
Let A+ = {t |β(t) ≥ αχ} and A− = {t |β(t) ≤ −αχ}.

First it will be shown that
{

β̇(t) < −c, ∀ t ∈ A+

β̇(t) > c, ∀ t ∈ A−
(19)

where c = (ΩF − KVL) ∧ (χ2 − χ1)V0L which is

positive by (14) and (16). In fact, suppose that t0 ∈ A+

and β(t0) > αχ, then, by (17), β̇(t0) = ωL − ΩF ≤
−(ΩF − K VL) ≤ −c if β(t0) = αχ, then, by (17) and (18)

β̇(t0)= ωL(t0) − ωF (t0)

= ωL(t0) −
η(t0)〈E(t0), ν(θF (t0))〉 + vL(t0) sin αχ

d cosφ

≤ −

(

ΩF

VL

vL(t0) − ωL(t0)

)

+
η(t0)〈E(t0), ν(θF (t0))〉

d cosφ

≤ −(χ2 vL(t0) − ωL(t0)) +

+ sign〈E(t0), ν(θF (t0))〉
(

χ1 vL(t0) − |ωL(t0)|
)

≤ −(χ2 − χ1)V0L ≤ −c .

Therefore, by (19) there exists a unique t0 ≥ 0 such that

|β(t)| > αχ, ∀ t ∈ [0, t0) ,

|β(t)| ≤ αχ, ∀ t ≥ t0.

Then by definition of vF , ωF and η, the follower bounds are

satisfied, being ∀ t ≥ t0 (by (17), (18)):

|ωF | ≤
η 〈E, ν(θF )〉+ vL sin αχ

d cosφ
≤ ΩF − KvL + KvL≤ ΩF ,

0≤
−η |〈E, τ(θF + φ)〉| + vL cos(β − φ)

cosφ
≤ VF ≤ vF

≤
η |〈E, τ(θF + φ)〉| + vL cos(β − φ)

cosφ
≤ VF .

Finally, from (18) it follows that

η ≥
ΩF − KVL

‖E‖
∧

(K − χ1)V0L

‖E‖
∧

(VF − cos (0 ∨ arcsin(K d cosφ)) (cos φ)−1) cos φ

‖E‖
∧

V0L cos(φ + αχ)

‖E‖
∧ M =

c

‖E‖
∧ M .

Therefore ∀ t ≥ t0,

˙‖E(t)‖
2
≤ −

(

c ‖E(t)‖−1 ∧ M
)

‖E(t)‖2

which implies that lim
t→∞

‖E(t)‖ = 0.
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V. HIERARCHICAL MULTIROBOT FORMATIONS

This section extends the definition of (d, φ)-formation

given in Sect. II for two robots RL and RF , to hierarchical

multirobot formations and generalizes the results in Sect. III.

Definition 2: Let D = {di : di > 0, i = 1, . . . n},

Φ = {φi : |φi| < π
2 , i = 1, . . . , n} be two sets

of given parameters. Let ni, i = 1, . . . , n be such that

ni ∈ {0, . . . , i − 1}. The set of n+1 robots R0, R1, . . . , Rn

make a (D, Φ)-formation (with leaders R0, Rn1
, . . . , Rnn

)

if ∀ t ≥ 0, for i = 1, . . . , n
(

xni

yni

)

(t) =

(

xi

yi

)

(t) + di τ(θi + φi) . (20)

Note that the structure just introduced with the notion of

(D, Φ)-formation represents a rooted tree in the context

of group theory (see Fig. 3). In particular, if n = 1 and

n1 = 0 we find again the (d, φ)-formation defined in Sect. II,

while if ni = i − 1 for i = 1, . . . , n we obtain a convoy-

like formation. The following result is a generalization of

Theorem 1.

Theorem 3: Let R0 be a robot such that there exist three

constants V0, K−

0 , K+
0 with the property:

0 < v0(t) ≤ V0, K−

0 ≤
ω0(t)

v0(t)
≤ K+

0 , ∀ t ≥ 0 . (21)

Let ni, di, φi be as in Definition 2. Define recursively the

following 2n real extended constants,

K±

i =























(

sign(K±
ni

)
√

1
(K±

ni
)2

− d2
i cos2 φi + di sinφi

)−1

if 1
(K±

ni
)2

− d2
i cos2 φi > 0

sign(K±
ni

) · ∞ if 1
(K±

ni
)2

− d2
i cos2 φi ≤ 0

(22)

i = 1, . . . , n, with the convention that (+1) · ∞ = +∞,

(−1)·∞ = −∞. Let xi, yi, θi, i = 1, . . . , n be the solution

φh

Ph

dh

Pnh
= Pnj

dj

φj

Pj = Pnk

dk
φk

Pk

Fig. 3. Notation used in a sample (D, Φ)-formation: Ph = (xh, yh).

of the following system






























































ẋi = vi cos θi

ẏi = vi sin θi

θ̇i = ωi

vi = vni

cos(βi − φi)

cosφi

ωi = vni

sinβi

di cosφi

xi(0) = x0
i , yi(0) = y0

i , θi(0) = θ0
i

where βi(t) = θni
(t) − θi(t) and x0

i , y0
i , θ0

i are assigned

constants. Suppose that

|K−

ni
| ∨ |K+

ni
| <

1

di

, ∀ i = 1, . . . , n, (23)

then, ∀ i = 1, . . . , n

−∞ < K−

i < K+
i < +∞ . (24)

Furthermore, if the robots are in (D, Φ)-formation at time

t = 0, namely, for i = 1, . . . , n,
(

x0
ni

y0
ni

)

=

(

x0
i

y0
i

)

+ di

(

cos(θ0
i + φi)

sin(θ0
i + φi)

)

where x0
ni

, y0
ni

are assigned values, and

arcsin(K−

ni
di cosφi) ≤ βi(0) ≤ arcsin(K+

ni
di cosφi)

then the formation is held ∀ t ≥ 0, that is equation (20) is

satisfied ∀ t ≥ 0. Moreover ∀ t ≥ 0 the following bounds are

satisfied,

arcsin(K−

ni
di cosφi) ≤ βi(t) ≤ arcsin(K+

ni
di cosφi) (25)

0 < vi(t) ≤ Vi (26)

K−

i ≤
ωi(t)

vi(t)
≤ K+

i (27)

where

Vi =
Vni

cosφi

cos
(

0 ∧ arcsin(K+
ni

di cosφi) − φi

∧ φi − arcsin(K−
ni

di cosφi)
)

.

Remark 2: Since the internal dynamics βi is bounded, the

following generalization of (12) holds,
(

xni

yni

)

(t)−

(

xi

yi

)

(t) ∈ C
(

θni
(t)+ φi, arcsin(K±

ni
di cosφi)

)

where C
(

θni
(t) + φi, arcsin(K±

ni
di cosφi)

)

represents a

cone having right, left semiaperture arcsin(K+
ni

di cosφi),
arcsin(K−

ni
di cosφi) and axis τ(θni

(t) + φi).
Proof of Theorem 3 : The following equation holds,

β̇i = θ̇ni
− θ̇i =

vni

di cosφi

[

ωni

vni

di cosφi − sinβi

]

.

Since, by hypothesis, arcsin(K−
ni

di cosφi) ≤ βi(0) ≤
arcsin(K+

ni
di cosφi), by (23),

arcsin(K−

ni
di cosφi) ≤ βi(t) ≤ arcsin(K+

ni
di cosφi) (28)
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Fig. 4. (a) Trajectory of the robots and cones, (robots are drawn each second); (b) Angle β and bounds ±α; (c) Error vector E.

for any t ≥ 0 and therefore (25) holds. To verify (26), remark

that it is true for i = 0, by hypothesis (21); suppose that it

is true ∀j : 0 ≤ j ≤ i − 1, then it is true for j = i. In fact,

owing to (28) and (23)

vi(t) = vni
(t)

cos(βi(t) − φi)

cosφi

≥
vni

(t)

cos φi

(

|cosβi(t)| cos φi −

|sinβi(t) cosφi|
)

≥vni
(t)
[

√

1−
(

di(|K
−
ni | ∨ |K+

ni |) cosφi

)2

− di (|K−

ni
| ∨ |K+

ni
|) | sin φi|

]

> 0

and

vi(t) = vni
(t)

cos(βi(t) − φi)

cosφi

≤
Vni

cosφi

cos
(

0 ∧ arcsin(K+
ni

di cosφi) − φi

∧ φi − arcsin(K−
ni

di cosφi)
)

.

To verify property (27), remark that it is true for i = 0, by

hypothesis (21); suppose that it is true ∀j : 0 ≤ j ≤ i − 1,

then it is true for j = i. In fact the curvature of the path of

the ith vehicle is given by

ωi(t)

vi(t)
=

sin βi

di cos(βi − φi)
=

1

di(cotβi cosφi + sinφi)
.

Being the function

f(βi) =











1

di [cotβi cosφi + sinφi]
if βi 6= 0

0 if βi = 0

monotone increasing, it follows by (28) that

1

di[cot(arcsin(K−
nidi cosφi)) cos φi + sin φi]

≤
ωi(t)

vi(t)
≤

1

di[cot(arcsin(K+
nidi cosφi)) cos φi + sin φi]

and

1
√

1
(K−

ni
)2

− d2
i cos2 φi + di sin φi

≤
ωi(t)

vi(t)
≤

1
√

1
(K+

ni
)2

− d2
i cos2 φi + di sin φi

(remark that the denominator is not zero since (23) holds)

and the proof of the theorem is over.

VI. SIMULATION RESULTS

Figs. 4 and 5 show the results of the simulation experiments

we carried out to evaluate to the effectiveness of the proposed

control strategies.

In Fig. 4 we used the stabilizing controller presented in Theo-

rem 2. The initial conditions are (xL(0), yL(0), θL(0))T =
(5, 2, π/2)T , (xF (0), yF (0), θF (0))T = (3, 1.5, π/8)T

and the desired values d = 1.2 m, φ = −π/3 rad.

We set vL(t) = 1.5 m
/

s, ωL(t) = − sin(0.9 t) rad
/

s,

K = 1/1.5 = 0.6667 rad
/

m, VL = 1.5 m
/

s, VF = 4 m
/

s,

ΩF = π rad
/

s. With these values, conditions (13)-(15) are

satisfied. The controller parameters are M = 1, χ1 = 0.85,

χ2 = 0.9 (hence condition (16) is verified). Fig. 4(a) shows

the trajectory of RL, RF and a limited portion of the infinite

cones defined in Remark 1. The formation converges to

the desired configuration and RF keeps inside the cones at

steady state. In Fig. 4(b) the time history of angle β (solid)

and bounds ±α (dash) is shown. The error vector E is zero

after about 5 seconds (Fig. 4(c)).

In Fig. 5 we used the control scheme presented

in Theorem 3. Two (D, Φ)-formations are considered:

a convoy-like formation and a tree formation.

The convoy-like formation consists of four robots,

R0, . . . , R3, with n1 = 0, n2 = 1, n3 = 2. At time

t = 0 the robots are in formation. We set v0(t) =
1.2 m/s, ω0(t) = 0.25 rad/s and we chose V0 = 1.2 m/s,

K±

0 = ± 0.25/1.2 = ± 0.2083 rad/m. The desired values

are d1 = 2 m, d2 = 1.5 m, d3 = 1.2 m, φi = π/3 rad,

i = 1, 2, 3. We propagated the curvature bounds according to

equation (22). With these values condition (23) is satisfied
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Fig. 5. Convoy-like formation: (a) Trajectory of the robots and cones; (b) Angles βi and bounds arcsin(K±ni
di cos φi) , i = 1, 2, 3.

Tree formation: (c) Trajectory of the robots and cones.

and inequality (24) holds. Fig. 5(a) shows the trajectory

of the four robots and the cones defined in Remark 2. In

Fig. 5(b) the time history of the angles βi (solid) and bounds

arcsin(K±
ni

di cosφi) (dash), i = 1, 2, 3 is given. Since βi

keep inside the respective bounds, condition (25) is satisfied.

Analogously, vi and ωi/vi satisfy conditions (26), (27).

The tree formation consists of seven robots, R0, . . . , R6,

with n1 = n2 = 0, n3 = n4 = 1 and n5 = n6 = 2. We set

v0(t), ω0(t), V0 and K±

0 as in the previous case. The desired

values are d1 = d2 = 2 m, d3 = d4 = d5 = d6 = 1 m,

φ1 = φ3 = φ5 = −π/4 rad, φ2 = φ4 = φ6 = π/4 rad.

Fig. 5(c) shows the trajectory of the robots and the cones.

The time history of the angles βi, i = 1, . . . , 6, is neglected

being similar to that of the convoy-like formation.

VII. CONCLUSIONS AND FUTURE WORKS

In this paper we study leader-follower formations of

nonholonomic mobile robots and we propose a setup

and a control strategy that are alternative to those exist-

ing in the literature. The formation control problem has

been formalized in a geometric framework able to explain

how the geometric properties of the formation affect the

set of the admissible curvatures of the leader trajectory.

We prove that during the control, the vector connecting the

follower to the leader remains in a given cone centered in

the leader reference frame. Basic results are extended to

hierarchical multirobot formations described by rooted tree

graphs. Simulation experiments show the effectiveness of

our designs.

Future research lines include the experimental validation

of our control strategies and the extension of Theorem 2 to

hierarchical multirobot formations.
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