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Abstract— The paper describes the modeling and control
of a robot with flexible joints (the DLR medical robot),
which has strong mechanical couplings between pairs of joints
realized with a differential gear-box. Because of this coupling,
controllers developed before for the DLR light-weight robots
cannot be directly applied. The previous control approach is
extended in order to allow a multi-input-multi-output (MIMO)
design for the strongly coupled joints. Asymptotic stability is
shown for the MIMO controller. Finally, experimental results
with the DLR medical robot are presented.

Index Terms— flexible joint robots, MIMO design, modal
decoupling based control

I. INTRODUCTION

Joint flexibility becomes significant in most robot designs
which are optimized for a light-weigh and for a high
load/weight ratio. These features are essential for special
robotics fieds such as medical robotics. In cooperation with
industrial partners, a new light-weight robot (Fig.1) has been
developed at DLR, specially customized for medical robotics
applications [3]. The design is inspired from the DLR light-
weight robot (LWRIII) design [16]. The DLR medical robot
is a redundant robot with seven degrees of freedom and
the joints are endowed, in addition to the motor position
sensors, with torque sensors and link side position sensors
which are mounted after the gear-box. In order to obtain
an anthropomorphic robot design, wrist, elbow and shoulder
are realized as coupled joints using a differential gear after
a harmonic drive gear unit for each motor. In this way,
the torque of both motors can be used in the principal

Fig. 1. DLR medical robot with seven degrees of freedom

directions of motion (e.g., the vertical plane), permitting
there the increase of available torque for a given motor
size and thus the reduction of total weight. However, the
strong coupling between the axes do not permit independent
controller design for each joint. The paper extends previous
methods in order to enable and justify a simple MIMO design
for these coupled joints. The method applies to an arbitrary
number of coupled joints.

The topics of flexible joint robot control has be treated
extensively in literature. Some methods, such as feedback
linearization [14], back-stepping [11], [12] or passivity based
adaptive control [11], [6] belong to the standard reference
and provide control solutions which apply for both regulation
and tracking. However, due to their complexity and the
requirement of high derivatives of the link side position,
they have been applied so far only to small experimental
systems with few degrees of freedom. Singular perturbation
controllers [5], [2], [15] can be easily implemented, but are
valid only for limited elasticity and lead to some limitations
of the overall control bandwidth due to their cascaded
nature. A very simple controller was proposed by [4], who
showed that a PD-controller based on motor position and
with additional gravity compensation at the desired position
is globally asymptotically stable. Practically it turns out
however that for robots with considerable elasticity such as
the DLR medical robot, only limited performance can be
achieved if the feedback is restricted only to motor state
variables, without using link side information such as link
position or link torque.

In [1] a regulation controller with full state feedback
(motor position, link side torque, as well as their derivatives)
and gravity and friction compensation was introduced. The
asymptotic stability can be shown based on Lyapunov theory.
This controller was already successfully applied to the DLR
light-weight robots.

Corresponding to this method we introduce a MIMO
controller with full state feedback and gravity compensation
for the DLR medical robot, in order to deal with the strong
joint coupling. The system stability is derived in analogy to
[4] and [1] with a Lyapunov approach.

The content of this paper is structured as follows. In
Sec.2, the model of the DLR medical robot with its coupled
joints is described. Next, the design of a MIMO controller
with gravity compensation based on modal decomposition is

2007 IEEE International Conference on
Robotics and Automation
Roma, Italy, 10-14 April 2007

FrB10.4

1-4244-0602-1/07/$20.00 ©2007 IEEE. 3824



introduced in Sec. 3. In Sec. 4, the stability of the system is
analyzed. Finally, in Sec. 5, identification results as well as
experimental results with the MIMO controller are presented
and discussed.

II. MODELLING OF THE MEDICAL ROBOT

The DLR medical robot has seven degrees of freedom and
its kinematics was specially designed for the workspace of
a surgical application. While the first joint is very similar
to a LWRIII joint, a coupled design was chosen for the
joints 2-3, 4-5, 6-7. As a consequence of the coupling,
a movement of one robot joint has to be realized by the
coordinated movement of two actuators. A schematic view
for the coupling gears is shown in Fig. 2. The differential
gear-box is composed of three conical gears. Ignoring the
elasticity, the effect of the gear-box can be described by the
following transformations for the positions

θi = Tiθm,i . (1)

For the torques, one has:

τm,i = T T
i τi (2)

with

Ti =
[ 1

2
1
2

− 1
2

1
2

]
. (3)

The motor position is denoted herein by θm,i, while θi is the
same position expressed in link coordinates. It is important
to note the difference between the motor position expressed
in link coordinates θi and the link side position, which will
be denoted by qi. While θi represents the same system state
as θm,i only written in another coordinate system, the second
value qi is a different state variable, representing the position
of the link after the joint elasticity. It can be also expressed in
motor or link coordinates. The coordinate system will always
be denoted by a subscript, a missing subscript denotes link
coordinates. Accordingly, τi and τm,i are the joint torques
expressed in link and motor coordinates respectively. While
the elasticity of joint 1 stems merely from the harmonic drive
gear, for the coupled joint one has the additional elasticity
of the differential gear.

For the modelling of the entire medical robot, the follow-
ing flexible joint model is used:

um = Jmθ̈m +TT(τ +DK−1
τ̇)+ τfric,m (4)

τ +DK−1
τ̇ = M(q)q̈+C(q, q̇)q̇+g(q) (5)
τ = K(Tθm−q) (6)

Fig. 2. Structure of the differential gear-box.

The transformation matrix for the entire robot is expressed
as

T =


1 ... 0

Ti
... Ti

...
0 ... Ti

 ∈ R7x7,∀Ti ∈ R2x2 (7)

In these equations all quantities are expressed in those
coordinates, in which they are measured or determined by
identification. Therefore the first, motor side equation is
expressed mainly in motor coordinates, while the link side
dynamics is written in link coordinates. The joint torque
vector τ ∈Rn is defined by the linear relation τ = K(Tθm−
q) = K(θ − q). The matrices K ∈ Rnxn and D ∈ Rnxn are
positive definite matrices which in a quite general form have
a block diagonal structure for the medical robot.

P =


P1 ... 0

P2
... P4

...
0 ... P6

 (8)

P1 ∈ R,Pi ∈ R2x2 with i = {2,4,6}, P = {K,D}

Jm is a diagonal matrix containing the motor inertias. Further
on, M(q), C(q, q̇) and g(q) are the mass matrix, the vector
of Coriolis and centrifugal terms and the gravity term of the
rigid robot dynamics. The motor torque vector um is the input
quantity for the controller. τfric,m is the motor side friction
vector.

The following properties of the robot model will be used
in this paper:

E.1 The mass matrix is symmetric and positive definite

M(q) = M(q)T > 0 ∀q ∈ Rn (9)

and the eigenvalues λ satisfy:

λm ≤ ‖M(q)‖ ≤ λM (10)

E.2 The matrix Ṁ(q)−2C(q, q̇) is skew symmetric and
satisfies:

xT (Ṁ(q)−2C(q, q̇))x = 0 ∀x,q, q̇ ∈ Rn (11)

E.3 The gravity torque g(q) is given as the gradient of a
potential function Ug(q) so that g(q) = ∂Uq(q)/∂q
and there exists a real number α > 0, such that:

‖g(q1)−g(q2)‖≤α‖q1−q2‖ , ∀ q1,q2 ∈Rn (12)

holds, implying

‖Ug(qd)−Ug(q)+(q−qd)T g(qd)‖ ≤
1
2

α‖q−qd‖2

(13)
E.4 The friction torque τ f ric,m(θ̇) is expressed by the

following relation [1], [13]

τ f ric,m =


Min[um,( fc + µ | τm |)sign(um)],

i f | θ̇m |≤ ε

( fc + µ | τm |)sign(θ̇m)+ fvθ̇m,
i f | θ̇m |> ε

(14)
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Herein fc is the Coulomb friction and fv the viscous
friction component. µ is the coefficient of the load
dependent friction. ε is a small constant.

For compensation of the friction, a disturbance observe is
used, which is however not topic of this paper. Exact friction
compensation will be assumed in the following analysis. The
analysis of the friction effects on the convergence can be
found in [1].

III. CONTROLLER DESIGN

In this section, a MIMO controller for the coupled joints
will be designed based on the modal analysis approach. This
approach makes use of the following lemma regarding the
double diagonalization of two matrices:
Lemma (Decomposition of symmetric matrices): Given a
symmetric matrix A, and a symmetric, positive definite matrix
B, there exists an invertible matrix Q, such that A = QQT

and B = QCQT holds, with the matrix C being diagonal.
As known from modal analysis, a mechanical system of

the form

f = Mẍ+Kx (15)

can be transformed using previous lemma into so called
modal coordinates, in which the system is decoupled. The
mass matrix M = QMQQT and the stiffness K = QQT are p.d.
and symmetric, with MQ diagonal. The vector f represents
a generalized force acting on the system and x is the state.
In modal coordinates we have

fQ = MQẍQ + xQ . (16)

with xQ = QT x and fQ = Q−1 f A SISO design can now be
done for each decoupled sub-system.

In order to apply the idea to the flexible joint robot, let us
rewrite (4) in link coordinates.

u = Jθ̈ + τ +DK−1
τ̇ (17)

with θ = T θm (18)
u = T−T (um− τ f ric,m) (19)

J = T−T JmT−1 (20)

Notice that transformations of the type (20) are congruence
transformations, preserving symmetry and positive definite-
ness of the matrices. In general, however, J is not diagonal
any more.
Let us consider for a linear control design the linearized
model of a coupled joint i around a worst case position:

ui = Jiθ̈i + τi +DiK−1
i τ̇i

τi +DiK−1
i τ̇i = Miq̈i (21)

Again Ki ∈ R2x2, Di ∈ R2x2, Ji ∈ R2x2 and Mi ∈ R2x2 are
symmetric, positive definite matrices, with i={2,4,6}1. It
follows that a coupled, 8th order systems with two inputs
is obtained for a coupled joint. The coupling is given by the
matrices Mi, Ki, Di and Ji.

1i={2,4,6} for coupled joint {2-3}, {4-5}, {6-7}.

Notice at this point that the model contains four matrices,
namely Ji, Ki, Di, Mi, out of which only two can be
diagonalized simultaneously, e.g, Ki and Mi. In order to
be able to diagonalize the entire system, we first make the
assumption Di = λDKi, with λD being a scalar, depending on
material properties. As it will become clear in the stability
analysis, stability is preserved however also for different p.d.
matrix Di, so the error related to this approximation may
affect only the transient performance. Furthermore, using the
following torque controller2:

ui = Ji(λJKi)−1wi +(I− Ji(λJKi)−1)(τi +DiK−1
i τ̇i), (22)

one can bring the motor inertia Ji to the form λJKi with λJ
being a scalar. The vector wi is a new control input and I ∈
R2x2 is the unit matrix. One obtains with this first controller
the following system equations:

wi = λJKiθ̈i + τi +λDτ̇i

τi +λDτ̇i = Miq̈i (23)

Now it is possible to decouple the flexible joint using a
modal transformation. One obtains for this worst case design
constant control parameters for a linear controller. However,
stability can be ensured for the complete nonlinear system
which provides a good performance in the entire workspace.
Following the double diagonalization lemma, there exists a
matrix Qi ∈ R2x2, such that{

Ki = QiQT
i

Mi = QiMQ,iQT
i

(24)

holds, with MQ,i p.d. and diagonal. By substituting (24) into
(23) one obtains:{

wQ,i = λJ θ̈Q,i +(θQ,i−qQ,i)+λD(θ̇Q,i− q̇Q,i)
(θQ,i−qQ,i)+λD(θ̇Q,i− q̇Q,i) = MQ,iq̈Q,i

(25)

with 
θQ,i = QT

i θi
qQ,i = QT

i qi

wQ,i = Q−1
i wi

(26)

The system (25) is decoupled, since the matrix MQ,i is
diagonal. For the decoupled subsystems the controller is
chosen in the following form:

wQ,i = KPQ,iθ̃Q,i−KQD,iθ̇Q,i−KQT,i(θQ,i−qQ,i)
−KQS,i(θ̇Q,i− q̇Q,i) (27)

with θ̃Q,i = θQd,i − θQ,i. The matrices KPQ,i ∈ R2x2,KDQ,i ∈
R2x2,KT Q,i ∈ R2x2,KSQ,i ∈ R2x2 are diagonal. From (26) one
obtains by transforming back into link coordinates:

wi = KP,iθ̃i−KD,iθ̇i−KT,iK−1
i τi−KS,iK−1

i τ̇i (28)

with 
KP,i = QiKPQ,iQT

i
KD,i = QiKDQ,iQT

i
KT,i = QiKT Q,iQT

i
KS,i = QiKSQ,iQT

i

(29)

2Torque feedback can generally be interpreted as scaling of the kinetic
energy of the rotor [17].
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All the involved matrices are now symmetric. This is required
for the stability analysis in next section.
With the controller (22) applied to all joints (21) leads to the
following new system equations for the entire medical robot:

w = λJKθ̈ + τ +DK−1
τ̇ (30)

τ +DK−1
τ̇ = M(q)q̈+C(q, q̇)q̇+g(q) (31)
τ = K(θ −q) (32)

Finally, the complete controller for the robot has the follow-
ing form in link coordinates:

w = KPθ̃ −KDθ̇ −KT K−1
τ −KSK−1

τ̇

+(K +KT )K−1g(qd) (33)

with θ̃ = θd −θ . The control gain matrices KC are positive
definite and symmetric

KC =


KC,1 ... 0

KC,2
... KC,4

...
0 ... KC,6

 (34)

KC,1 ∈ R, KC,i ∈ R2x2 with i = {2,4,6}
C ∈ {P,D,T,S}

IV. STABILITY ANALYSIS

A. Choice of the Lyapunov function

Following lemma will be used for the analysis:
Lemma (positive definite symmetric Matrix): Given is a
symmetric matrix A:

A =
[

A11 A12
AT

12 A22

]
(35)

such that every submatrix Aij is quadratic. Matrix A is posi-
tive definite, if A11 is positive definite and A22 ≥AT

12A−1
11 A12

holds.
For proof of stability, we slightly rewrite the equations

(30,31,32):

w = λJKθ̈ +K∆+D∆̇ (36)
K∆+D∆̇ = M(q)q̈+C(q, q̇)q̇+g(q) (37)

Herein ∆ is used for ∆ = θ −q. The controller (33) is now
given by

w = KPθ̃ −KDθ̇ −KT ∆−KS∆̇+
(K +KT )K−1g(qd) (38)

For a given desired link position qd the corresponding motor
position θd is given by

θd = qd +K−1g(qd) (39)

By choosing P = [θ , θ̇ ,q, q̇]T as a state vector of the system
(36,37) with the controller (38), then an equilibrium point
P = [θo,0,qo,0]T must satisfy the equilibrium equations:

KP(θd −θo)− (K +KT )(θo−qo)
+(K +KT )K−1g(qd) = 0
K(θo−qo) = g(qo)

(40)

Obviously, P = Pd = [θd ,0,qd ,0]T satisfies these equations.
The following Lyapunov function candidate is chosen:

V (θ , θ̇ ,q, q̇) =
1
2

θ̇
T K(K +KT )−1

λJKθ̇ +
1
2

q̇T M(q)q̇

+
1
2
(θ̃ − q̃)T K(θ̃ − q̃) (41)

+
1
2

θ̃
T K(K +KT )−1KPθ̃

+Ug(q)−Ug(qd)+ q̃T g(qd)

with q̃ = qd − q. This function contains in addition to the
motor and link side kinetic energy also the potential energy
related to the gravitational vector and to the joint elasticity.
Furthermore, the potential energy of the controller is consid-
ered.

B. Stability of the SISO-controller

If it is assumed that all matrices J, M, K, D for parameter
design in Sec. III are diagonal in link coordinates, then these
coordinates are the modal coordinates already, leading to
diagonal gain matrices KP, KD, KT , KS. Then a SISO design
can be done for all joints in link coordinates. The stability
conditions [1] are given by

KP,i > 0 (42)
Ki +KTi > 0 (43)

α < Ki (44)

α <
KiKP,i

KP,i +KT,i +Ki
(45)

KD,i >
(KS,iKi−KT,i)2

4KiDi(KT,i +Ki)
(46)

The values KP,i, KD,i, KT,i, KS,i, α, Ki and Di are scalars
with i=1..n. The equations (42), (43) are obviously fulfilled.
Condition (44) requires that the joint stiffness is high enough
for sustaining the robot in the gravity field when motors
are fixed and is certainly fulfilled for any practically useful
robot. Similarly, condition (45) requires that the stiffness of
the controlled system can sustain the robot against gravity
when a fixed desired position is commanded [1]. This is
also generally fulfilled for a position controller. Finally,
the last condition (46) requires enough controller damping,
corresponding to the other controller and plant parameters.

C. Stability of the MIMO-controller

For the coupled joints we consider KP,i, KD,i, KT,i, KS,i ∈
R2x2 with i={2,4,6}. In Sec. III it was shown that the matrices
KP,i, KD,i, KT,i, KS,i are positive definite and that there exist
a matrix Qi ∈ R2x2 such that the conditions (29) are fulfilled
and {

Ki = QiQT
i

Di = λDKi = λDQiQT
i

(47)

Furthermore, it follows for the coupled joint that{
Ki(Ki +KT,i)−1λJKi = λJQi(I +KT Q,i)−1QT

i
Ki(Ki +KT,i)−1KP,i = Qi(I +KT Q,i)−1KPQ,iQT

i
(48)
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are symmetric and positive definite. From property (E.3) it
follows:

V (θ , θ̇ ,q, q̇) ≥ 1
2

θ̇
T K(K +KT )−1

λJKθ̇ +
1
2

q̇T M(q)q̇

+
1
2
(θ̃ − q̃)T K(θ̃ − q̃) (49)

+
1
2

θ̃
T K(K +KT )−1KPθ̃ − 1

2
q̃T

α q̃

Herein M(q) and K(K + KT )−1λJK are positive definite
from (E.1) and (48). In order to show that V is positive for
P 6= Pd , one has to show the positive definiteness of following
function:

V1 =
1
2
(θ̃ − q̃)T K(θ̃ − q̃) (50)

+
1
2

θ̃
T K(K +KT )−1KPθ̃ − 1

2
q̃T

α q̃ > 0

For the DLR medical robot V1 can be divided into a sum
of independent sub-functions for each simple and coupled
joint:

V1 = ∑
i=1,2,4,6

V1i > 0 (51)

If (42,43,44,45) hold, then V11 is positive definite for the
simple joint. For the coupled joints i with i={2,4,6} V1i is
positive definite, if the Hessian of V1i is positive definite.
The Hessian is given by

H(V1i) =
1
2

[
Ki +Ki(Ki +KT,i)−1KP,i Ki

−Ki Ki−αI

]
> 0

(52)
Since Ki +Ki(Ki +KT,i)−1KP,i are positive definite from (48),
it follows that H(V1i) is positive definite, if the condition

Ki−αI > Ki[Ki +Ki(Ki +KT,i)−1KP,i]−1Ki (53)

or, equivalently,

αI < Ki(Ki +KT,i +KP,i)−1KP,i

= Qi(I +KT Q,i +KPQ,i)−1KPQ,iQT
i (54)

(See Appendix 1) is fulfilled.
The derivative of the Lyapunov functions along the system

trajectory is:

V̇ = θ̇
T K(K +KT )−1

λJKθ̈ + q̇T M(q)q̈

+
1
2

q̇T Ṁ(q)q̇+(θ̃ − q̃)T K(−θ̇ + q̇)

−θ̃
T K(K +KT )−1KPθ̇

+q̇T g(q)− q̇T g(qd) (55)

With (36,37) and (38) substituted in (55), one obtains:

V̇ = θ̇
T K(K +KT )−1[KPθ̃ −KDθ̇ −KT ∆−KS∆̇

+(K +KT )K−1g(qd)−K∆−D∆̇]

+q̇T [K∆+D∆̇−C(q, q̇)q̇−g(q)]+
1
2

q̇T Ṁ(q)q̇

−(∆d −∆)T K∆̇− θ̃
T K(K +KT )−1KPθ̇

+q̇T g(q)− q̇T g(qd) (56)

From (E.2) it follows:

V̇ = −θ̇
T K(K +KT )−1KDθ̇ − θ̇

T K∆

−θ̇
T K(K +KT )−1(KS +D)∆̇

+θ̇
T g(qd)+ q̇T K∆+ q̇T D∆̇−∆

T
d K∆̇

+∆
T K∆̇− q̇T g(qd) (57)

With the choice (39) it follows ∆d = K−1g(qd). By substi-
tuting in (57) it follows:

V̇ = −θ̇
T K(K +KT )−1(KD +KS +D)θ̇ − q̇T Dq̇

+q̇T Dθ̇ + θ̇
T K(K +KT )−1(KS +D)q̇ (58)

V̇ can be decomposed in terms related to each subsystem.

V̇ = ∑
i=1,2,3,4

V̇i < 0 (59)

The condition for the negative definiteness of the term related
to the first joint was derived in (46). In order to have
negative definiteness of V̇i with i={2,4,6} it is required that
the Hessian H(−V̇i) is positive definite.

H(−V̇i) =
[

dv11 dv12
dv12 dv22

]
(60)

with
dv11 = Ki(K +KT,i)−1(KD,i +KS,i +Di)
dv12 =− 1

2 [Ki(K +KT,i)−1(KS,i +Di)+Di]
dv22 = Di

(61)

or
dv11 = Qi(I +KQT,i)−1(KQD,i +KQS,i +λDI)QT

dv12 =− 1
2 Qi[(I +KQT,i)−1(KQS,i +λDI)+λDI]QT

dv22 = λDQiQT
(62)

Since matrix Di = λDKi was assumed in (47). In order to
ensure positive definiteness of H(−V̇i) one needs

dv2,2 > dv1,2 ∗ (dv1,1)−1 ∗dv1,2 (63)

or, equivalently,

4λDI > [(I +KQT,i)−1(KQS,i +λDI)+λDI] (64)
(KQD,i +KQS,i +λDI)−1[KQS,i +2λDI +λDKQT,i]

It can be easily verified that the conditions (54) and (64)
correspond to (45,46) when reduced to the scalar case,
thus having similar interpretation. The asymptotic stability
follows from the invariance principle of Krasovskii-LaSalle.
The system converges to the largest invariant set contained
in the subspace P = [θ ,0,q,0]T . This set is given by

KPθ̃ − (KT +K)(θ −q)+(K +KT )K−1g(qd) = 0 (65)
K(θ −q) = g(q) (66)

With θd from (39) and θ from (66) substituted in (65), one
obtains the equilibrium equations:

g(qd)−g(q) = K[KP +KT +K]−1KP(q−qd) (67)

For P 6= Pd and from (12) the following relations follow

‖ g(qd)−g(q) ‖ = ‖ K[KP +KT +K]−1KP(qd −q) ‖
≤ α ‖ qd −q ‖ (68)
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TABLE I
PARAMETERS FOR THE SISO EXPERIMENT IN JOINT 4-5

Achse 4 Achse 5
J 0.2984 0.2984 Kgm2

M 0.6807 0.0057 Kgm2

Max−g(q) 18.076 0.0 Nm
k 2976 2815 Nm/rad
d 3.89 1.0 sNm/rad
fc 4.4459 3.3386 Nm
fv 3.8197 3.1624 sNm/rad

Regarding (54) it follows that the equality is fulfilled only
if q = qd . Consequently, P = Pd , i.e. the point [θd ,0,qd ,0] is
globally asymptotically stable.

V. EXPERIMENTS

In this section two experiments are described. The first
plots show the identification results for motor constant, the
friction and the elasticity. Each coupled joint was identified
separately on a joint testbed. The parameters for joint 4-5 in
the SISO approximation are given in table I.

The results of the identification for the coupled joints
4-5 are shown by comparing the measurements with the
simulation in Fig. 3 and Fig. 4. One can see that the desired
current as well as the measured torques, motor positions and
motor velocities fit well to the simulated values.

The figures 5 and 6 compare the results of the SISO and
the MIMO controller. In Fig. 5 it can be seen that the torque
of joint 5 has less noise and the torque of joint 4 has a faster
response time for the MIMO controller. The position and
velocity errors can be seen in Fig 6. Especially for motor 4,
the error of the MIMO controller is considerably lower.

VI. CONCLUSIONS

In this paper, a MIMO state feedback controller has been
designed trough modal decomposition for the DLR medical
robot in order to deal with the high coupling between the
robot joints. The asymptotic stability was shown based on
Lyapunov theory. The experiments validated the performance
of the MIMO controller.
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VII. APPENDIX

From the positive definiteness condition of the Hessian V2i
(53) one reaches (54) through the following steps:

K−αI−K[I +(K +KT )−1KP]−1

= K−αI−K[K +KT +KP]−1(K +KT ±KP)
= −αI +K[K +KT +KP]−1KP (69)

Fig. 3. Comparison of current and torque between simulation and SISO
controller
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Fig. 4. Comparison of position and velocity between simulation and SISO
controller

Fig. 5. Comparison of current and torque between MIMO controller and
SISO controller

Fig. 6. Comparison of position error and velocity error between MIMO
controller and SISO controller.
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