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Abstract— This paper studies the problem of generating
optimal joint trajectories for redundant manipulators when
multiple criteria need to be considered and proposes a novel
approach based on Dynamic Programming and the use of the
Pareto optimality condition. The drawbacks of the traditional
weighting method in optimization for generating the Pareto
optimal set are discussed and an alternate approach using
dynamic programming is proposed. The two approaches are
implemented on the model of a 7-DOF redundant manipulator
with the end-effector moving along a prescribed trajectory,
while the joint trajectories are required to minimize two
particular criteria. The results illustrate that the dynamic
programming approach provides a better approximation of
the Pareto optimal set and a more flexible and predictable
framework to control the objective vectors.

I. INTRODUCTION

By definition, a manipulator is said to be redundant
when it possesses more degrees of freedom than those
required to execute a prescribed task. As a result, the
number of possible joint trajectories performing this task
is in general infinite. Redundancy resolution is the process
of selecting one of these solutions, which is generally done
by optimizing a performance criterion. The optimization
problems arising from redundancy resolution involve
functions of robot variables such as joint configurations,
joint speeds, or joint torques. Therefore, they have naturally
been formulated within the framework of optimal control
theory for continuous-time systems or calculus of variations.
Since the introduction of optimal control theory [8] and
calculus of variations [6] for redundancy resolution, the
research has primarily focused on the inclusion of different
types of constraints and development of effective and
sophisticated numerical algorithms. Recently, an optimal
control formulation [5] has been proposed, which uses
the joint torques as the control inputs and the joint torque
limits, end-effector path, and workspace obstacles as
constraints. This problem is then solved by using the
negative formulation of Pontryagin’s Maximum Principle.
A variational formulation has been proposed in [9] with
kinematic compliant constraints and is solved via Newton
iterations on a discretized Lagrange function. In these
works, only a single criterion or a linear combination of
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multiple criteria is considered.

In complex applications such as the one presented
in this paper, naturally come several criteria that are to
be considered for optimization concurrently. The most
common method to solve multiple criteria problem is the
weighting method [6], [9], [10], [11], which consists of
linearly combining the criteria with some weights, hence
transforming the original problem into a single criterion
problem. However, this approach suffers from several major
drawbacks [4]. In particular, it is difficult to predict the
variation of the criteria for the optimal solution as the
weights vary, which might sometimes show the opposite
variation as expected. This problem is illustrated for a
specific task with two criteria to be executed by the model
of the 7-DOF redundant manipulator which is part of a
Captive Trajectory Simulation (CTS) system installed inside
a supersonic wind tunnel, as described in Section 2.

In this paper, we propose to use Dynamic Programming
[2] to the manipulator redundancy resolution problem
with multiple criteria. By implementing the optimality in
a multiple criteria sense, i.e. using the Pareto optimality
condition, at each stage of the dynamic programming
process, it is possible to avoid the use of the weighting
method and its associated drawbacks. Pareto optimality
refers to the condition where it is not possible to find a
direction that all criteria can be improved concurrently.
This new approach has been successfully implemented on
the two-criteria task, as mentioned above, resulting in a
good sampling of the Pareto optimal set for the 7-DOF
manipulator.

This paper is organized as follows. Section 2 describes
the Captive Trajectory Simulation (CTS) system and the
redundant manipulator involved in this system as well as
the task and the two criteria used for this study. In section
3, a variational formulation with linearly combined criteria
for redundancy resolution is used. The important drawbacks
associated with the weighting method are also highlighted.
Section 4 starts by proposing a dynamic programming
approach with linearly combined criteria for redundancy
resolution and shows how the results compare to those of the
variational formulation. Then this approach is expanded by
implementing the Pareto optimality condition at each stage
of the dynamic programming process and the results are
presented. Section 5 concludes the findings and proposes
future work.
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II. PROBLEM DEFINITION
The 7-DOF manipulator used in this paper is modeled

after a Captive Trajectory Simulation (CTS) system with the
objective of emulating the store (any object released from
an aircraft) trajectory. This manipulator, operating within a
supersonic wind-tunnel as illustrated in Fig. 1, holds, as its
end-effector, the model of a store mounted on a sensitive
force sensor. The significance of this setup is its ability in
reproducing the scaled version of aerodynamic loads acting
on the store in the vicinity of the aircraft model, where the
aerodynamic interference is extremely complex and almost
impossible to model. The role of the robot is to provide the
desired position and orientation for the store with respect
to the parent aircraft model. However, the presence of the
manipulator in this area is undesirable as it disturbs the flow
properties around the aircraft and can also impose additional
disturbing loads on the manipulator links. Therefore, it is
desirable to have the main body of the manipulator as far
as possible from the interference region. This is possible
by keeping one of the aerodynamically-shaped upper links
(Gooseneck) as vertical as possible when the manipulator
operates underneath the wing of the airplane model. This
constitutes one of the two criteria used in this study. The
other criterion is the commonly used joint speed norm.
Further details about the CTS systen in wind-tunnel can be
found in [1].

Fig. 1. The CTS manipulator inside the wind tunnel.

The manipulator has a box-shaped 6-DOF task space
as illustrated in Fig. 1. An attractive characteristic of this
manipulator is the existence of a closed form for its inverse
kinematics which is valid within the task space. For the
sake of brevity, the details of the closed form expression are
omitted, but can be stated in a generic form for a manipulator
with one degree of redundancy as

q = g(p, u), (1)

where q is a 7-dimensional vector denoting the joint con-
figuration, p a 6-dimensional vector denoting the position

and orientation of the end-effector, and u is the redundancy
parameter. Differentiating (1) yields

q̇ = G(q)ṗ + N(q)u̇, (2)

where G(q) is a 7 × 6 matrix and N(q) a 7-dimensional
vector representing the null space of the manipulator
Jacobian. The existence of the closed form solution is key
for the developments in Sections 3 and 4.

The problem considered in this paper is for the end-
effector to go from a given initial pose p0 at time t0 to a
given final pose pf at time tf via a smooth known trajectory
p(t) in Cartesian space. The initial joint configuration q0

is supposed to be known. Mathematically, the two criteria
considered can expressed as f1 = 1/2‖q̇(t)‖2 for the
joint speed norm and f2 = f2(q(t)) for the aerodynamic
interference cost function.

III. VARIATIONAL FORMULATION WITH THE
WEIGHTING METHOD

The problem described above can be formulated as a
problem in calculus of variation where criteria are linearly
combined to form a single criterion [6]. With this framework,
the objective is to find the optimal joint trajectory q(t) that
minimizes the integral cost Jw or find

Jw = min
q(t)

∫ tf

t0

f1(q̇(t)) + wf2(q(t))dt, (3)

subject to the manipulator kinematic constraint

f(q(t)) = p(t), (4)

and the boundary conditions

q(t0) = q0, p(tf ) = pf , (5)

where f is the forward kinematics mapping, and w the
weight associated with the second criterion.

It can be shown that the necessary Euler-Lagrange
conditions for optimality yield a system of eight ordinary
differential equations in (q, λ) [6], where λ is a scalar.
These differential equations can be written analytically
for our manipulator because of the existence of an
analytical expression for the null space N(q) of the
manipulator Jacobian. This improves the accuracy and
speed of computations. The added necessary conditions
for optimality arising from the boundary conditions (5)
are q(t0) = q0 and λ(tf ) = 0 [6]. At this point, it can
be observed that the resulting two point Boundary Value
Problem (BVP) reduces to a one dimensional search: find
λ(t0) such that λ(tf ) = 0, which makes easy the process of
obtaining all the stationary solutions, i.e. finding solutions
satisfying the Euler-Lagrange conditions for optimality.

To analyze the behavior of the weighting method,
we propose to plot the values of the functionals
F2 =

∫ tf

t0
f2(q(t))dt versus F1 =

∫ tf

t0
f1(q̇(t))dt for

the stationary solutions as the weight varies. Note that there
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might be more than one stationary solution for a given
weight as illustrated for w = 0 below. Fig. 2 presents the
resulting curve denoted by C. Any point z = (F1, F2) on C
is termed an objective vector. The objective vectors “o” in
Fig. 2 have been obtained for a uniform distribution of the
weight over the interval [−10, 20].

Fig. 2. F2 versus F1 for the stationary solutions as the weight w varies
between −10 and 20.

The discussion on the weighting method is primarily
based on the following important geometric observation.
For a given weight, there exists a stationary solution when
the line with the slope −1/w is tangent to C. For example,
when only the first criterion is considered, i.e. when w = 0,
the vertical line is tangent to C at three different objective
vectors z1, z2 and z3 as seen in Fig. 2. It can be noticed
that z1 corresponds to the global minimum and z3 to a local
minimum while z2 corresponds neither to a minimum nor a
maximum.

Numerical algorithms for calculus of variations and op-
timal control mostly rely on the first order necessary con-
ditions (respectively Euler-Lagrange and Pontryagin’s Maxi-
mum Principle) and as a result, do not guarantee a minimum.
For example, for w = 0, z2 could be a solution and
increasing the weight has the opposite effect on F2 as
expected. The source of this problem is the failure of the
numerical algorithm to capture a minimum and not the
weighting method itself. However, if we assume that the
numerical algorithm is able to generate a minimum, still two
major problems can be identified:

• By changing the weights continuously, it is possible
to jump from one part of C to another. For example,
for w = 0, z1 could be the optimal solution. By
increasing the weight, the minimum (local) objective
vector moves along C downwards until z4 is reached.
At z4, although it is not quite obvious in Fig. 2,

the tangent starts to lie above C and as a result, the
corresponding objective vector is not a minimum. On
the other hand, a unique minimum can be found near z3.

• A uniform distribution of the weight does not neces-
sarily result in a uniform distribution of the objective
vectors. This can be seen in Fig. 2 where the objective
vectors “o” are not equally spaced on C. It is also
possible that at some point on C, small changes in
weight result in drastic changes in objective vector
(for example, between z1 and z4). On the other hand,
it might be possible that for some points, even large
changes in weight would not result in any noticeable
changes in objective vector (for example, near z3). The
geometric justification of this fact is that the curvature
of C is not constant, confirming the non Lipschitz nature
of objective vectors as a function of weights, as stated
in [7].

In light of the above discussion, we can see the difficul-
ties of controlling the objective vector using the weighting
method. These difficulties have already been reported in the
multiple criteria research community [4].

IV. IMPLEMENTING THE PARETO OPTIMALITY
CONDITION WITH DYNAMIC PROGRAMMING

In the first part of this section, we show how the same
global minimum to the variational problem (3)-(5) (corre-
sponding to z1) can be obtained using a dynamic program-
ming approach. In order to reduce the search space, joint
limits and joint speed limits are introduced:

qmin ≤ q(t) ≤ qmax, (6)

q̇min ≤ q̇(t) ≤ q̇max. (7)

However, only joint trajectories far from these limits will
be considered for comparison purposes.

Dynamic programming has already been used to generate
time optimal joint trajectories for nonredundant manipulators
[11], [3] or for known joint paths [10]. We follow, here, the
same approach except that the end-effector path parameter
is replaced by the redundancy parameter u as the state of
the system. The closed-form inverse kinematics (1) and its
differential form (2) can be substituted in (3)-(5) as well as in
the constraints (6)-(7) to get the equivalent one-dimensional
variational problem:

Jw = min
u(t)

∫ tf

t0

Φw(t, u(t), u̇(t))dt, (8)

subject to
u(t) ∈ A(p(t)) = A(t), (9)

u̇(t) ∈ B(u(t),p(t), ṗ(t)) = B(t, u(t)), (10)

and the boundary conditions

u(t0) = u0, u(tf ) ∈ A(tf ), (11)
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where A(t) and B(t, u(t)) represent, respectively, the admis-
sible values of the redundancy parameter and its derivative
at time t. Problem (8)-(11) might be solved by numerical
resolution of the Hamilton-Jacobi-Bellman (HJB) partial
differential equation [3], or by stating its discretized version
as a discrete dynamic programming problem [10], [11]. The
latter approach is preferred for its simplicity, which yields:

JN
w (u0) = min

{ui,i=0..N}

N∑
i=1

Φw(i, ui, u̇i)τ, (12)

subject to
ui ∈ Ai, (13)

u̇i ∈ Bi(ui), (14)

using the Euler approximation for the derivative:

u̇i =
(ui − ui−1)

τ
, (15)

and the boundary conditions

uN ∈ AN , (16)

where τ is the discretization step time, N = [ tf−t0
τ ] is the

number of steps, ui = u(iτ), and JN
w (u0) the minimum

performance criterion at step N for a joint trajectory (i.e. a
sequence of uk) starting from u0. It is now possible to apply
the Bellman optimality principle [2] to obtain:

Jk
w(u0) = min

uk−1∈A′
k−1

Φw(k, uk, u̇k)τ + Jk−1
w (u0) (17)

where k = 1 . . . N and

A′
k−1 = Ak−1∩{uk−1 |

(ui − ui−1)
τ

∈ Bk(uk), uk ∈ Ak}.

The dynamic programming equation (17) could also be
formulated through the common approach of using a return
function, defined as the minimum performance criterion
reaching the final state, but in this case, the two approaches
result in the same solution. Finally, to solve (17), we propose
the following algorithm:

• Stage 1: build a grid in the (t, u) space. Calculate q
at each node of the grid with the closed-form inverse
kinematics (1). Discard the node if the resulting q
does not satisfy the joint limits (6). Set the minimum
performance criterion to infinity for each node (k, uk,i)
left.

• Stage 2: at step k, iterate over all uk,i. For each uk,i,
find all the nodes (k + 1, uk+1,j) such that u̇k+1,j

satisfies (14), with u̇k+1,j being calculated with the
Euler approximation (15). Calculate the performance
criterion and compare this performance criterion with
the current minimum performance criterion. Replace the
current minimum performance criterion if it is higher
and set the node (k, uk,i) as the predecessor.

• Stage 3: Repeat until step N − 1 is reached.
• Stage 4: Take the minimum of the minimum perfor-

mance criterion at step N .

Stage 4 has been introduced because Euler integration (15)
does not allow the algorithm to reach step N . This could be
simplified by adding an idle node at step N + 1 connected
to all the nodes at step N without any constraints. Note that
the proposed algorithm moves forward, whereas if a return
function had been used, the corresponding algorithm would
have moved backwards. The validity of this algorithm
at the boundary of A(t) and B(t, u(t)) has not been
investigated. This is not a significant issue considering that
only joint trajectories far from the constraints are used for
comparison purposes. For w = 0, Fig. 3 illustrates the
variation of the redundancy parameter as a function of
the time for the three stationary solutions corresponding
to z1, z2 and z3 and the optimal solution obtained from
the dynamic programming approach. It can be observed

Fig. 3. Comparison of u(t) between the dynamic programming approach
and the stationary solutions of the variational formulation for w = 0.

that there is a good agreement between the stationary
solution corresponding to z1, which is the global minimum,
and the solution obtained from the dynamic programming
approach. These results have been obtained with 8 seconds
and N = 10 for a total grid size of 515 nodes. Note that
Fig. 3 shows that the stationary solution corresponding
to z3 does not satisfy the joint limits: these constraints
were not included in the variational formulation in Section 2.

We have illustrated that the same global minimum to the
variational problem (3)-(5) can be retrieved using a dynamic
programming approach. It will be shown now how this ap-
proach can be modified to directly generate solutions which
are optimal in a multiple criteria sense without resorting to
the weighting method. Such solutions are said to be Pareto
optimal (also termed efficient or non dominated) according
to the following definition.

Definition 4.1 (Pareto optimality): assume that n criteria
with scalar values are to be minimized, an objective vector
z∗ is Pareto optimal if there does not exist another objective
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vector z ∈ Z such that zi ≤ z∗i for all i = 1 . . . n and there
is least one index j such that zj < z∗j [7].

Definition 4.1 introduces only the global Pareto optimality,
which can be defined in the solution space as well. Another
definition needs to be provided for local Pareto optimality.

Definition 4.2: an objective vector z∗ is locally Pareto
optimal if the corresponding solution is Pareto optimal only
in a neighborhood [7].

The number of both locally and globally Pareto optimal
solutions is generally infinite and as such, these solutions
form sets. Fig. 4 reproduces Fig. 2 when any joint trajectory
violating the joint limits or the joint speed limits has been
removed. The Pareto optimal and the locally Pareto optimal
sets are determined and shown on the resulting curve.

Fig. 4. Illustration of the locally Pareto optimal set and the Pareto optimal
set.

From a mathematical point of view, every Pareto optimal
solution is an equally acceptable solution. Hence, a multiple
criteria optimization method might be evaluated by its ability
to generate a better representation of the complete Pareto
optimal set through a more uniform sampling. This was one
of the major weaknesses of the weighting method as explored
in Section 3. To summarize, we illustrated that the weighting
method lacks control of the objective vectors through the
weights and is unable to generate solution in the nonconvex
part of the Pareto optimal set [4] (it is impossible to generate
objective vectors on the portion of the curve C between z2

and z4 in Fig. 2). However, at least, for a given set of
nonnegative weights, the weighting method [7] guarantees
Pareto optimal solutions, although these solutions are more
likely to be only just locally Pareto optimal.

Consider, again, the dynamic programming approach pre-
sented above. We propose to directly implement the Pareto
optimality condition or the dominance concept within the
algorithm used to generate the optimal solution (as a result,
(17) is not the proper dynamic programming equation any-
more). Stages 1, 2 and 4 of this algorithm are modified as

follows, while Stage 3 does not change.
• Stage 1

′
: build a grid in the (t, u) space. Calculate q

at each node of the grid with the closed-form inverse
kinematics (1). Discard the node if the resulting q does
not satisfy the joint limits (6). Set the list of optimal
objective vectors to void for each node (k, uk,i).

• Stage 2
′
: at step k, iterate over all uk,i. For each

uk,i, find all the nodes (k + 1, uk+1,j) such that
u̇k+1,j satisfies (14), with u̇k+1,j being calculated with
the Euler approximation (15). For each pair of nodes
((k, uk,i), (k+1, uk+1,j)), iterate over the list of optimal
objective vectors at the node (k, uk,i) and calculate
the corresponding objective vector for the node (k +
1, uk+1,j).

– if this objective vector is dominated by any element
in the current list of optimal objective vectors at the
node (k+1, uk+1,j), discard it. Otherwise, add it to
the list and set the node (k, uk,i) as the predecessor.

– if this objective vector dominates any element in
the list of optimal objective vectors at the node
(k + 1, uk+1,j), discard this element.

• Stage 3: repeat until the step N − 1 is reached.
• Stage 4

′
: apply the dominance rule for all the optimal

solutions at step N .
However, as we show below, with a simple calculation,

the number of nondominated objective vectors might grow
exponentially with the dimension the grid. Indeed, assume
that at step k, each node can reach rk nodes at step k+1. In
the worst case scenario, where no nondominated objective
vector is discarded, the total number of nondominated
objective vectors at step k + 1 is multiplied by rk, which
gives recursively a total of

∏
rk. This problem is more

pronounced when the discretization in the (t, u) space
becomes finer, and as the number of performance criteria
increases. These are manifestations of the so-called curse of
dimensionality [2].

This problem can be addressed using a heuristic at Stage
2
′

whose objective is to bound the number of nondominated
objective vectors generated at each step k. As an example,
the number of nondominated objective vectors at each
node of the grid could be limited by keeping only p
nondominated objective vectors with the smallest value
for F1 (p ≥ 1) and discarding the rest. This heuristic
has been implemented with p = 3 and the results are
displayed in Fig. 5. It is shown in Fig. 5 that the set
of objective vectors generated by the modified dynamic
programming approach agree well with the Pareto optimal
set and, more importantly, captures its non connectivity.
The freedom in choosing a heuristic is very large. However,
it remains to be investigated whether the use of a given
heuristic guarantees global or at least local Pareto optimality.

While we think that our approach, based on dynamic
programming, provides a good means of estimating the
Pareto optimal set, the final selection of one solution is still
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Fig. 5. Nondominated objective vectors generated by the modified dynamic
programming approach.

required. This paper does not address this question, but two
main approaches could be suggested. The first method would
be to define “secondary criteria” (the “primary criteria” being
defined as the ones used in the optimization process) that
can be applied with a simple or complex preference that
suits a particular application. Such decision making could
even be done by an operator through the visualization of
the solutions. With this approach, any criterion critical to
the application should be included in the set of “primary
criteria”. The second method would be to make the final
selection based on certain characteristics of the Pareto opti-
mal set which is only possible to do after the set has been
identified. For example, one may choose the median of the
Pareto optimal solutions, the closest Pareto optimal solution
to the average, or use any other criteria applied to the set.

V. CONCLUSIONS AND FUTURE WORKS

A dynamic programming approach was proposed and
applied to the model of a 7-DOF redundant manipulator in
order to find the optimal joint trajectories considering the
joint speed norm and the aerodynamic interference as the
two performance criteria. This approach, which avoids trans-
forming the original problem into a single criterion problem,
provides better means to identify the Pareto optimal set than
the traditional weighting method. Various simple or complex
heuristics can be conveniently implemented at each node of
the grid to reduce the computational load of the search and
to eliminate certain objective vectors based on a preference.
The optimality behavior of the proposed approach at the
boundary of the constraints needs to be further investigated.
Additional criteria and constraints such as the operational
constraints of the CTS system and the collision avoidance
will be considered as immediate extensions of this work.
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