
Multi Sensor Fusion in Robot Assembly Using Particle Filters

U. Thomas, S. Molkenstruck, R. Iser, and F. M. Wahl

Institute for Robotics and Process Control, Technical University of Braunschweig, Germany

Abstract— In this paper, we present a new method for sensor
fusion in robot assembly. In our approach, model information
can be derived automatically from CAD-data. We introduce
Force Torque Maps, which are either computed automatically
exploiting modern graphical processors or are measured by
scanning forces and torques during contact motions. Subse-
quently, Force Torque Maps are applied as model information
during execution of real assembly tasks. Also, computer vision
is included by comparing relative poses of features in virtual
images with their real relative poses given from measured
images. For fusion of these two (or more) different sensors
we suggest to use particle filters. Experiments with variations
of peg in hole tasks in a real work cell demonstrate our new
approach to be very useful for the whole process chain from
planning to execution.

I. INTRODUCTION

A long term aim in robot programming for assembly is the

automation of the complete process chain, i.e. from planning

to execution. One challenge is to provide solutions which are

able to deal with position uncertainties in robot assembly. If

such systems exist, robot programming becomes less cost

intensive. CAD-data of objects are usually available and

can be used for planning purposes. Due to tolerances in

models, gripped objects and pose tolerances in workspace,

sensor integration is indispensable. Many sophisticated im-

plementations of the execution for complex assembly tasks

use different sensors, but the control algorithms as well as

the assembly strategy are still designed by experts, e.g. [1].

A main goal is to automate the programming process, so

that the expensive task of programming such applications

will be simplified or even automated. Our approach aims at

two goals:

• Planning and executing the assembly task automatically

without any user interaction

• Simultaneously integrating vision and force feedback

for correcting uncertain poses in 3d.

Our approach uses particle filters – more precisely the

condensation algorithm [2] – for the autonomous execution

of various assembly tasks. During the planning phase the

CAD-data are known, so that we can generate Force Torque

Maps from the CAD-data (section II). Also, during the

planning phase, it is possible to extract geometrical features

from the CAD-data. These two model representations - one

for force feedback and one for vision feedback - can be

used, while hypothetical 3d poses, represented as particles,

will be evaluated. In mobile robotics, particle filters have

shown to be a powerful tool for robot localization [3]. Why

should this strategy not work for robot assembly? In [4],

[5], applications of particle filters for sensor guided assembly

have been demonstrated. The configuration space (c-space)

obstacles are generated by moving the gripped object into

contact with its environment and interpreting the resulting

position sensor information only. A map is obtained from

collected contacts, which represents all suitable configura-

tions. During execution the particle filter guides the robot

for successful assembling. In contrast to this, the approach

provided here generates so-called Force Torque Maps (FT-

Maps) from CAD-data prior to execution. Hence, no time and

cost consuming scanning of the environment with the robot

is necessary. The FT-Maps are used as model description to

evaluate each particle (relative pose in 3d). In order to obtain

FT-Maps efficiently prior to execution, we have implemented

a graphical processor unit based algorithm. The cost intensive

on-line generation of the c-space maps as shown in [4]

are no more necessary. The generation of FT-Maps is a

computational expensive task, but no robot is necessary to

perform it.

Other solutions of compliant motion programming are

shown in [6]. There contact formation graphs are necessary to

configure hybrid position/velocity and force controlled mo-

tions. In [7] task templates are used to generate nets of skill

primitives, known from [8]. In [9] the particle filter is applied

for sensor fusion in contour following tasks. The particle

filter for contact formation estimation has been suggested

in [10]. A solution to integrate vision and force feedback,

with a camera attached to a robot hand is demonstrated

in [11].

Our work suggests to solve the automated assembly

programming problem by usage of particle filters, Force

Torque Maps and vision processing. The main benefit of our

method is, that model information for the particle filter can

automatically be derived from CAD-data prior to execution,

so that no further human interaction is necessary. The next

section describes the algorithm to generate FT-Maps from

CAD-data. The third section shows how vision can be used

for evaluating hypothetical poses in 3d. The fourth section

describes our implementation of the particle filter in detail.

The last section demonstrates our experiments on variations

of peg in hole assembly tasks.

II. FORCE TORQUE MAPS FOR PARTICLE EVALUATION

FT-Maps are applied as model information for the particle

filter. The main advantage is, that FT-Maps can be generated

prior to execution. The algorithm is implemented using a

graphical processor unit (GPU). With GPUs, distance compu-

tation can be obtained very fast. In this section, the definition

of FT-Maps is given first. Then follows a description of the

2007 IEEE International Conference on
Robotics and Automation
Roma, Italy, 10-14 April 2007

FrB11.1

1-4244-0602-1/07/$20.00 ©2007 IEEE. 3837

sensor

hand

object 3d pose uncertain
world

robot

basis

worldTobject uncertain

2 dof uncertain
DGrasp

handTtask

basis T hand known

6 dof uncertain
taskTobject

y

z

x

cameraTobject uncertain

worldTcamera calibrated

camera

sensor T hand sensor

hand

object 3d pose uncertain
world

robot

basis

worldTobject uncertain

2 dof uncertain
DGrasp

handTtask

basis T hand known

6 dof uncertain
taskTobject

y

z

x

cameraTobject uncertain

worldTcamera calibrated

camera

sensor T hand

Fig. 1. Object poses and uncertainties in the assembly work cell

algorithm applied for obtaining these maps and the last part

shows some examples of FT-Maps for variations of peg-in-

hole assembly tasks.

A. Definition of Force Torque Maps

In the following, we denote task~w := (fx, fy, fz,tx,ty,tz)
T as

wrench vector of forces and torques w.r.t. a given task frame,

which arise in some contact situation between a gripped

object and an object placed fixed in the robot work cell. The

force torque sensor is attached to the robot hand, so that its

z-axis is aligned to the robot hand’s z-axis, as can be seen

in Fig. 1. With the vector ~r ∈ ℜ6 we denote any possible

relative pose (position and orientation) in 3d. Whereas, in

general, a particle x can be described as a list of relative

poses ~r; each element represents one transformation in the

work cell. Thus, a particle is defined by:

xi ∈ X |xi :=<~r1, . . . ,~rn > with~r j ∈ℜ6 (1)

In our examples n is set to 2. The first relative pose ~r1

represents the inaccurately gripped object and the other

relative pose ~r2 describes the unknown transformation from

the task frame to the object frame, assuming the task frame

is fixed on the peg’s tip. If the part is assembled at its goal

position, the transformation from the task frame to the object

frame is the identity. Hence, in general cases, particles are 12

dimensional, but in most cases less dimensions are necessary

to describe possible uncertainties. In the example of Fig. 1,

the first transformation HandTTask contains two translational

DoFs and the second transformation TaskTOb ject B contains

four DoFs (two translational and two rotational).

Before we define FT-Maps we introduce the discrete

tolerance space Ω as follows:

Definition 2.1.1: The discrete tolerance space Ω is a

grid, where each cell ωi ∈ Ω corresponds to a n-tuple of

uncertain relative poses ~r1, . . . ,~rn. Each relative pose ~r j is

bounded by two parameters sizetrans, j , sizerot, j and~r j satisfies

the following equations: r(x)2
j + r(y)2

j + r(z)2
j ≤ size2

trans, j;

r(rx)2
j + r(ry)2

j + r(rz)2
j ≤ size2

rot, j respectively. Also for each

DoF the interval size is set to δtrans, j and δrot j
.

Hence, with this definition of the discrete tolerance space,

we can define FT-Maps:

Definition 2.1.2: A Force Torque Map is a function f :

ω → ~w, which maps each value ωi ∈ Ω to a valid wrench

vector w.r.t robot’s task frame task~w (sensor values) with the

assumption of imposed forces. These forces are imposed due

to a robot motion along the approach vector task~a.

In practice, the defined imposed forces are obtained by

using hybrid position/velocity and force controlled robot

systems [12], [13]. For the off-line computation of such FT-

Maps the following model is applied: Assuming the contact

point ~p is known from CAD-data, and the robot moves the

object A along ~a, which is defined w.r.t. the task frame. Then,

we can compute expected forces and torques by applying the

following rule:

~fimposed =−µ · ~fnormal−~f f riction (2)

with µ as the friction coefficient between two materials.
~fnormal is perpendicular to the contact surface of object B.

Assuming reactio equals actio yields ~fsensor =−~fimposed ne-

glecting robot stiffness and robot dynamics. This model is not

exact, but it serves precisely enough as model information for

the particle filter. One can imagine, that computation of pos-

sible sensor values for all ωi ∈Ω results in a computational

complex tasks and demands for an efficient algorithm. Thus,

we exploit a graphical processor unit (GPU) for obtaining

FT-Maps.

B. A GPU-Based Algorithm

Usually in robot assembly CAD-data are available, hence

we use triangle meshes as input for the FT-Map computation.

For all possible geometrical poses within Ω , we move

the gripped object A as well as the object B to the poses

according to each discrete value ωi ∈ Ω. First of all, let us

define the minimal distance between object A and object B

along the vector ~a as

d~a = min
~pa∈A,~pb∈B

{|(~pb− ~pa) ·~a|} .

All pairs of points (~p′a, ~p
′
b) with |(~p′b− ~p′a) ·~a|= d~a are called

contact pairs and need to be computed. Many algorithms

for collision detection using hull hierarchies have been

introduced during the last decades. Some of these algorithms

could be adopted for our task, but due to the size of our

discrete tolerance space Ω and the circumstance that we

always need all contacts, high demands have to be put on

efficiency of such an algorithm. Thus, we have employed a

GPU for obtaining all pairs of contact.

1) Computing the minimal distance and all contact pairs:

The method introduced here for obtaining all pairs of contact

and its contact normal vectors uses the z-buffer and the color

buffer of graphics hardware. First, we need to compute the

vector aligned bounding box (VABB), so that it is aligned

to the approach direction ~a for the active object A and for

the passive object B, respectively. Next, we minimize both

VABB, so that projection of the two VABB on any to ~a

perpendicular plane has equal size. The number of needed

pixels is obtained by the length of the VABB and given res-

olution δ from the applied tolerance space Ω. Subsequently,

FrB11.1

3838

the number of needed rendering steps (images) is calculated

by using the number of necessary pixels and the maximal

possible resolution of the graphics hardware. Subsequently

the camera is placed in the nearest corner of the left bottom

of the VAABA. The camera z-axis is aligned with the direction

specified by the approach vector ~a. We used an orthogonal

projection and computed the z-buffer of the object B. Also

each triangle is given a different color, so that we obtain the

surface normal, also. We repeat the same procedure for the

object A, where the z-axis of the camera points opposite to

the approach vector. The minimal distance for each pixel is

computed by the sum of both depth buffer values. Searching

all 2d points, for which the differences of their depth buffers

are smaller than 0 results in all contact points in 3d, due

to known camera parameters. After computing all pairs of

contact, we can compute resulting forces and torques as

follows:

2) Computing forces and torques from all contact pairs:

The algorithm projects all 3d contact points ~pA,B to the plane

perpendicular to ~a. Now, the convex hull is constructed of

all these projected contact pairs. The point of interest K is

the point with smallest distance to the intersection point P

and the convex hull. The point P is obtained by projecting

the sensor origin among ~a into the plane (see Fig. 2). If the

point P is inside the convex hull, we obtain expected forces

by: ~fsensor = −~fimposed and as torques we set ~tsensor =~0. If

the point P is outside the convex hull, the minimal distance

between the convex hull and the point P can be denoted

by ~PK and influences the torques which are obtained by
~tsensor = ~PK×~Fimposed. Fig. 2 illustrates our algorithm.

Sensor

motion

convex hull

projection plane
P

object A

object B

K

contact pairs

Sensor

motion

convex hull

projection plane
P

object A

object B

K

contact pairs

Fig. 2. Algorithm to compute the lever causing torques from a given
imposing force

C. Some Examples of Force Torque Maps

We have computed FT-Maps for various assembly tasks.

Fig. 3 and Fig. 4 show some FTM-Maps for variations of

peg in hole tasks. The computation time took from 2 minutes

up to 20 hours, where maximal 3.5 million configurations

have been computed. Usually we set sizetrans to 5 denoting

a translational uncertainty of 5 mm in x-direction and y-

direction respectively. The rotational uncertainty are given

within [−2,2] degrees around the x-axis and y-axis. Fig. 4

shows some layers of the FT-Maps for two relative poses

of the active object. The map on the left side corresponds

to the relative pose of peg ~r1 = (3,3)T and visualizes tx
according to~r2 = (px, py,0

◦,0◦)T . The map on the right side

corresponds to a configuration for the active object w.r.t. to

the robot hand~r1 = (0,0)T and also displays tx according to

~r2 = (px, py,0
◦,0◦)T .

Px

Py

Tx

5mm

Px

Py

Tx

25mm

100 mmA slice of the FT-Map

with r1(3,3)

A slice of the

FT-Map with r1(0,0)

Px

Py

Tx

5mm

Px

Py

Tx

25mm

100 mmA slice of the FT-Map

with r1(3,3)

A slice of the

FT-Map with r1(0,0)

Fig. 3. Example: FT-Map for peg in hole

Py

Px

Tx

-3mm

Fig. 4. Example: FT-Map for gear wheel on a shaft

If we need to evaluate a certain particle xi, we just need

to look up in the map and compare the virtual wrench vector

with the real one. Looking up in the FT-Map costs O = (1)
time. Thus, any particle can be evaluated very fast by a least

square method (see section IV).

The next section describes how particles can be evaluated

using a vision sensor.

III. VISION FOR POSE EVALUATION

Vision is commonly used for surveillance or guidance of

assembly tasks. Our approach is based on detection of object

FrB11.1

3839

Fig. 5. Line edge detection based on intensity gradients and linear
regression

features in camera images. (Here we select these features

manually, but in the future we are preparing an automatic

selection approach.)

The traditional procedure is to estimate object pose (3d)

from camera images (2d). This always includes the problem

of ambiguity in the 2d-3d conversion. In this paper, we

examine a different approach: We use vision sensors to

evaluate possible object poses (given as particles from the

particle filter, see chapter IV). Thus, we avoid the problem

of ambiguity and only need to use the 3d-2d conversion.

Another advantage is that we can incorporate our vision

sensor in the same way as we include Force Torque Maps

(chapter II).

A. Feature Detection

Figure 6 shows a typical camera image during a shaft-

fits-hole assembly. Useful features (edges of shaft and hole)

have been marked. In robot assembly setups, the cameras

are calibrated with respect to the world, and the absolute

pose of objects is approximately known. This allows us to

calculate the rough “expected” pose of object features in

camera images. Thus, detection of those features can be

limited to the area around the expected pose. One fast line

edge detection algorithm has been implemented in analogy to

[14], using a Bounded Hough Transform. Here, Hough Space

resolution and range of values are automatically adopted, i.e.

restricted to the “expected” area.

In the following paragraph, we present another very fast

algorithm for line edge detection from an expected pose.

The “expected” image pose of the line tells us which area

of the image to search. Let us assume (without loss of gen-

erality) that the line we are searching for is rather horizontal

than vertical in the camera image. Fig. 5 shows the main

steps of the procedure in an exemplary intensity gradient

image. The brightness represents the gradient amplitude; we

are searching for the line along the gradient maxima. The

leftmost and rightmost black dots represent the “expected”

line endpoints. In the first step, we move those points toward

each other in order to deal with the possibility that the

pose discrepancy is along the line direction. In the second

αparticleαparticle

αimage

Fig. 6. Left: Typical camera image during shaft-fits-hole assembly with
usable features (lines and ellipses); measured angle αimage between objects.
Right: The hypothetical angle αparticle between the axes of two CAD objects,
calculated from particle

step, we search for the maximal gradient in each image

column between the end points separately, collecting the set

of red/dark gray points P. Using linear regression on P, we

obtain a provisional line equation l (green/gray). Along this

line, we extend P toward both directions (orange/bright gray

points) until the gradients fall below a certain threshold,

obtaining the left and right x-coordinate bounds xl and xr.

Linear regression is now used on the extended point set

P to achieve higher precision; it gives us the detected line

direction, and from xl and xr we can easily compute its end

points.

Very similar algorithms can be used to detect other feature

shapes, e.g. ellipses like in [15].

B. Relative Object Pose Evaluation

1) Relative Feature Pose Comparison Approach: 2d poses

of object features cannot (easily) be used to calculate the

relative pose of their corresponding objects because of the

ambiguity of the 2d-3d conversion. Thus, our first approach

for particle evaluation is to compare the relative pose of

features in the camera image to their hypothetical relative

pose in the particle. The hypothetical object feature poses are

calculated by 3d-2d conversion of individual object features

using camera calibration parameters. The real object feature

poses are obtained from feature detection in the camera

image (III-A).

Subsequently, relative poses of features can be calculated

and used for comparison; e.g., angles between line edges,

distances between (approximately) parallel edges (see experi-

ment D), distances between corners, angles between cylinder

axes, etc.

For example, consider the angle between the axis of a

shaft and the axis of its target hole (Fig. 6). We detect the

real angle αimage in the image. From the given particle, we

calculate a hypothetical angle of αparticle; now the difference

between αimage and αparticle can be used as an evaluation

criterion for the particle.

2) Camera “Recalibration” Approach: If our task was to

verify a hypothetical absolute image pose of one object, we

could compare its hypothetical image pose with the detected

FrB11.1

3840

image pose. But here, we want to verify a hypothetical

relative pose between two objects. This means that even if

both objects are not detected where they are supposed to be,

their relative pose might be correct. In order to deal with this

problem, we suggest to set a deliberate minor displacement

of the camera parameters. This displacement is based on the

image poses of one object’s features, so that its detected

features fit their hypothetical poses. By choosing the passive

(immobile) object, the displacement needs to be calculated

only once (at the beginning of the assembly step). Now we

use the displaced camera parameters to calculate the expected

poses of the second object’s features and compare those with

the detected poses in the camera image. This comparison

yields a quality criterion for the particle.

In general, this approach is not precise: We add a deliber-

ate falsification of the camera parameters and this falsifica-

tion cannot be guaranteed to “adopt” the camera parameters

correctly. Nevertheless, this imprecision is expected to be

much smaller than the benefit that the vision sensor can

contribute to the particle evaluation.

IV. SENSOR FUSION WITH PARTICLE FILTER

For sensor fusion during assembly, we suggest to use a

particle filter. Each particle xi ∈X is evaluated by all available

sensors. The force model for the forces and torques given by

FT-Maps is able to return a scalar value evaluating each par-

ticle, whereas the vision algorithm (described in the previous

section) is able to falsify single particles and/or to evaluate

the quality of each particle xi. As implementation of the

particle filter we have used the condensation algorithm [2].

The algorithm obtains current measurements as input, e.g.

the wrench vector ~w and an image. For integration of vision,

we need to compute in a preprocessing step all features, e.g.

edges, lines, circles and ellipses, which might be detected

in the image. Also a topological representation is necessary

to evaluate each particle (given as relative poses between

objects). Algorithm 1 describes our implementation of the

particle filter.

In Eq. 3 the probability of each sampled particle is

computed using standard normal deviation. (The minimal

square error method in combination with standard normal

deviation assumes linearly independent sensor values fi –

force feedback and pi – vision feedback, which is not

necessarily true here. Although we disregard this, we obtain

good results with this method.) The condensation algorithm

provides many advantages. On one hand the number of

particles is constant throughout the localization process.

This allows high execution rates even in higher dimensional

spaces. On the other hand we benefit from the subpixel

accuracy, which is another very attractive property. Hence,

the condensation algorithm is able to deal with models of low

resolution. This is very comfortable, because computation of

FT-Maps with high density is very time consuming and our

implementation of the particle filter deals with low resolution

of FT-Maps successfully.

V. EXPERIMENTS

We have evaluated our approach with variations of peg

in hole assembly tasks (see Fig. 7). For all tasks, we have

computed FT-Maps, and we have scanned FT-Maps by real

contact motions in the workspace. As a first step, we have

chosen only the x and y position (in task frame) as unknown

degrees of freedom in the relative pose between the objects.

Algorithm 1 Particle Filter for Sensor Fusion in Robot

Assembly

Require: Model information: FT-Map and representation of

image features

Ensure: Estimated relative pose between objects

1: Construct particles xi ∈ X according to uniform distribu-

tion in tolerance space Ω
2: Move robot into contact with the hybrid position/velocity

and force controller. Reaching predefined contact forces

about −50N in z-direction of the task frame.

3: Observe the environment by measuring the current state,

described by zi← (~w, image)
4: Process image and detect features and topology of fea-

tures in the real image

5: sum← 0

6: for all xi ∈ X do

7: weighti← P(zi|xi) with:

P(zi|xi)= (
1√

2πσ
)2do f e

− 1

2σ2 (∑
do f
j=1(f j− f j)

2+∑
do f
j=1(p j−p j)

2)

(3)

8: sum← sum+ weighti
9: end for

10: for all xi ∈ X do

11: weighti← weighti
sum

normalize weights

12: end for

13: Get best estimated position according to current weights.

Move the robot w.r.t. to the goal position and move

particle set X respectively

14: if Pz > threshold then

15: return

16: end if

17: Resample particles according to accumulative weights :

18: for all xi ∈ X do

19: awi = ∑i
j=1 w j

20: end for

21: for all xi ∈ X do

22: r← rand[0..1] random number uniformly distributed

23: search the j-th particle for which yield:

r > aw j−1∧ r ≤ aw j

24: xi ← Gaussian random distribution(E(x j),σ) with

σ = 0.2, which depends on the FT-Map’s interval

25: end for

We have conducted our experiments with the measured

FT-Maps as well as with computed FT-Maps. The results

presented here have been obtained with the measured maps.

Computed maps have also been successfully used in some

FrB11.1

3841

Fig. 7. Four assembly tasks for evaluation our approach; (A) an octogon, (B) peg in hole, (C) gear parts, (D) bearing housing

experiments. Experiments (A), (B), and (C) have been carried

out with a force-torque sensor only, whereas experiment (D)

demonstrates the successful fusion of two sensors with the

particle filter, i.e. vision and force/torque.

For the peg in hole task (B) we repeated our experiment

20 times. Fig. 10 shows the number of contact iterations

necessary to execute the robot task successfully. For the

assembly tasks (A) we need more than five iterations on

average. This was due to the high production accuracy of

our objects: The peg with the hole (B) has tolerances of only

about 1
10

mm and the octogon (A) has tolerances of only about
5

100
mm.

-5

-4

-3

-2

-1

0

1

2

3

4

5

-5 -4 -3 -2 -1 0 1 2 3 4 5

-3

-2

-1

0

1

2

3

-3 -2 -1 0 1 2 3

-3

-2

-1

0

1

2

3

-3 -2 -1 0 1 2 3

-3

-2

-1

0

1

2

3

-3 -2 -1 0 1 2 3

-3

-2

-1

0

1

2

3

-3 -2 -1 0 1 2 3

-5

-4

-3

-2

-1

0

1

2

3

4

5

-5 -4 -3 -2 -1 0 1 2 3 4 5

Iteration 1
Step1

Iteration 20
Step1

Iteration 1
Step3

Iteration 20
Step3

Iteration 1
Step6

Iteration 20
Step6

Fig. 8. Particle distribution of robot task (A) after first, third and sixth
contact motion.

-4

-3

-2

-1

0

1

2

3

4

5

6

0 1 2 3 4 5 6

-4

-3

-2

-1

0

1

2

3

4

0 0,5 1 1,5 2 2,5 3 3,5 4 4,5 5

Iteration 1
Step 1

Iteration 20
Step 1

Fig. 9. Particle distribution of robot task (C); only one contact motion was
necessary

-6

-5

-4

-3

-2

-1

0

1

2

3

4

5

-6 -4 -2 0 2 4 6

1 step

2 steps

3 steps

4 steps

7 steps

8 steps

> 10
steps

Fig. 10. Number of steps needed for successful execution of peg in hole
robot task, according to x and y positions.

The distribution of particles is depicted in Fig. 8, while

task (A) is assembled, and Fig. 9 illustrates the particles

while the gear wheel is assembled with the gear shaft (C).

In the first example six contact measurements were needed.

Between each measurement 20 iterations of the particle filter

have been carried out. The pose estimation was successful

in the last step (right side). In the second example (C),

two clusters were detected (due to ambiguities in FT-Map),

but the correct pose has been estimated after one contact

measurement. For this experiment the correct pose could be

estimated in less than three steps, mostly.

Fig. 11. Vision evaluation: comparison of hypothetical and real line
distances.

FrB11.1

3842

-5

-4

-3

-2

-1

0

1

2

3

4

5

-5 -4 -3 -2 -1 0 1 2 3 4 5

-5

-4

-3

-2

-1

0

1

2

3

4

5

-5 -4 -3 -2 -1 0 1 2 3 4 5

Fig. 12. Particle filter with vision and FT-Map: the first two iterations

In experiment (D) vision has been used as an additional

sensor. It significantly decreases the number of necessary

contact measurements. Our algorithm detects the right edges

of both parts and compares their real pixel distance to the

hypothetical pixel distance of every particle (Fig. 11), thus

evaluating the particle. The same is done with the left edges.

The camera has been set up looking in x-direction, so that

it can judge the y-coordinate very well, but not the x-

coordinate. The effect can be seen in Fig. 12: After the

first particle filter iteration, the particles center around the

y coordinate 3.2 (correct for the given pose would be 3.0)

but are widely spread along the x-axis. This happens because

the vision sensor cannot distinguish between them, and their

entries in the FT-Map are rather similar. After only few more

iterations, the assembly succeeds.

VI. CONCLUSION AND FUTURE WORKS

In our paper, we present a new approach for autonomous

execution of robot tasks. The FT-Map computation has been

introduced and it is to our knowledge the first implementation

to generate this model information from CAD-data. It has

become possible by employing modern graphical processor

units. Also we have applied the particle filter for sensor

fusion in robot assembly tasks, i.e. combining FT-Maps and

vision. With this idea, we provide a further step toward

automated robot programming, with the aim of using CAD-

data for generating executable, robust programs. Of course,

the particle filter for the fusion of various sensors is well-

known in mobile robotics, but our way of using it in assembly

tasks is new. The particle filter has been applied successfully

to the robot tasks shown here. It is very useful for fusion of

sensory information. Off-line generation of visible features

from CAD-data will be a new approach and can be used to

automate vision application in the future. More experiments

with the integration of automatically computed FT-Maps as

well as automatically selected visible object features, and

more unknown degrees of freedom will be carried out by us

in the near future.

VII. ACKNOWLEDGMENTS

We would like to thank QNX Software Systems for

providing free software licenses of their real time operating

system QNX 6.3.

REFERENCES

[1] S. Joerg and J. Langwald and J. Stelter and G. Hirzinger and C.
Natale, ”Flexible robot-assembly using a multi-sensory approach”,
IEEE International Conference on Robotics and Automation, USA,
2000, pp.3687-3694.

[2] M. Israd and A. Blake, ”CONDENSATION - conditional density
propagation for visual tracking”, International Journal Computer

Vision, 1998.
[3] S. Thrun, ”Particel filters in robotics”, Proceedings in 17th Annual

Conf. Uncertainty in Artificial Intelligence, 2002.
[4] S. R. Chhatpar and M. S. Branicky, ”Localization for Robotic Assem-

blies with Position Uncertainty”, IEEE/RSJ International Conference

on Intelligent Robotic Systems, USA, 2003.
[5] S. R. Chhatpar and M. S. Branicky, ”Localization for Robotic Assem-

blies Using Probing and Particle Filtering”, IEEE/ASME International

Conference on Advanced Intelligent Mechatronics, USA, 2005, pp.
1379-1384.

[6] T. Lefebvre and H. Bruyninchx and J. De Schutter, Nonlinear Kalman

Filtering for Force-Controlled Robot Tasks, Springer Berlin, Heidel-
berg, New York, 2005.

[7] U. Thomas and F. M. Wahl and J. Maass and J. Hesselbach, ”Toward
a New Concept of Robot Programming in High Speed Assembly
Applications”’, IEEE International Conference on Intelligent Robots
and Systems Edmonton, Canada, Aug. 2005, pp. 3932-3938.

[8] T. Hasegawa and T. Suehiro and K. Takase, ”A Model-Based Manip-
ulation System with Skill-Based Execution”, IEEE Transactions on

Robotics and Automation, vol. 8, no. 5, 1992, pp. 535-544.
[9] R. Smits and H. Bruyninchx and W. Meeussen and J. Baeten and

P.Slaets and J. De Schutter, ”Model Based Position-Force-Vision
Sensor Fusion for Robot Compliant Motion”, IEEE International
Conference on Robotics and Automation, USA, 2006.

[10] W. Meeussen and J. Rutgeerts, K. Gadeyne, H. Bruyninckx and
J. De Schutter, ”Contact State Segmentation using Particle Filters for
Programming by Human Demonstration in Compliant Motion Tasks”,
IEEE International Conference on Robotics and Automation, USA,
2006.

[11] J. Baeten and J. De Schutter, Integrated Visual Servoing and Force

Control, Springer Verlag, Berlin, 2003.
[12] T. Kroeger and B. Finkemeyer and S. Winkelbach and L.Eble and S.

Molkenstruck and F. M. Wahl, ”Demonstration of Multi-Sensor In-
tegration in Industrial Manipulation”, IEEE International Conference
on Robotics and Automation, Orlando, USA, 2006, Video.

[13] J. Maass and N. Kohn and J. Hesselbach, ”Open modular robot
control architecture for assembly using the task frame formalism”,
International Journal of Advanced Robotic Systems, March, 2006,
pp.001-010.

[14] M. Greenspan and L. Shang and Piotr Jasiobedzki, ”Efficient Tracking
with the Bounded Hough Transform”, Computer Vision and Pattern
Recognition, 2004, pp. I-520- I-527 Vol.1.

[15] M. Vincze and M. Ayromlou and M. Zillich, ”Fast Tracking of Ellipses
using Edge-Projected Integration of Cues”, International Conference

on Pattern Recognition, 2000, pp.72-75 Vol.4.

FrB11.1

3843

