
Using COTS to Construct a High Performance Robot Arm

Christian Smith and Henrik I Christensen
Centre for Autonomous Systems

Royal Institute of Technology

Stockholm, Sweden

Email: {ccs,hic}@kth.se

Abstract— In this paper we present a design study and tech-
nical specifications of a high performance robotic manipulator
to be used for ball catching experiments using commercial
off-the-shelf (COTS) components. Early evaluation shows that
very good performance can be achieved using standardized
PowerCube actuator modules from Amtec and a standard
workstation using CAN bus communication. Implementation
issues of low-level control and software platform are also
described, as well as early experimental evaluation of the
system.

I. INTRODUCTION

Robotic systems fast enough to dynamically manipulate

ballistic objects have been around since the first ball-catching

and ping-pong playing systems were implemented 15 to 20

years ago (as reported by e.g. [1] [2] [3]). However, such

systems have only recently become commercially available

and for many research purposes, special experimental setup

requirements might still pose constraints that are not easily

fulfilled by standard models. Therefore, high performance

manipulation setups often require a tedious and costly design

process where each implementation is made up of custom

solutions.

The present paper intends to show how off-the-shelf

components can be deployed to achieve rapid prototyping

for very competetive performance. In Section II we present

an application requiring significant dynamic performance and

the design of a platform that fulfills the requirements. The

construction of the platform is described in Section III, and in

Section IV we present our first experimental evaluation. All

components used are readily available commercial products.

A photo of the final implementation is shown in Fig. 1, and

a summary of the specifications and achieved performance

is presented in Table X, at the end of this document.

II. DESIGN PROCEDURE

This section provides an initial analysis of the require-

ments for a system to perform ball-catching. From an anal-

ysis of requirements a design for the system is developed.

The design is simulated to verify the performance.

A. Experimental Requirements

The main type of experiment that the proposed platform

needs to cater for involves catching a ball thrown across a

room. We anticipate a normal, slow, underhand throw from

a distance of approximately 5 m. In an indoor environment,

a ball can be thrown with reasonable accuracy along a

Fig. 1. The high-performance manipulator.

5 m

2.3 m

Fig. 2. Schematic of ballcatching experiment.

parabolic path with an apex of 2.3 m, with both the thrower

and the catcher situated at a height of approximately 1 m (see

Figure 2). Simple studies of human performance indicates

that the system must be able to accomodate variations

in accuracy corresponding to catching the ball within a

60×60 cm window. From these basic requirements it is pos-

sible to compute flight time and velocities for the scenario,

as summarized below:

• Throwing distance will be approximately 5 m.

• Flight time will be up to 1 s, the typical time is expected

to be 0.8 s.

• The ball will travel with an approximate velocity of

6 m/s at time of arrival.

• The ball should be caught if within a 0.6 m × 0.6 m

window.

2007 IEEE International Conference on
Robotics and Automation
Roma, Italy, 10-14 April 2007

FrC6.1

1-4244-0602-1/07/$20.00 ©2007 IEEE. 4056



B. Platform Requirements

The experimental requirements stated in the previous sec-

tion impose requirements on the platform. One of the desired

requirements of the scenario is use of standard video cameras

for trajectory estimation. Using normal 50 Hz cameras, the

frame time is approximately 20 ms, and a similar time

window is expected to be needed for segmentation and

position estimation. In addition, at least three frames are

required for an additional trajectory estimation, resulting

in a 60 ms estimation time. However, limited accuracy of

the cameras will mean that more, probably as many as 10

images might be necessary (c.f. [4]), and the time delay from

initiation of a throw to initial trajectory estimate might be

200 ms. This particular setup is also intended to be used

for teleoperated catching, so we also have to allow for extra

reaction time as we include a human in the loop. This might

add an additional 100 ms, so a window of 300 ms is reserved

for initial reaction to a throw, leaving 500 ms in which the

arm has to move into position. In the worst-case scenario, the

arm has to move against gravity from one opposing corner of

the operational window to another, a distance of almost 0.9

m. Depending on the type of end effector1, the positioning

has to be within one or a few centimeters of error from the

ball trajectory. These requirements can be summarized as:

• End effector has to be able to move 0.9 m in 0.5 s,

(partially) against gravity, from stand-still to stand-still.

• The precision of positioning the end effector should be

within 1 cm

Given constant acceleration and deceleration, a distance

of 0.9 m can be travelled in 0.5 s if the acceleration is at

least 14.4 m/s2, and the maximum velocity is at least 3.6

m/s. This also has to be achieved when working against

gravity. These are the minimum dynamic requirements —

the actual implementation should have some margin to allow

for uncertainties.

To enable flexibility in the design of future experiments,

it is desirable to allow for different types of sensors to be

mounted in the end effector reference frame, so this should

be freely orientable in a dexterous manner. The end effector

therefore has to have 6 degrees of freedom, and should be

freely orientable within the entire operation window.

The system thus requires significant dynamics and the

control has to be performed in real-time. This implies that it

is desirable to have closed form solutions for kinematics,

which in term imposes constraints on the design of the

overall kinematic structure. Without a closed form kine-

matic/dynamic solution it would be much more challenging

to guarantee the real-time performance.

A highly dynamic mechanical arm will pose a potential

hazard to both its operator and itself unless sufficient pre-

cautions are taken. Therefore, the control of the arm has

to be sufficiently exact so that safe paths can be accurately

followed, and precautions against malfunctions have to be

duly taken. The former requires control loops running at

1Since the initial experiments will not be concerned with grasping, a
simple passive end effector like a net will be employed.

a high frequency/low latency, the latter that software and

hardware malfunctions are kept at a minimum, and that the

negative effects of malfunctions also should be minimized.

Thus, the software environment has to be a stable real-time

system, while the hardware contains fail-safe fallback for

dealing with software failure.

These further requirements a solution has to fulfill can be

summarized as:

• Closed form analytical kinematics and dynamics are

necessary for speed.

• At least 6 degrees of freedom.

• Acceleration of at least 14.4 m/s2 for end effector.

• Velocity of end effector of at least 3.6 m/s.

• Safety for operator and machinery requires a stable real-

time system, as well as fault-tolerant hardware.

C. Designed Solution

There are a number of fairly fast robotic manipulators

available, like for instance the DLR developed Kuka Light

Weight Arm [5]. It has been shown to be fast enough

to catch thrown balls autonomously [4], but needs a very

early ballistic path estimate to be able to do this. In our

experiments we also want to include a human operator in the

control loop to be able to do semi-autonomous teleoperated

catching, so we require even faster movements to compensate

for slow human reactions. With perhaps only half the time

to get into position, twice the speed is needed.

In order to cater to the special needs of our experiments, it

was decided to construct a 6 DoF arm, and to examine if this

could be done using PowerCube modules from the German

manufacturer Amtec. These modules are available off the

shelf and allow for rapid prototyping. In addition the range of

modules clearly include some that have specifications which

are adequate for the present application (See Section III-A).

In addition, the modules have a built-in controller that can

be used for embedded safety and low level control.

The actual performance depends on the configuration that

the modules are assembled in, so a few different configura-

tions were examined more closely in computer simulation,

where a 10 % uncertainty was added to the maker specifi-

cations. The configuration that showed the most promising

results is one that is kinematically very similar to a Puma560

arm (and to many other industrially available). This is not

only a configuration that allows for very good dynamic

performance (see Section II-D), but as it is a widely used

and studied configuration, several implementation issues

have already been solved, thus making the design process

considerably faster. For example, the closed form solution for

inverse kinematics and dynamics are well-known. Keeping

the moments of inertia as low as possible in the moving

parts, and placing heavier, more powerful modules where

their impact on the inertial load is lower, very fast dynamics

can be achieved. In the final design, three 1.5 kW motors

are used to position moving parts weighing approximately

10 kg. Also, the arm is designed so that the center of mass

of the moving parts will be close to the rotational axis of the

first joint when working in the intended window of operation.

FrC6.1

4057



0.31 m

0.09 m

0.51 m

(a) Dimensions (b) 3D rendering of arm and operational window

540mm

Workspace

1000mm

(c) Workspace with tool oriented towards
user.

Fig. 3. The manipulator, constructed with Amtec PowerCubes.

This will balance the system and keep down the strains on

the first joint.

The choice of gearings and link lengths induce a trade-

off between acceleration and end effector velocities. The

balancing of this trade-off has been made to minimize the

time needed to move the end effector from one stationary

position to another within the operation window. Since there

is a limited, discrete amount of possible combinations of

actuators, it was possible to find the optimum through an

exhaustive search. The resulting configuration that performed

the best in simulation is specified in Table II. The design and

dimensions can be seen in Figure 3. The design allows for

a workspace that is more than large enough to accomodate

for the specified 60 cm × 60 cm window for ballcatching,

though the manipulator’s dynamic performance deteriorates

somewhat at the edges of the workspace. A cross-section

of the workspace can be seen in Fig. 3(c). The arm has

rotational symmetry as viewed from above, but is for safety

reasons limited to a half-circle to avoid collisions with any

objects behind it.

The control setup for the manipulator should be a realtime

system with as short a looptime as possible. The PowerCube

modules support several different communication protocols,

but for robustness and responsiveness, the option of a 1

Mbit/s CAN bus was deemed optimal. The hardware design

can be implemented in several different ways. In principle

all modules could be on a single CAN bus or each module

could have a bus of its own. The end-effector joint is a

combined pan-tilt which requires use of a single bus to

control both degrees of freedom. Depending on the number

of modules per bus, the lengths of the control cycle will vary

(see Section IV-C). This means that the control computer

could be equipped with either 1, 2, or 3 CAN controllers for

symmetric loads, or 4 or 5 controllers for assymetric loads,

where the inner joints that control positioning are run at a

higher frequency than the outermost controlling orientation.

Simulations where the inner joints were controlled at 500

Hz and the outer joints at 200 Hz show that this is a viable

option. In simulation, the inner joints can be stably controlled

at full power output using frequencies from approximately

400 Hz and upwards, but the real world implementation may

have slightly different requirements.
It was decided that the computer doing the direct con-

trol should run RTAI, a real time Linux system that has

showed good performance in previous studies [6]. The

control computer will perform the trajectory generation and

be responsible for dynamic and kinematic calculations. A

secondary computer will be used for the user interface. The

communication between the two should be in cartesian space,

since the kinematic structure of the arm allows for up to

eight different joint-space configurations for each cartesian

position, and the choice of configuration should be made by

the real-time low-level controller for best performance. The

connection is made over UDP/IP, as this has been shown

to give much better control performance than TCP/IP over

an internet connection (see e.g Munir and Book [7] for a

complete evaluation). The connection to the user interface

will not need hard realtime performance, but the smaller the

time lag can be made, the better the performance. In early

experiments over the LAN in our lab, the total roundtrip

time from the UI input via the manipulator controller to

UI feedback has been shown to be in the range of 10–

20 ms. A schematic of the connection architecture is shown

in Figure 4.
1) Specifications: The basic design specification is out-

lined below:

• 6 DoF arm made with Amtec PowerCubes

• Kinematic configuration of Puma560 type

• Linux, preferably RTAI for control computer

• Communication over several parallel CAN connections.

FrC6.1

4058



Real time
controller

   UI

Client

User Manipulator

CAN?

UDP/IP

Fig. 4. Schematic of the connection architecture.

TABLE I

SIMULATED PERFORMANCE OF ROBOT ARM

Since performance is highly dependent of the current position of the
arm, all values are given as their lower limit within the window. The
performance is thus equal to or better than the stated values for all points in
the window. Where nominal performance differs greatly from worst-case,
nominal performance is presented in braces. The traveltimes were calculated
using a simulation including a non-optimized controller algorithm, and are
therefore conservative approximations.

Endpoint acceleration > 100 m/s2 (140m/s2)

Endpoint velocity > 5 m/s (7m/s)

Traveltime across window di-
agonal, from standstill to stand-
still

< 0.37 s

Traveltime from window center
to upper corner, from standstill
to standstill

< 0.22 s

Repeatability of position ±1 mm

D. Simulated Performance

The performance of the proposed arm was first calculated

using the specifications from Amtec and numerical simula-

tions. The results for the travel times are of course dependent

on the type of controller used, and in this particular case,

the controller included a dynamic model for feed-forward

control, and the torques in each individual joint were set

in order to achieve a target velocity as quick as possible.

The target velocity was chosen as the minimum of the

actuators maximum velocity and the highest velocity from

which stopping at the desired position was achievable. This

latter factor was calculated using the maximum torque of the

actuators and the inertial load of the current configuration, a

figure that was multiplied with a factor slightly less than 1 to

achieve a margin. Using this simple controller, the simulated

arm had more than adequate performance, as is summarized

in Table I.

TABLE II

SPECIFICATIONS FOR THE PARTS USED IN THE MANIPULATOR.

Part Product name mass Comment

1st joint PowerCube PR110 5.6 kg 51:1 reduction gear
1st link PAM104 0.2 kg 55mm cylindrical rigid link
2nd joint PowerCube PR110 5.6 kg 101:1 reduction gear
2ond link PAM108 0.8 kg 200mm cylindrical rigid link
3rd joint PowerCube PR110 5.6 kg 51:1 reduction gear
3rd link PAM119 0.2 kg 45mm conical rigid link
4th joint PowerCube PR070 1.7 kg 51:1 reduction gear
4th link PAM106 0.6 kg 200mm cylindrical rigid link
5th,6th joint PowerCube PW070 1.8 kg 2DoF wrist joint

TABLE III

MANUFACTURER’S SPECIFICATIONS FOR THE JOINT ACTUATORS.

Joint no. max torque max angular velocity repeatability
1 134 Nm 8.2 rad/s (470o/s) ±0.00035 rad
2 267 Nm 4.1 rad/s (238o/s) ±0.00035 rad
3 134 Nm 8.2 rad/s (470o/s) ±0.00035 rad
4 23 Nm 8.2 rad/s (470o/s) ±0.00035 rad
5 35 Nm 4.3 rad/s (248o/s) ±0.00035 rad
6 8 Nm 6.2 rad/s (356o/s) ±0.00035 rad

III. IMPLEMENTATION

This section describes the technical details of the actual

implementation of the robot arm.

A. Hardware implementation

The arm proposed and specified in the earlier sections

was constructed and mounted on a sturdy industrial work

table (see photo in Figure 1). The lower three actuators

have a maximum output of almost 1.5 kW each, harmonic

drive gearboxes and incorporated brakes to lessen motor

strain when not moving. The fourth actuator is similar, but

considerably smaller as it carries a lighter inertial load.

The maximum output is 0.36 kW. The last two joints are

contained in a combined pan/tilt unit. This is less powerful,

but has lower weight per joint than other solutions. This

also incorporates the same gearbox and brakes as the other

modules. Specifications can be found in Table II and III.

The PowerCube modules have a simple onboard controller

that implements basic security features. They will not allow

motion beyond certain angle limits (that can be set by the

user), and will perform an emergency stop if these limits are

exceeded, or if no watchdog signal has been transmitted over

the CAN bus for 50 ms.

TABLE IV

THE DENAVIT-HARTENBERG PARAMETERS FOR THE ARM, USING J.J.

CRAIG’S NOTATION.

i αi−1 ai−1 di θi

1 0 0 0 θ1

2 −90 ◦ 0 0 θ2

3 0 0.31 m 0 θ3

4 −90 ◦ 0 0.51 m θ4

5 −90 ◦ 0 0 θ5

6 90 ◦ 0 0 θ6

FrC6.1

4059



To test the reliability of these safety measures, two experi-

ments were conducted. In the first experiment, the communi-

cation link was severed between the computer and the robot.

This results in a termination of the watchdog update, and the

modules finish their last command and engage the brakes.

This implies that the arm assumes the last commanded po-

sition. In the second security experiment, illegal positioning

commands were purposefully issued by the control program.

The modules’ onboard controller correctly identified these as

violating joint limits. The arm moved into the legal position

that was closest to the commanded position and stopped.

This should account for safe handling of an unexpected

breakdown of control algorithms, the control computer, or

the CAN bus communication link.

In order to avoid collisions, both with itself and environ-

ment, the angles of the different joints have been limited to

the values showed in Table V. There are two sets of limits,

each set prohibiting collisions in itself but with a limited

workspace. The system will switch limit sets when moving

out of range of one set and into range of another, with an

intermediate limit set that consists of the tighter limits of

the two sets. This means that even if communication would

break down in the middle of a limit switch, the individual

modules will always be limited to safe intervals, while at

the same time allowing for use of a large part of the robot’s

potential workspace.

TABLE V

LIMITS ON JOINT ANGLES.

Joint no set 1 set 2

1 −90o – +90o −90o – +90o

2 −100o – −40o −130o – −70o

3 −60o – 50o −40o – 90o

4 −160o – +160o −160o – +160o

5 −120o – +120o −120o – +120o

6 −180o – +180o −180o – +180o

A power supply unit capable of delivering the required

30A @48V to each module was constructed using PBA-

1500F power converters from Cosel. An emergency stop

controller that acts directly on cutting the power was imple-

mented so that the power unit cannot be activated without

the emergency controller present. The emergency stop has

been tested and works well, as a power cut will stop the

modules and engage the brakes.

The communication interface was designed to be imple-

mented over 4 separate CAN buses, one each for the 3 inner

(position controlling) joints, and one common bus for the

3 outer (orientation controlling) joints. Two 2-channel PCI

CAN controllers from Kvaser were chosen, as these had open

source device drivers for Linux that where deemed plausible

to port to real-time usage.

A Dell PowerEdge 1800 server with a 3.6 GHz Intel Xeon

processor was acquired to use as control unit. This choice

was based upon a balance of requirements for processing

power and reliability.

B. Software implementation

A Linux 2.6.9 Kernel was patched with RTAI 3.2 for

low latency realtime performance. A customized commu-

nications API was implemented to guarantee low-latency

communication with the PowerCube modules, as well as

customized libraries for fast vector manipulations optimized

for calculating arm dynamics. The control loop is run in soft

real-time. Experiments have shown that this gives a worst

case latency of less than 1 ms, which is sufficient. The

average jitter for the control algorithm is 60 μs, which is

significantly less than the modules’ latency of up to 600 μs.

Inverse kinematics and dynamics are calculated using a C

implementation of the analytical solution for a Puma arm

from Craig [8], and the forward dynamics are calculated

using the second algorithm proposed by Walker and Orin [9].

As a result, inverse kinematics can be calculated in 1.7μs,

and dynamics in 41μs, so that all calculations needed in the

control loop take less than 50μs. This means that virtually

all latency in the control loop originates from the CAN bus

communication path and the PowerCube modules response

times.

Position control has been implemented on the system using

a combined feed-forward computed torque control (CTC)

scheme and a feed-back PI controller. When a new setpoint

enters the controller, a velocity ramp trajectory is calculated

in joint space. This trajectory is limited by a preset top

velocity (presently 4 rad/s) and a maximum acceleration.

The maximum acceleration is limited by a preset limit value2

(presently 16 rad/s2) and the maximum achievable accelera-

tion, computed by calculating the resulting acceleration with

maximum torque and taking away a small safety margin. The

ramp trajectory is recalculated in each iteration of the control

loop. The current position and velocity, and the acceleration

prescribed by the ramp are fed to the forward dynamics

function that determines the necessary torques to follow the

trajectory. These torques are converted to currents and sent to

the actuator modules. For a schematic of the control scheme,

see Fig 5.

PI

Trajectory
Generator

CTC

+

+

−

+desired
velocity

Current

Current

measured velocity

measured position

Modules
Actuator

Setpoint
(Position)

Fig. 5. Schematic of controller

2The limits on velocity and accelaration are chosen to limit the mechani-
cal stress on the system, while still being able to reach a given point in the
workspace in less than 0.5 s.

FrC6.1

4060



A corrective term consisting of a PI controller monitors

the difference between desired velocity and actual velocity,

and corrects the controller current accordingly. This term is

necessary as the feedforward CTC controller does not contain

an accurate enough model of friction, the movements of

the power cords or the nonlinearities in the current/torque

realationship. Empirical trials have shown that good perfor-

mance is achieved when the gain balance is set so that the

PI controller produces approximately 30 % of the control

signal.

IV. PERFORMANCE

There is still some fine tuning remaining to be done for

the robot arm, but even so, it already fulfills all the specified

requirements that can be measured, and has a performance

similar to the simulation.

A. Precision

In order to measure the repeatability of positioning of

the arm, a paper ”target” with a milimeter scale was fixed

to the last joint of the arm. The arm was stopped in a

position in the center of the workspace. A laser pointer

capable of producing a light point approximately 1 mm in

diameter was fixed to point to the center of the target. The

arm was then taken around a complicated path traversing

and circling the workspace for approximately one minute.

The arm was then sent back to the original position. To

the precision of the scale and the observers perception, the

pointer was in the middle of the target. This was repeated

for several different positions and angles, with the laser

pointer mounted both horizontally and vertically, with the

same results. The repeatability is therefore deemed to be

better than ±1 mm. The arm has also been tested to follow a

straight path with sub-millimeter accuracy, but this has only

been performed at very low speeds for safety reasons, so

there are no experimental results for the accuracy at higher

velocities.

B. Dynamic performance

The arm has been timed to traverse the workspace ver-

tically (distance 60 cm) in both directions within 0.39 s,

which was predicted in the simulations. As for the other

movements, only times down to 0.5 s have been verified, as

this is enough for our application and we want to minimize

mechanical stress on the equipment. The outermost joints

are slightly slower then the inner ones, so the final angular

alignment of the end effector takes slightly longer than the

positioning in some configurations.

C. Control loop times

Although the PowerCube modules are specified by the

manufacturer to be able to handle CAN bus communication

up to 1 Mbit/s, experiments showed that this rate can not be

maintained continously. Especially when controlling several

modules on a single CAN bus, there is a tendency for CPU

overload/overheat in the modules. Overloading results in an

unrecoverable error that requires a shutdown and cooldown

before operation can be resumed. The actual achievable

communication speeds are presented in Table VI. These are

slightly slower speeds than anticipated from the specifica-

tions (see Table VII), but still fast enough for acceptable

control. The time to complete a communication loop consists

of the 0.134 ms needed to send a CAN message at 1 Mbaud

(or 0.268 ms at 500 kbaud), and the approximately 0.25 ms

a module needs to respond to a request. The response time

is somewhat dependent on the nature of the request. When

performing several read/writes over the same bus to different

modules, the time spent waiting for one module’s response

can to some extent be used to communicate with another

module, hence the slight nonlinearity of loop times as a

function of number of connected modules. The tables show

two different speeds for each setup — with or without

velocity polling. The modules have internal velocity mea-

surements that are more accurate than just differentiating

two position measurements. On the other hand, if these

velocity measurements are used, the temporal resolution will

be lower due to the extra time needed for communicating this

additional data. Experiments have yet to show which strategy

will yield the best overall performance.

In the implemetation, a control loop frequency of 600

Hz for the inner 3 cubes and 200 Hz for the outer 3

cubes was used. The lower frequency is obtained by only

communicating with one of the outer cubes in each iteration

of the control loop. Due to their limited inertia and power,

the outer cubes have a very limited influence on the overall

dynamic performance of the arm, and thus the error induced

by scarce measurements from the outer cubes is neglible.

TABLE VI

EMPIRICAL CONTROL LOOP FREQUENCIES OVER THE CAN BUS.

Modules per CAN controller card
1 3

Control frequencies at 1 Mbaud
with velocity polling Overload Overload
without velocity polling 1889 Hz Overload
Control frequencies at 500 kbaud
with velocity polling 708 Hz 238 Hz
without velocity polling 1256 Hz 417 Hz

TABLE VII

THEORETICAL CONTROL LOOP SPEEDS OVER THE CAN BUS

Modules per CAN controller card
1 2 3 6

Cycle periods at 1 Mbaud
with velocity polling 1.04 ms 1.30 ms 1.87 ms 3.22 ms
without velocity polling 0.52 ms 0.65 ms 0.8 ms 1.61 ms
Cycle periods at 500 kbaud
with velocity polling 1.57 ms 2.14 ms 3.22 ms 6.43 ms
without velocity polling 0.79 ms 1.07 ms 1.61 ms 3.22 ms
Control freq. at 1 Mbaud
with velocity polling 961 Hz 769 Hz 535 Hz 311 Hz
without velocity polling 1923 Hz 1538 Hz 1250 Hz 621 Hz
Control freq. at 500 kbaud
with velocity polling 637 Hz 467 Hz 311 Hz 156 Hz
without velocity polling 1265 Hz 935 Hz 621 Hz 311 Hz

FrC6.1

4061



D. Control Server

A first prototype server application has been implemented.

It receives cartesian coordinates from a client computer over

an UDP/IP connection and tracks these coordinates as closely

as possible, while returning information on present position

and velocity in both cartesian and joint space. All parts of

the communication, as well as all measurements are time-

stamped in order to enable correction for time-lags over the

communication link.

V. BALL CATCHING EXPERIMENTS

In order to verify the performance of the manipulator, a

setup allowing for the complete ball catching scenario was

constructed. These experiments are still at an early stage, but

the early results are promising.

A. Experimental Setup

The manipulator was fitted with a simple end effector,

consisting of a passively damped cardboard basket with

a diameter of 14 cm (see Fig. 7). Into this we threw a

soft juggling type ball from a distance of approximately

4 m. To ensure repeatability, the ball was launched using

a mechanical launcher with a precision of ±10 cm at the

specified distance (see Fig 6).

Fig. 6. The mechanical ball launcher

Using this setup, the flight time of the ball was approxi-

mately 0.8 s. The ball position was measured with a stereo

vision system consisting of two Firewire cameras mounted

on a 60 cm baseline approximately 0.5 m behind and slightly

above the robot (see Fig 7). The ball tracking was done by

using an extended Kalman filter (EKF), as described in [4].

The ball was detected in each image using simple color

segmentation. First, the 24 bit RGB image was converted to

24 bit HSV using a lookup table. The ball was found to have

a hue value of 3, and a (largely varying) saturation value of

approximately 160, so all pixels that were in the range 1–5

for hue and 120–200 for saturation were preliminary marked

as ball pixels. A second pass that only kept marked pixels

with at least 3 other marked neighbors eliminated noise. The

Fig. 7. The manipulator with cameras and ball-catching end effector.

center of mass for the marked pixels was calculated and

used as the ball centroid. Since subwindowing schemes have

shown to be very efficient to significantly reduce the time

needed in segmenting moving objects (c.f. [10]), one was

applied to our implementation as well. After the ball has

been detected the first time, only a subwindow where the

ball should be expected to be found was processed. This

subwindow was calculated using the state estimate from the

EKF, and the size of the window is set to cover several

times the standard deviation in position. Using this approach,

the ball could be segmented and localized with a reasonable

accuracy at less than 4 ms processing time per stereo image

pair, giving sufficient real-time performance.

The actual catching position was decided by interpolating

the point were the predicted ball trajectory intersects a

plane which corresponds to the robot’s workspace. This

position was then sent via the UDP/IP connection to the

control computer, that sent the manipulator to the position.

Launching 32 balls that hit within the operating window,

with an average distance of 24 cm from the manipulator’s

starting position, 25 of 32 balls were caught.

VI. CONCLUSION

The present paper has presented the requirement for a

highly dynamic robotic system to be used in studies for

ball-catching. From these requirements and a number of

secondary goals a system has been designed using off-the-

shelf actuation modules. Associated software for real-time

control has been designed and implemented on a commer-

cially available computer platform. The system operates at

600 Hz and satisfies all the requirements specified for the

design. Results from early experiments demonstrate that the

system fulfills the static and dynamic requirements to allow

ball catching.

APPENDIX

A. Detailed Simulation Results

In simulation, the times needed to complete several dif-

ferent motions were calculated for a 0.5 kg payload (see

table VIII). This corresponds to carrying the weight of the

power cables connected to the robot. Simulation results show

FrC6.1

4062



1 1.2 1.4 1.6 1.8 2

1

1.2

1.4

1.6

1.8

2

ba

c

d

e f

g

h

Fig. 8. The distances across the workspace measured for travel times.

TABLE VIII

TRAVEL TIMES

Moving from standstill to standstill with a 0.5 kg payload along different
paths in the workspace window. For definitions of distances, see Figure 8.

Distance Traveltime
a (top-bottom) 0.37 s
b (bottom-top) 0.36 s
c (left-right) 0.23 s
d (left-right) 0.23 s
e (diagonal up) 0.37 s
f (diagonal down) 0.37 s
g (mid-lowerleft) 0.26 s
h (mid-upperright) 0.22 s

that the time constraint of traveling from one position to

another in less than 0.5 s can be fulfilled.

B. Cost Breakdown

The total cost of hardware used in the setup described

in this paper was just below 50 000 euros. For a detailed

cost breakdown, see Table IX. Please note that these are the

actual prices paid, and that there is no guarantee for future

availabilty at these same prices.

C. Experimental verification of performance

On the actual platform, due to safety precautions, veloci-

ties higher than those necessary have not been verified. mo-

TABLE IX

PRICES (IN EURO) FOR THE SETUP USED IN THE PRESENT PAPER

Part(s) Price (e)
Actuators 38,000
Rigid Links 3,400
CAN System 1,600
Mountings 500
Power Supply 4,400
Control Computer 1,600
Total 49,500

TABLE X

OVERALL SPECIFICATIONS FOR THE ARM

Total reach 0.91m
Max end effector velocity 7 m/s
Max end effector acceleration 140 m/s2

Max power consumption 5 kW
Moving massa 10.6 kg
Control bus CAN (4 channels)

Control frequencyb 600/1200 Hz
External connection UDP/IP
Control space Joint/Cartesian
Control types Position/Velocity

(a) Moving mass only indicates mass that makes translational motion,
and thus has a large inpact on the inertial load.

(b) This depends on the velocity measuring strategy, see Section IV-C

tions from the center of the workspace to the edges moving

horizontally, vertically and diagonally have been verified at

less than 0.5 seconds. Additionally, the same travel times

have been verified when traversing the entire workspace from

edge to edge. This was measured by inserting a timer into the

control loop that measures the time from starting the control

loop in a certain position until the control loop reports both

that the position is within 5 mm of goal position and velocity

is less than 1os−1 for all joints.

ACKNOWLEDGMENT

The research presented in this paper is funded in full by

the 6th EU Framework Program, FP6-IST-001917, project

name Neurobotics.

REFERENCES

[1] R. Andersson, “Dynamic sensing in a ping-pong playing robot,” IEEE
Transactions on Robotics and Automation, vol. 5, no. 6, pp. 728–739,
December 1989.

[2] H. Hashimoto, F. Ozaki, K. Asano, and K. Osuka, “Development of a
pingpong robot system using 7 degrees of freedom direct drive arm.”
in 1987 International Conference on Industrial Electronics, Control,
and Instrumentation, Nov 1987, pp. 608–615.

[3] B. Hove and J. Slotine, “Experiments in robotic catching,” in Proceed-
ings of the 1991 American Control Conference, vol. 1, Boston, MA,
Jun 1991, pp. 380–385.

[4] U. Frese, B. Bauml, S. Haidacher, G. Schreiber, I. Schaefer,
M. Hahnle, and G. Hirzinger, “Off-the-shelf vision for a robotic ball
catcher,” in Proceedings of the IEEE/RSJ International Conference on
Intelligent Robots and Systems, 2001, pp. 1623–1629.

[5] G. Hirzinger, N. Sporer, A. Albu-Schafer, M. Haahnle, and A. Pas-
cucci, “DLR’s torque-controlled light weight robot iii - are we reaching
the technological limits now?” in Proc. of the Intl. Conf. on Robotics
and Automation, 2002, pp. 1710–1716.

[6] D. Aarno, “Autonomous path planning and real-time control - a solu-
tion to the narrow passage problem for path planners and evaluation of
real-time linux derivatives for use in robotic control,” Master’s thesis,
Department of Numerical Analysis and Computer Science (NADA),
KTH, Sweden, 2004, TRITA-NA-E04006.

[7] S. Munir and W. J. Book, “Internet-based teleoperation using wave
variables with prediction,” IEEE/ASME Transactions on Mechatronics,
vol. 7, no. 2, Jun 2002.

[8] J. Craig, Introduction to Robotics: Mechanics and Control. Addison-
Wesley Pub. Co., Reading, 1986.

[9] M. Walker and D. Orin, “Efficient dynamic computer simulation of
robotic mechanisms,” in Transactions of the ASME – Journal of
Dynamic Systems, Measurement and Control, vol. 104, 1982, pp. 205–
211.

[10] I. Ishii and M. Ishikawa, “Self windowing for high-speed vision,”
Systems and Computers in Japan, vol. 32, no. 10, pp. 51–58, 2001.

FrC6.1

4063


